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Abstract: Pipeline end termination (PLET) installation is an essential part of offshore pipe-laying
operation. Pipe-laying operations are sensitive to pipe-laying barge motion and marine environmental
conditions. Monitoring the field environment can provide a reasonable basis for planning pipe-laying.
Therefore, the measurement and analysis of sea wave motion is helpful for the control and operational
safety of the pipeline and vessels. In this study, an environmental monitoring system was established
to measure wave motion during PLET operation. Fourier transforms were used to process images
that were acquired by ultra-high-frequency X-band marine radar to extract wave parameters. The
resulting wave spectra, as measured each minute, were used to simulate real-time wave data and
calculate wave characteristics and regressed wave frequency and direction spectrum throughout the
PLET operation. The regressed frequency, spectral density, and direction spectra were compared with
the theoretical spectra to evaluate their similarity and find the most similar spreading function in
the operational area (the South China Sea). Gaussian fitting of real-time wave data was tested while
using a classical method. The marginal distribution and joint density of the wave characteristics
were estimated and then compared with theoretical distributions to find the most suitable model for
improving marine environmental forecasting.

Keywords: pipeline end termination; monitoring system; spectral regression; direction spectra; wave
probability distribution

1. Introduction

Information on changes in sea conditions is essential for marine activities, including offshore
operation activities, fisheries, marine resource transformations, and deep-sea development. The
challenges for offshore engineering constantly change with the continuous development of deep water
and open sea areas. The operating speed and precision for installing pipelines and other deep-sea
equipment need to constantly improve to adapt to increasing developmental requirements [1,2]. Vessel
motion and installation are highly sensitive to environmental changes during pipeline installation [3,4].
It is essential to acquire a better understanding of the marine environment during installation to provide
these operations with higher accuracy, which can significantly help with planning pipeline installation.

There are many approaches for monitoring offshore engineering operations in pipeline
installation [5]. To conduct such operations and expertly and securely install a pipeline, a system
for monitoring the ocean environment while laying an offshore pipeline has been developed that
measures vessel motion, position, heading profile, and top tension [6]. This monitoring system has
achieved full-time tracking of the pipe-laying process and other functions, such as the touch-down
point and pipeline fatigue. However, the system mainly monitors vessel motion and pipeline fatigue
and thus neglects marine environmental analysis for installation operations, which can provide a basis
for safety assessments and sea state forecasts. Another monitoring system that is used for floatover
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installations includes environmental and position monitoring functions to validate the installation
tests and calibrate the monitoring system [7]. However, these monitoring systems do not acquire
detailed measurements of specific wave parameters; thus, there is no analysis or induction of the
wave characteristics.

Recent research in marine environmental monitoring has paid more attention to specific sea
areas for longer periods of time to obtain reliable information [8]. The development of better wave
observation technologies in recent years has yielded a greater variety of wave measurement devices,
such as buoys, wave gages, and sensors, including radar sensors [9,10]. A home-made buoy-type
wave height meter was used to perform measurements off the shore of northern China [11]. While
using offshore buoy observations along the California coast, O’Reilly showed that buoy-driven model
hindcasts have low bias and they are suitable for predicting mean wave climate conditions [12].
Additional shallow water wave height measurements were performed while using a cable-type wave
monitoring system; however, these wave height observations were discontinuous, and the algorithm
was only applicable to an inner space of less than 100 m [13]. An operational wave monitoring system
was used for a Mediterranean beach to predict the wave evolution up to five days in advance by
running the system once a day [14]. A regional coastal ocean observation system was also built for
wave measurements [15]. Yasukuni Mori first presented measurements from light-emitting diode radar
to monitor waves and evaluate the relationship between the wind and the waves [16]. Carrasco and
Seeman measured the surface wave properties and spectral parameters while using Doppler marine
radar [17].

Real-time wave monitoring systems were used to measure continuous wave data, and the acquired
data were then used to calculate other environmental properties, such as wind speed and surface current
direction [18–20]. For the total monitoring of marine environmental parameters, a semi-enclosed
basin-monitoring system was designed to show the annual evolution of the measured parameters in the
area investigated [21]. However, these wave monitoring systems were built to measure certain marine
parameters and they do not provide a precise description of the sea conditions for specific engineering
operations, even though these operations are susceptible to the sea level. In addition, the theoretical
spectrum and corresponding environmental parameters were obtained by regressing a wave spectrum
while using the measured data to provide an environmental reference for offshore engineering.

It is necessary to analyze the wave characteristics of the laying process and other working
conditions of the pipeline to determine the working environmental parameters during pipe-laying
operations with a lay-barge. This study aims to present and discuss real-time and continuous recording
of marine environmental data that were collected using X-band radar in the South China Sea during
a pipeline end termination (PLET) installation. Two frequency spectra were regressed while using
real-time wave data that were simulated using a spectrum that was measured every minute by radar
during the entire PLET installation. The regressed frequency spectra were compared with theoretical
ocean spectra, and the direction spectra were compared with the theoretical spreading functions.
The wave characteristics were analyzed while using the regressed spectra, including the marginal
distribution of the wave characteristics, the joint distribution of the local wave maxima and minima,
and the joint distribution of the wave height and period. This was to understand the waves during
PLET installation and to provide a design basis for PLET installation operations and other offshore
engineering projects.

2. Materials and Methods

2.1. Operational Area and Monitoring System

Figure 1 shows the monitoring system that was used for the marine environmental data during
PLET installation in the South China Sea (115◦20′27” E, 20◦24′56” N). During April 2019, the Offshore
Oil Corporation Co. Ltd conducted a PLET sea trial. The water depth in the operational area varied
from 50 m to 150 m.
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X-band radar was used to acquire the wave measurements in this study. The X-band radar 
device can be installed either on a stationary platform or moving ship. In this operation, the radar 
was installed on the side of the pipe-laying vessel at a height of 8 m above sea level. The X-band radar 
device has high temporal and spatial resolution and it consists of an appropriately sized antenna, a 
main unit, a control unit, and a display unit (Figure 3). After the antenna scans the ocean surface, the 
radar device receives echo-scattering signals from the ocean surface. These parameters were 
effectively estimated every few minutes by transforming signal information, such as the directional 
wave spectrum and the wave height. The wave information was then presented in the form of icons, 
a text output, and data files. This system can automatically run with a cycle time of approximately 1 
min. 

Figure 1. Study area and pipe-laying operation area.

A monitoring system was installed to measure the wave data to gain a better understanding of
the type of marine environment that is suitable for PLET installation. The system included X-band
radar, sensors, height indicators, and a Global Positioning System (GPS) antenna (Figure 2).
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Figure 2. Layout of the environmental monitoring equipment on the pipe-laying vessel.

X-band radar was used to acquire the wave measurements in this study. The X-band radar device
can be installed either on a stationary platform or moving ship. In this operation, the radar was installed
on the side of the pipe-laying vessel at a height of 8 m above sea level. The X-band radar device has
high temporal and spatial resolution and it consists of an appropriately sized antenna, a main unit,
a control unit, and a display unit (Figure 3). After the antenna scans the ocean surface, the radar device
receives echo-scattering signals from the ocean surface. These parameters were effectively estimated
every few minutes by transforming signal information, such as the directional wave spectrum and the
wave height. The wave information was then presented in the form of icons, a text output, and data
files. This system can automatically run with a cycle time of approximately 1 min.
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Figure 3. Diagram of the radar arrangement.

2.2. Extraction of Marine Information

The radar images of “sea clutter” are composed of backscattered echoic waves that were generated
by the interaction of the radar waves with sea surface capillary waves. The surface gravity wave
modulates the backscattered echoic wave, so large amounts of ocean wave information are included in
the sea clutter image (Figure 4). The ocean wave data that were produced by the radar signal extraction
ranged from polar coordinates to rectangular coordinates.
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The sea surface can be imaged once by rotating the radar antenna. The X-band radar handles a
certain number of the accumulated images in one transfer time interval. The spatial and temporal
distribution function g(r, θ, t) of the gray levels was determined for 40 consecutive images per minute
collected by the radar antenna (Figure 4). The antenna speed determines the time interval ∆t between
two consecutive images. The radius of the semicircular area was 1600 m and the radar resolution
satisfied the requirements for marine environmental monitoring. The radar system performs a fast

Fourier transform (FFT) on multiple g(r, θ, t) images each minute to obtain the function I(
→

k ,ω). The
antenna speed of this X-band radar system was set at 15 s/rad, which meant that 40 g(r, θ, t) images

could be obtained per minute, and the period of the function I(
→

k ,ω) was set at 1 min. Performing
an FFT of g(r, θ, t) yielded wave number-frequency spectra that satisfied the dispersion relation for
gravity waves. The dispersion relation can be expressed as:

ω(
→

k ) =

√
g
∣∣∣∣∣→k ∣∣∣∣∣tanh(

∣∣∣∣∣→k ∣∣∣∣∣h) +→k→U, (1)

where ω is the angular frequency,
→

k = (kr, kθ) is the wave number vector in two directions, h is the
average height of the monitoring area, and U is the surface flow velocity.

The function g(r, θ, t) was then converted while using a three-dimensional Fourier transform:

I(
→

k ,ω) =
∫ r

0

∫ θ

0

∫ T

0
g(r,θ, ti) exp[i(krr + kθθ−ωt)]drdθdt, (2)

where I(
→

k ,ω) is the image wave number frequency spectrum, r and θ indicate the radius and the
angle of the rectangular area, respectively, i is the time series, and T is the total length of the time
series [22,23].

Using the dispersion relation as a band pass filter to calculate the wave number frequency interval,
we eliminated the effects of the Doppler shift on the wave frequency that was measured by the radar to
obtain wave number images in two dimensions:

I(3)(
→

k ) = 2
∫
ω>0 I(2)(

→

k ,ω)d(ω− ω̃),

I(2)(
→

k ,ω) =

∣∣∣∣∣I(→k ,ω)
∣∣∣∣∣2

ST ,

(3)

where S is the area of the grayscale image that reduces spectral blurring when the angle is >180◦, so the

part where ω > 0 is reserved. When the surface flow velocity is
→

U, the frequency dispersion follows
Equation (1).

The ocean wave number spectrum was obtained by multiplying the modulation transfer function
M and the image wave number spectrum:

M = kβ, (4)

where β is obtained by fitting with the least squares method with lgk as the abscissa and lgM as
the ordinate:

F(2)(
→

k ) = kβ · I(2)(
→

k ,ω). (5)

Furthermore, the wave direction spectrum was obtained while using the following:

F(2)(ω,θ) =
k

2π
∂k
∂ω

F(2)(k,θ), (6)
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S(ω) =
∫ 2π

0
F(2)(ω,θ)dθ. (7)

The spectra, which were measured by the radar every minute, are shown at 600 min., 3000 min.,
and 6000 min. in Figure 5.Processes 2018, 6, x FOR PEER REVIEW  6 of 19 
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3. Results of Wave Data Time Series Simulation and Spectral Estimation

3.1. Wave Data Simulation

The wave spectra per minute obtained by the radar were simulated to obtain real-time data to
represent the entire working environment, as the wave information in these wave spectra is limited and
the environmental conditions during the pipe-laying operation cannot be described in detail. Using
the spectrum measured by radar every minute, the significant wave height (Hs) can be calculated as:

Hs = 4
√

m0, (8)

where m0 =
N∑

i=0
ωŜ(ω) represents the zero-order spectral moments and the significant wave height

changes over time (see Figure 6).
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According to Table 1 [24], the sea state during the pipe-laying operation could be divided into two
scales with 750 min. as the demarcation point in the time series: smooth waves (0.25 m < Hs < 0.8 m)
and slight waves (0.8 m < Hs < 1.3 m). Therefore, wave data simulation and wave spectra regression
were carried out in light of these two scales.
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Table 1. Classification of sea states.

Wave Scale Wave Definition Hs [m]

0 Calm-glassy 0
1 Calm-rippled <0.25
2 Smooth wavelet 0.25~<0.8
3 Slight wave 0.8~<1.25
4 Moderate 1.25~<2.00

The radar results are presented as wave spectra in terms of monitoring the area per minute. The
wave spectrum over a small time interval cannot explain the distribution in the study area during
the entire pipe-laying operation, so we used geometric approximation to simulate the radar wave
spectra each minute to obtain real-time wave series data. The ocean wave data were then arranged in
chronological order to derive the ocean history during the entire pipe-laying operation.

A useful mathematical model for such a situation is the random function (stochastic process), as
denoted by X(t). The model of a stationary wave signal with a fixed spectrum S(w) is:

X(t) = m0 +
N∑

i=1

√
ŝi∆ω

√

2 cos(ωit + θi), (9)

where θi is the spreading direction angle, N is the total number of frequencies, i is the frequency
number, ∆ω is the sample interval for the radar in the frequency domain ωi = i ·∆ω, and ŝi is the value
of the spectrum at each frequency, which was monitored and then extracted in Section 2.2. Therefore, ŝi
includes a certain randomness to ensure the randomness of the wave data X(t). The last integral is the
zero order spectral moment mo, and a higher order spectral moment is defined as mn =

∫
∞

0 ωnŝ(ω)dω.
Table 2 gives some simple statistics for the real-time wave data transformed while using the

measured spectra, including the time interval Ts, the total measurement time T, and the significant
wave height Hs. To calculate the significant wave height, all of the turning points were included in
the calculations.

Table 2. Summary of observation statistics.

Dataset Ts [s] T [min] Hs [m]

Group 1 0.5 750 1.0583
Group 2 0.5 950 0.6069

Figure 7 shows the parts of the wave data that were acquired during the pipe-laying operation
with the turning points.

3.2. Similarity Analysis of Measured and Ocean Spectra

The complete simulation wave data were used to estimate and regress the ocean spectrum during
the pipe-laying operation in the South China Sea. The correlation function was used to estimate the
sea spectrum.

3.2.1. Regression of the Ocean Wave Spectrum

The correlation function is a description of the stochastic process from a time domain perspective.
In contrast, the spectral function describes the stochastic process from the frequency domain perspective,
and both can be obtained while using a Fourier transform. The correlation and spectral functions are
defined as:

Rxx(τ) = lim
T→∞

1
2T

∫ T

−T
x(t)x(t + τ)dt, (10)
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S∗xx(ω) = lim
T→∞

1
4πT

∣∣∣X(ω)
∣∣∣2, (11)

where S∗xx is the two-sided spectral function. By applying the FFT, the correlation function and the
one-sided spectrum can be expressed as:

Rxx(τ) =
∫
∞

−∞
S∗xx(ω)eiωτdω,

Sxx(ω) = lim
T→∞

2
π

∫ T
0 Rxx(τ) cosωτdτ.

(12)
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Therefore, îs  includes a certain randomness to ensure the randomness of the wave data X(t). The 
last integral is the zero order spectral moment mo, and a higher order spectral moment is defined as

0
ˆ( )n

nm s dω ω ω
∞

=  . 

Table 2 gives some simple statistics for the real-time wave data transformed while using the 
measured spectra, including the time interval Ts, the total measurement time T, and the significant 
wave height Hs. To calculate the significant wave height, all of the turning points were included in 
the calculations. 

Figure 7 shows the parts of the wave data that were acquired during the pipe-laying operation 
with the turning points. 

 

(a) 

 

(b) 

Figure 7. Real-time wave data simulated using radar spectra for (a) Hs = 1.0583 m and (b) Hs = 0.6069 
m. 

Table 2. Summary of observation statistics. 

Dataset Ts [s] T [min] Hs [m] 
Group 1 0.5 750 1.0583 
Group 2 0.5 950 0.6069 

3.2. Similarity Analysis of Measured and Ocean Spectra 

800 850 900 950

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time [s] 

W
av

e 
he

ig
ht

 [m
]

800 850 900 950

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s] 

W
av

e 
he

ig
ht

 [m
]

Figure 7. Real-time wave data simulated using radar spectra for (a) Hs = 1.0583 m and (b) Hs =

0.6069 m.

The integral above was converted into a finite numerical integral that can be expressed by the sum

R̂(ν∆t) =
1

N − υ

N−υ∑
n=1

x(tn + ν∆t)x(tn), (13)

where τ = ν∆t, ∆t is the time interval of the wave time series data, and ν = 0, 1, 2, . . . , m(< N).
Therefore, the corresponding numerical integration of the spectral estimation is:

Ŝh =
2∆t
π

1
2

R̂(0) +
m−1∑
ν=1

R̂(ν∆t) cos
πνh
m

+
1
2

R̂(m∆t) cos(hπ)

, h = 0, 1, 2, . . . , m (14)

where ωh = h∆t = hπ
m∆t is the frequency interval, Ŝh is the estimated rough spectrum, and the spectral

curve regressed using Equation (15) is jagged. The coarse spectra must be smoothed to improve the
quality of the spectral estimation.

The Hanning weight function was adopted as a smoothing function:

D(τ) =

 1
2

(
1 + cos πτ

Tm

)
, |τ| ≤ c

0 |τ| > Tm
, (15)

where Tm = m∆t is the maximum value of τ in Equation (15) and is the maximum delay, and the
spectral value after smoothing is expressed as:

Ŝh = 0.25Ŝh−1 + 0.5Ŝh + 0.25Ŝh+1, h = 1, 2, . . . , m− 1. (16)
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3.2.2. Theoretical Ocean Spectra

The theoretical ocean spectra were calculated while using two equations. The first is the Jonswap
spectrum [25]:

Sς(ω) = 319.34
Hs

T4
pω5

− 1948

(Tpω)
4

3.3exp [−
(0.159ωTp−1)2

2σ2 ], (17)

where Tp is the peak spectral period and ω is the wave frequency, whereby

σ =

{
0.07 if ω < ωp

0.09 if ω ≥ ωp
. (18)

The second calculation uses the Ochi-Hubble double-peak spectrum and describes bimodal spectra
using a superposition of two modified Pierson-Moskovitz spectra with six parameters. The spectrum
includes two peaks that divide it into two parts: the swell and wind waves represent the low and high
frequency parts, respectively, with each part using the three parameters Hs (significant wave height),
λi (shape parameter), and ωp (wave frequency):

Sς(ω) =
1
4

2∑
i=1

((λi + 1/4)ω4
p,i)

λi

Γ(λi)

H2
s,i

ω4λi + 1
exp

−(λi + 1/4)ω4
p,i

ω4

, (19)

where i = 1 and 2 represent the low- and high-frequency components, respectively. The significant
wave height Hs was calculated (Table 2) and it forms the foundation for the six mean parameters in
Equation (20).

3.2.3. Comparison and Analysis of the Measured and Ocean Spectra

The measured spectra were regressed while using a correlation function, and the theoretical
spectra at the same sea level were also calculated. The value of the smooth function was set as 2000 to
retain the original shape and reduce the total wave energy loss. On the basis of the regressed spectra,
only theoretical spectra with similar shapes were calculated (Figure 8, where the dotted lines represent
the regressed spectra).
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Figure 8. Regressed spectrum during pipeline end termination (PLET) installation and theoretical
spectrum for (a) Hs = 1.0583 m and (b) Hs = 0.6069 m.

The regressed spectrum was similar to the Ochi-Hubble spectrum when Hs = 1.0583 m (Figure 8a),
although the valley in the middle of two peaks of the regressed spectrum is a deviation from the
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theoretical spectrum. The Jonswap spectrum ignored the peak energy of the wind waves. The regressed
spectrum was a double-peak spectrum of the sea state that represented the dominance of the swell.

Another spectrum showed a double peak with approximately the same height, which means
that the wave energies of the low- and high-frequency parts were nearly equal; therefore, only the
Ochi-Hubble theoretical spectrum was calculated during the similarity analysis. The low-frequency
part represents the swell component of a wave, while the high-frequency part indicates a wind
wave. According to a regressed spectrum with Hs = 0.6069 m, the mixed wind waves and swell have
comparable energies. From a sea state, with Hs = 1.0583 m, to a slightly lower sea condition of Hs =

0.6069 m, the sea state varied from swell-dominated to mixed wind wave and swell throughout the
PLET installation.

The peak frequency of the measured spectrum with Hs = 1.0583 m was similar to the first peak
frequency of another spectrum, with Hs = 0.6069 m, which means that the period of the swell remained
approximately the same during the PLET operations. The measured spectra were more similar to the
theoretical spectra at low frequencies and at the high-frequency peak (Figure 8b). The other remaining
high-frequency regions deviated from the theoretical spectra because of the energy dissipation of a
lower sea state. This indicates that the double-peak Ochi-Hubble spectrum can be used to analyze and
forecast the marine environment during PLET operations in the South China Sea.

3.3. Direction Spectrum Regression and Spreading Function Analysis

The direction wave spectrum is a plot that shows the distribution of the energy with the wave
period and direction. Using the direction spectrum, the original directions of the waves and their
periods can be determined. The spectrum consists of single or multiple wave systems and separate
wind wave and swell systems. The direction spectrum can be calculated as:

Sd = S(ω) ·D(ω,θ), (20)

where S(ω) is the frequency spectrum, D(ω,θ) is the direction spreading function, f is the frequency,
and θ is the direction. There are two common families of direction-spreading functions: the cos−2s
distribution that was introduced by Longuet-Higgins and the Poisson distribution derived by Lygre
and Krogstad [26]. Table 3 lists the formulae and parameters of these two spreading functions.

Table 3. Theoretical direction spreading functions.

Function Expression Parameter Range Fourie Coefficient

cos-2s 1
2π

Γ(s+1)
√
πΓ(s+1/2)

cos2s
(
θ
2

)
0 < s Γ2(s+1)

Γ(s+n+1)Γ(s−n+1)

Poisson 1
2π

[
1 + 2

∑
∞

n=1 xn2
cos(nθ)

]
0 < x < 1 xn2

In this study, the direction spectrum that was measured using radar was compared with the
direction spectrum calculated from the theoretical direction spreading via Equation (20) to determine
which of the spreading functions satisfied the conditions in the operational area. Spectra were regressed
using the real-time wave data.

Figure 9 shows the measured direction spectrum and the calculated spectrum with Hs = 1.0583 m
and Hs = 0.6069 m, respectively. There are two closed contours within the innermost level of
the measured spectrum (Figure 9a). This means that the wave energy component decreased to
approximately 240◦ after the wind direction shifted by approximately 45◦ to the east. The contours are
the densest at approximately 285◦ along the main wave direction relative to the current wind direction.
As shown in Figure 9a, the outline of the measured direction spectrum was similar to that calculated
from the Poisson spreading function; the inconsistent upper left shape was a result of shifting wind
direction and energy.



Processes 2019, 7, 569 11 of 18

Processes 2018, 6, x FOR PEER REVIEW  11 of 19 

 

Figure 9 shows the measured direction spectrum and the calculated spectrum with Hs = 1.0583 
m and Hs = 0.6069 m, respectively. There are two closed contours within the innermost level of the 
measured spectrum (Figure 9a). This means that the wave energy component decreased to 
approximately 240° after the wind direction shifted by approximately 45° to the east. The contours 
are the densest at approximately 285° along the main wave direction relative to the current wind 
direction. As shown in Figure 9a, the outline of the measured direction spectrum was similar to that 
calculated from the Poisson spreading function; the inconsistent upper left shape was a result of 
shifting wind direction and energy. 

 

(a) 

 

(b) 

Figure 9. Directional spectra of measured data from radar and theoretical calculations for (a) Hs = 
1.0583 m and (b) Hs = 0.6069 m. 

The calculated direction of the Poisson function is still more similar to the measured value than 
that calculated while using the cos-2s function (Figure 9b). In addition to the intensive contour, 
another contour indicates the swell from approximately 140°, which was also consistent with the two-
dimensional spectra. This shows that the swell and wind waves coexisted during this monitoring 
procedure. The wind wave information did not show any changes in the wind direction, and the 
outline of the measured spectrum matched the spectrum of the Poisson spreading function better 
than that shown in Figure 9a. 

3.4. Gaussian Processing Test 

A sea state under stationary conditions, model X(t), was assumed to be similar to a Gaussian 
process, which is a stationary and ergodic stochastic process with an average value of zero. Real wave 
data seldom perfectly support Gaussian assumptions. The Gaussian case is well modeled, and there 
are approximate methods to calculate the wave characteristics from a Gaussian spectrum. Gaussian 
fitting was conducted on the wave data calculated from the radar-obtained spectrum to determine 
the degree of departure from a Gaussian process [27].  

The function e(g) was used to calculate how much the data departed from a Gaussian process. 
The definition of e(g) is: 

1/ 22
( ) ( ( ) )e g g u u du

∞

−∞

 = − 
  , 

2ln(2π ( ))
( )

2 ln(2π ( ))

V u m
g u

V u m

σ

σ

 − += 
− − +



 , 

(21)

where ( )V u  is the crossing-density function, which yields the average number per unit time or space 
of up-crossings of level u. The basic definition of the crossing function is 

( ) [numbers of up-crossing of level  by ( )]V u E u X t= , where E is the expected value and V is 
approximated as: 

  0.1
  0.2

  0.3 30

210

60

240

90

270

120

300

150

330

180 0

Level curves at:
0.1
0.2
0.3

 

Poisson
cos-2s
measured

  0.05  0.1
  0.15  0.2  0.25 30

210

60

240

90

270

120

300

150

330

180 0

Level curves at:
0.05
0.1
0.15
0.2
0.25

 

Poisson
cos-2s
measured

Figure 9. Directional spectra of measured data from radar and theoretical calculations for (a) Hs =

1.0583 m and (b) Hs = 0.6069 m.

The calculated direction of the Poisson function is still more similar to the measured value
than that calculated while using the cos-2s function (Figure 9b). In addition to the intensive contour,
another contour indicates the swell from approximately 140◦, which was also consistent with the
two-dimensional spectra. This shows that the swell and wind waves coexisted during this monitoring
procedure. The wind wave information did not show any changes in the wind direction, and the
outline of the measured spectrum matched the spectrum of the Poisson spreading function better than
that shown in Figure 9a.

3.4. Gaussian Processing Test

A sea state under stationary conditions, model X(t), was assumed to be similar to a Gaussian
process, which is a stationary and ergodic stochastic process with an average value of zero. Real wave
data seldom perfectly support Gaussian assumptions. The Gaussian case is well modeled, and there
are approximate methods to calculate the wave characteristics from a Gaussian spectrum. Gaussian
fitting was conducted on the wave data calculated from the radar-obtained spectrum to determine the
degree of departure from a Gaussian process [27].

The function e(g) was used to calculate how much the data departed from a Gaussian process.
The definition of e(g) is:

e(g) =
(∫
∞

−∞
(g(u) − u)

2
du

)1/2
,

g(u) =


√
−2 ln(2π

_
V(σu + m))

−

√
−2 ln(2π

_
V(σu + m))

,
(21)

where V(u) is the crossing-density function, which yields the average number per unit time
or space of up-crossings of level u. The basic definition of the crossing function is V(u) =

E[numbers of up-crossing of level u by X(t)], where E is the expected value and V is approximated as:

V(u) =
1
T

∑
i

l(mi,Mi]
(u) = V̂(u), (22)

where l(mi,Mi]
(u) = 1 if minimum < u < maximum and 0 otherwise. The minimum and maximum are

the local wave extremes of the index and u is a variable of the different levels of the crossing-density
function and the transformed function produced by the empirical up-crossing density that was observed
at time T.

100 group Gaussian processes were simulated to calculate the degree of departure from a Gaussian
fit while using the spectrum that was regressed from the observed data. Figure 10 shows the relationship
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between the simulation model and the degree of deviation, e(g). Few simulated Gaussian models
exceeded the e(g) value of 0.273 for the observed data at Hs = 1.0583 m, so this process slightly deviated
from Gaussian behavior (Figure 10a). However, most of the simulated data exceeded the e(g) value
of 0.495 for Hs = 0.6069 m, which means that this process was more similar to a Gaussian process
(Figure 10b).
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Figure 10. Gaussian modeling of the observed data for (a) Hs = 1.0583 m and (b) Hs = 0.6069 m.

4. Discussion

The wave processes that were measured during the pipe-laying operation were similar to a
Gaussian process, but there was a departure from this when Hs was 1.0609 m. This begs the question
of whether the probability distribution of the wave parameters also satisfied the Gaussian probability
distribution or another distribution. Because of this question, we calculated the wave parameter
probability distribution of the measured data to compare it with the theoretical distribution.

4.1. Theoretical Approximations of Wave Distribution

Forecasting the wave parameters requires obtaining the distribution of the wave characteristics.
To select the most suitable distribution, we calculated the Rayleigh and generalized extreme value (GEV)
distributions and the Longuet-Higgins joint distribution to describe the marginal and joint parameters.

The most frequently used model for a Gaussian sea is the Rayleigh distribution. In a Gaussian sea,
the Rayleigh approximation works very well for high waves. The standardized Rayleigh variable R
has a density given by f (r) = r exp(−r2/2). In fact, this is a conservative approximation, because the
probability is

P(A > b) ≤ P(R > 4 ∗ b/Hs) =e−8b2/Hs2
, (23)

so the approximation becomes more accurate as level b increases.
In wave analysis, the specific focus is to find extreme quantities and calculate significant values

for a wave series. These values are often used to predict how large the extreme values might become
outside the observed data when the number of observations is limited. Weibull and Gumbel analyses,
which are two extreme value distributions, are commonly used to perform this type of analysis. Both
of these analyses are part of the GEV family of extreme value distributions. The GEV distribution has
the following distribution function:

F(x; k,µ, σ) =

 exp
{
−(1− k(x− µ)/σ)1/k

}
, i f k , 0,

exp
{
− exp

{
−(x− µ)/σ

}}
, i f k = 0,

. (24)
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For k(x – µ) < σ, σ > 0, and k and µ are arbitrary. The case k = 0 is the limit when k→ 0 for
both distributions.

In addition to the marginal distribution, the joint distribution of the wave parameters must also
be analyzed. The Longuet-Higgins model provides approximate distributions by considering the
joint distribution of the envelope amplitude and the time derivative of the envelope phase [28]. This
approach seemed to give relatively accurate results for waves with significant amplitudes. In addition
to the significant height Hs and the peak period, the Longuet-Higgins density depends on the spectral
width parameter ν. The density function is then:

fT,A(t, x) = CLH

(x
t

)2
exp

{
−

x2

8
[1 + ν−2(1− t−1)

2
]

}
, (25)

where the parameter ν = m0m2
m2

1
− 1 and CLH = 1

8 (2π)
−1/2ν−1[1 + (1 + ν2)

−1/2
]
−1

.

4.2. Marginal Distribution of Wave Characteristics

This section focuses on analysis of the marginal distribution of the wave characteristics. The
density values of the wave crests, troughs, and zero-crossing period T calculated while using the
Rayleigh and GEV distributions were compared with the empirical distribution that was estimated from
the complete observed dataset. The probability density function (PDF) and cumulative distribution
function (CDF) were then calculated.

Figures 11 and 12 show that the cumulative distribution and the probability density of the GEV
distributions for the crest and trough heights were closer to the measured data, which shows that these
are the most suitable distributions for the wave crest and the trough height during operation.
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Figure 11. Computed probability density function (PDF) and cumulative distribution function (CDF) for
the crest height of the measured data, and the Rayleigh and general extreme value (GEV) distributions:
(a) crest height PDF when Hs = 1.0583 m; (b) crest height CDF when Hs = 1.0583 m; (c) crest height PDF
when Hs = 0.6069 m; and, (d) crest height CDF when Hs = 0.6069 m.
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Figure 12. Computed PDF and CDF for the trough height of the measured data, and Rayleigh and GEV
distributions: (a) trough height PDF when Hs = 1.0583 m; (b) trough height CDF when Hs = 1.0583 m;
(c) trough height PDF when Hs = 0.6069 m; and, (d) trough height CDF when Hs = 0.6069 m.

When compared with the results for Hs = 0.6069 m, the Rayleigh distribution was also similar
to the measured data, which means that the Rayleigh distribution can also be used to predict wave
parameter distribution for relatively high sea states. The crest and trough distributions showed similar
trends and the same axis range because these two sea conditions were lower during PLET operation
when compared with the other sea state parameters.

The cumulative distribution of the GEV zero-crossing period was more similar to the measured
data than the Rayleigh distribution (Figure 13). For the probability density of the zero-crossing period,
the GEV distribution was more consistent with the measured data, with the exception of the peak
values. When the wave extremes and the zero-crossing period are included, the GEV distribution can
give suitable marginal distributions of the wave parameters.
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Figure 13. Computed PDF and CDF for the zero-crossing period of the measured data, and the Rayleigh
and GEV distributions: (a) zero-crossing period PDF when Hs = 1.0583 m; (b) zero-crossing period
CDF when Hs = 1.0583 m; (c) zero-crossing period PDF when Hs = 0.6069 m; and, (d) zero-crossing
period CDF when Hs = 0.6069 m.

4.3. Joint Density of Wave Characteristics

An analysis of the joint density of the typical wave characteristics provides more reliable statistical
estimates of the densities. We calculated the joint densities of the amplitude and the period, as well as
the maximum and subsequent minimum.

From the resulting joint distribution of the amplitude and the corresponding period (Figure 14),
the Gaussian model produced a distribution that was more similar to that of the measured data when
compared with the Longuet-Higgins model. This may occur because the Longuet-Higgins model is
used to calculate relatively accurate estimates of large waves. While the extreme values that were
calculated using the Gaussian process were smaller than the measured values, the Gaussian method
also satisfactorily forecast the wave characteristics. However, if the Gaussian model is used to predict
the amplitude and the corresponding period, it can underestimate the wave data when compared with
the real environmental data.
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Figure 14. Joint density of wave amplitude and corresponding periods of measured data and the
Gaussian and Longuet-Higgins models for (a) Hs = 1.0583 m and (b) Hs = 0.6069 m.

The Longuet-Higgins model was only used for the amplitude and period, so only the Gaussian
model was used for the joint distribution of the maximum and corresponding local minimum. The
maximum and minimum values showed the same symmetrical distribution as the crest and trough
did, thereby also satisfying the Gaussian assumptions. The Gaussian model can give a very close
distribution for the maxima and minima, especially for the sea state Hs = 0.6069 m (Figure 15). The
similarity between the Gaussian model and measured data decreased with increasing Hs, thereby
resembling the results for the joint distribution of the amplitude and period.
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Figure 15. Joint density maxima and minima of the measured data and the Gaussian model for
(a) Hs = 1.0583 m and (b) Hs = 0.6069 m.

5. Conclusions

We have presented a system for monitoring the marine environment during PLET installation
and used it to monitor the waves in real time and obtain images of sea clutter in the South China
Sea. This study focused on measurement and analysis of the wave motion throughout the entire
PLRT operation. The frequency spectra were regressed and investigated via Jonswap and double-peak
Ochi-Hubble similarity analyses. The regressed spectra of two sea states were both highly similar to a
double-peak spectrum, which indicated that the Ochi-Hubble spectrum was preferable for forecasting
marine environments for offshore operations. The direction spectrum that was calculated from a
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Poisson spreading function was the most suitable for depicting the wave spreading direction of the
area studied during operation. These two sea states were separated on the basis of their Hs values,
which showed that Hs = 0.6069 m was more similar to a Gaussian process, but higher Hs values slightly
deviated from Gaussian behavior. For the marginal distribution of wave characteristics, such as the
crest, trough height, and zero-crossing period, the GEV distribution provided the most relevant results
for both the probability density and cumulative density distributions. The Gaussian model provided
a relatively accurate estimate of the joint distribution of the amplitude and period along with the
maximum and minimum. The empirical joint distribution of the measured data with Hs = 1.0583 m
slightly deviated from the Gaussian results, which indicated that the Gaussian model may give lower
predictions for the wave parameters in high sea states. The wave monitoring data available during
PLET installation for predicting wave transformation are limited, but it can provide context for future
pipe-laying testing and process improvement. The data recorded that were using the field monitoring
system are invaluable and can be referenced for the design and analysis of future projects.
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