
An Improved Eclat Algorithm Based on Tissue-Like P System with Active
Membranes

Authors:

Linlin Jia, Laisheng Xiang, Xiyu Liu

Date Submitted: 2019-11-24

Keywords: membrane computing, tissue-like P systems, eclat algorithm, frequent pattern mining

Abstract:

The Eclat algorithm is a typical frequent pattern mining algorithm using vertical data. This study proposes an improved Eclat algorithm
called ETPAM, based on the tissue-like P system with active membranes. The active membranes are used to run evolution rules, i.e.,
object rewriting rules, in parallel. Moreover, ETPAM utilizes subsume indices and an early pruning strategy to reduce the number of
frequent pattern candidates and subsumes. The time complexity of ETPAM is decreased from O(t2) to O(t) as compared with the
original Eclat algorithm through the parallelism of the P system. The experimental results using two databases indicate that ETPAM
performs very well in mining frequent patterns, and the experimental results using four databases prove that ETPAM is computationally
very efficient as compared with three other existing frequent pattern mining algorithms.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2019.1144
Citation (this specific file, latest version): LAPSE:2019.1144-1
Citation (this specific file, this version): LAPSE:2019.1144-1v1

DOI of Published Version: https://doi.org/10.3390/pr7090555

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)

processes

Article

An Improved Eclat Algorithm Based on Tissue-Like
P System with Active Membranes

Linlin Jia, Laisheng Xiang and Xiyu Liu *

Business School, Shandong Normal University, Jinan 250358, China
* Correspondence: xyliu@sdnu.edu.cn

Received: 20 July 2019; Accepted: 13 August 2019; Published: 22 August 2019
����������
�������

Abstract: The Eclat algorithm is a typical frequent pattern mining algorithm using vertical data.
This study proposes an improved Eclat algorithm called ETPAM, based on the tissue-like P system
with active membranes. The active membranes are used to run evolution rules, i.e., object rewriting
rules, in parallel. Moreover, ETPAM utilizes subsume indices and an early pruning strategy to
reduce the number of frequent pattern candidates and subsumes. The time complexity of ETPAM is
decreased from O(t2) to O(t) as compared with the original Eclat algorithm through the parallelism
of the P system. The experimental results using two databases indicate that ETPAM performs very
well in mining frequent patterns, and the experimental results using four databases prove that
ETPAM is computationally very efficient as compared with three other existing frequent pattern
mining algorithms.

Keywords: frequent pattern mining; eclat algorithm; tissue-like P systems; membrane computing

1. Introduction

Membrane computing is a branch of natural computing, and its development provides many
computing frameworks and new bio-molecular computing models [1]. The development of membrane
computing started with observing the structure and functions of living cells. Membranes play important
roles in the functioning of cells and separate the cells from the outside environment [2,3]. The models
extracted from membrane computing are usually called P systems and are divided into three main
categories, i.e., cell-like P systems, neural-like P systems, and tissue-like P systems. Most of these
P systems have high computing power, are very efficient and Turing universal [4]. This study employs
a tissue-like P system with active membranes to mine frequent patterns. A P system mainly consists
of three parts: Membrane structure, multiple sets of objects, and evolution rules. For the membrane
structure, the size and spatial layout are not important, and the focus is on the relationship between
membranes [5,6]. Object sets are usually represented by a string of symbols and evolution rules of the
objects are given in the form of rewriting rules. A P system is a distributed and parallel computing
model, and evolutionary rules run synchronously, non-deterministically, and in maximum parallel [7],
making the system computationally very efficient.

Data mining is a knowledge discovery process from large amounts of data and has been extensively
studied in many fields. Frequent pattern mining is a fundamental field of data mining, and the goal is to
find patterns that appear frequently in a database [8–11]. Many algorithms for mining frequent patterns,
such as Apriori, FP-growth, and Eclat, to mention only a few, have been developed. Apriori utilizes
an iterative approach called level-wise search, where k + 1 itemsets are generated from k itemsets,
by taking the join and prune actions [12,13]. Nevertheless, the database must be scanned multiple
times, which is inefficient for large-scale databases. FP-growth employs an FP-tree structure and
pattern fragment growth method to mine frequent patterns [14,15], but it is difficult to generate a main
memory-based FP-tree when the database is large. Eclat mines frequent patterns using vertical data

Processes 2019, 7, 555; doi:10.3390/pr7090555 www.mdpi.com/journal/processes

Processes 2019, 7, 555 2 of 15

different from Apriori and FP-growth, and only needs to read the columns relevant to the query to
avoid reading unnecessary columns. In the Eclat algorithm, a new candidate set is generated from the
union of two sets. By finding the intersection of the TID_sets of the two itemsets, the support count of
the candidate set is quickly obtained. However, when there are too many candidates, the following
problems will occur: (i) The operation of finding the intersection of the TID_sets is time consuming; and
(ii) the scale of the TID_set is quite large and consumes a lot of memory. Many important improvements
have been proposed [16–18]. However, it is necessary to improve the computational efficiency of the
Eclat algorithm when the database becomes large.

This study proposes an improved Eclat algorithm called ETPAM based on the tissue-like P system
with active membranes. The active membranes are used to generate subsume indices and frequent
patterns. ETPAM utilizes the parallelism of the P system to execute rules in parallel. For a database
with t items, the algorithm generates t + 1 cells, uses t cells to explore frequent patterns, and uses the
other cell, usually cell 0, as the output cell to output all frequent patterns generated. The subsume is
considered as a technique that can greatly reduce the size of the search space [19], the priori law is
introduced into the frequent mining process, and a threshold is used to limit the number of candidates
of subsumes to further improve efficiency. The time complexity of ETPAM is reduced from O(t2)
to O(t) as compared with the original Eclat algorithm. Experimental results using two databases
indicate that ETPAM performs very well in frequent pattern mining, and those using four databases
shows that ETPAM is computationally very efficient as compared with three existing frequent pattern
mining algorithms.

The rest of this paper is arranged as follows. Section 2 describes the frequent pattern mining
problem, the original Eclat algorithm, and the basic tissue-like P system. Section 3 introduces the design
of the tissue-like P system for ETPAM, and provides explanations of the rules and the computing
process. Section 4 presents an example to show how ETPAM works. In Section 5, two databases
are used to evaluate the performance of the tissue-like P system in identifying frequent patterns and
four databases are used to verify the efficiency of ETPM. Conclusions are drawn and further research
directions are given in Section 6.

2. Preliminaries

In this section, some basic definitions about frequent pattern mining [10,11], the original Eclat
algorithm, and structure of the tissue-like P system with active membranes are introduced.

2.1. Frequent Pattern Mining

Let I = {I1,I2 . . . In} be a set of items and DB = {T1,T2 . . .Tm} be a transaction database with
m transactions.

(i) Pattern: A set of items P ⊆ I is called a pattern or an itemset.
(ii) h-pattern: A pattern consisting of h items.
(iii) Support count: The number of transactions containing a certain pattern P, denoted as sup (P).
(iv) Frequent pattern: A pattern with a support count no less than a given threshold k is called a frequent

pattern.

2.2. The Eclat Algorithm

Eclat mines frequent patterns using the vertical data format [18,20] that is different from Apriori
and FP-growth because they use horizontal data.

Vertical data: The more commonly used horizontal data is in a format TID: Itemset, where TID
represents a unique transaction T1, T2, . . . , Tm in a transaction database DB, and an itemset represents
a set of items I1, I2, . . . , In that belong to a transaction. Relatively, vertical data is in a format of item:
TID_set, where item represents the unique item I1, I2 . . . In in itemset I, and TID_set represents the set
of transactions T1, T2 . . .Tm that include the corresponding item. An example of vertical database is

Processes 2019, 7, 555 3 of 15

shown in Table 1. Vertical data is more efficient than horizontal data in the process of obtaining the
support of items because an algorithm only needs to read the columns related to a query, but does
not need to read other unnecessary columns. For instance, if the support of itemset {I1 I2} is needed
in Table 1, an algorithm just needs to read and intersect the TID_sets of I1 and I2 and find support
(I1 I2) = Num[(1, 4, 5, 7, 8, 9)∩(1, 2, 3, 4, 6, 8, 9)] = Num(1, 4, 8, 9) = 4, instead of scanning the entire
database as using horizontal data.

Table 1. A transaction database.

Item TID_Set

I1 T1 T4 T5 T7 T8 T9
I2 T1 T2 T3 T4 T6 T8 T9
I3 T3 T5 T6 T7 T8 T9
I4 T1 T2 T4
I5 T1 T8

The basic Eclat algorithm is described as follows and the procedure using the example database
in Table 1 is shown in Figure 1.

Processes 2019, 7, x FOR PEER REVIEW 3 of 14

support of items because an algorithm only needs to read the columns related to a query, but does
not need to read other unnecessary columns. For instance, if the support of itemset {𝐼 𝐼 } is needed
in Table 1, an algorithm just needs to read and intersect the 𝑇𝐼𝐷_𝑠𝑒𝑡𝑠 of 𝐼 and 𝐼 and find support (𝐼 𝐼) = Num[(1, 4, 5, 7, 8, 9)∩(1, 2, 3, 4, 6, 8, 9)] = Num(1, 4, 8, 9) = 4, instead of scanning the entire
database as using horizontal data.

The basic Eclat algorithm is described as follows and the procedure using the example database
in Table 1 is shown in Figure 1.

Input: Database in vertical data format and the threshold 𝑘.
Step 1: Take all items as a set 𝐼 and find all subsets of the set 𝐼 . Let subset 𝑖 be 𝐼 , as shown

in the labeling process in the red arrow in Figure 1.
Step 2: Find the intersection of each pair of the transaction sets 𝑇𝐼𝐷_𝑠𝑒𝑡𝑠 corresponding to the

items in each subset, let intersection 𝑖 be denoted by 𝑇 , as shown in the labeling process in the blue
arrow in Figure 1.

Step 3: Count the number of items in each 𝑇 , and find the support of each itemset. Itemsets with
support count greater than or equal to the threshold 𝑘 are frequent itemsets.

Output: Frequent patterns with support not less than the threshold 𝑘.

Table 1. A transaction database.

Item TID_Set
I1 T1 T4 T5 T7 T8 T9
I2 T1 T2 T3 T4 T6 T8 T9
I3 T3 T5 T6 T7 T8 T9
I4 T1 T2 T4
I5 T1 T8

Figure 1. The procedure of Eclat for the example database in Table 1.

2.3. Tissue-Like P Systems

The tissue-like P system is an important expansion of the cell-like P system [21]. In a tissue-like
P system, multiple cells are placed in the same environment, both cells and the environment can
contain objects, and the cells and the environment communicate through evolution rules. Evolution
rules are conducted in a non-deterministic and maximally parallel manner, and usually can produce
an exponential growth space within linear operation steps [22]. When no evolution rules can be
executed, the operation of the system stops and the final results are stored in a specific cell.

A basic tissue-like P system is a construct of the form:

Figure 1. The procedure of Eclat for the example database in Table 1.

Input: Database in vertical data format and the threshold k.
Step 1: Take all items as a set Iall and find all subsets of the set Iall. Let subset i be Ii, as shown in

the labeling process in the red arrow in Figure 1.
Step 2: Find the intersection of each pair of the transaction sets TID_sets corresponding to the

items in each subset, let intersection i be denoted by Ti, as shown in the labeling process in the blue
arrow in Figure 1.

Step 3: Count the number of items in each Ti, and find the support of each itemset. Itemsets with
support count greater than or equal to the threshold k are frequent itemsets.

Output: Frequent patterns with support not less than the threshold k.

2.3. Tissue-Like P Systems

The tissue-like P system is an important expansion of the cell-like P system [21]. In a tissue-like
P system, multiple cells are placed in the same environment, both cells and the environment can
contain objects, and the cells and the environment communicate through evolution rules. Evolution

Processes 2019, 7, 555 4 of 15

rules are conducted in a non-deterministic and maximally parallel manner, and usually can produce
an exponential growth space within linear operation steps [22]. When no evolution rules can be
executed, the operation of the system stops and the final results are stored in a specific cell.

A basic tissue-like P system is a construct of the form:

Π = {O, σ1, σ2, . . . , σm, syn, ρ, iout},

where:

(i) O is a non-empty alphabet that represents a collection of objects in the tissue-like P system.
(ii) syn ⊆ {1, 2, . . . , m} * {1, 2, . . ., m} represents all channels between cells.
(iii) ρ represents the execution order of the rules in the membranes.
(iv) iout is the output membrane which stores the final results of the algorithm.
(v) σ1, σ2, . . . , σm are the cells, each of which is a construct of the form:

σh= (wh,0, Rh
)
, 1 ≤ h ≤ m,

where wh,0 is the object set initially in cell h, if no object is in cell h initially, wh,0 is empty represented
by λ, and Rh is the set of evolution rules in cell h. A rule Rh: uε→ vwgo means removing the object
multiset represented by u, generating the object multiset represented by v and w, and sending the
objects in v and w out to a specific area according to the target command. In the rule, wgo means
objects in w are sent to the cells connected to the current cell, and v means objects in v stay in the
current cell. In uε, ε is the promoter of the rule. If u¬ε is in the rule, ¬ε is the inhibitor of the rule.
If the rule has a promoter, the rule can be executed only when all objects in the promoter appear,
and if the rule has an inhibitor, the rule cannot be executed when the objects in the inhibitor
appear. Active membranes are used to generate subsume indices for frequent 1-patterns, and
dissolved when all subsume indices are found.

3. The ETPAM Algorithm

This section begins with an introduction of two improvements to the Eclat algorithm. The design
of the tissue-like P system with active membranes to improve the algorithm is then discussed.
The evolution rules and the computing process are explained next.

3.1. Improvements to the Eclat Algorithm

Improvement 1: The subsume index and a quick method to generate it. The subsume index is
used to restrict the number of candidates in the process of frequent pattern mining [19,23].

Definitions: subsume (A) represents the subsume index of pattern A:

subsume (A) = {B ∈ I | g (A) ⊆ g (B)}.

g (A) represents the set of transactions T1, T2 . . .Tm including pattern A.
Property: sup (A) = sup(A ∪ S), ∀ S ∈ {subsets of subsume (A)}.
The support of pattern A is the same as the support of the union of the patterns that are subsets of

subsume (A) with pattern A.
Eclat mines frequent patterns using the vertical data format. g (A) is the TID_set of transactions,

including pattern A. Using vertical data can generate subsumes of 1-patterns quickly and effectively.
Improvement 2: Early pruning of the search space by the threshold. In step 1 of the Eclat algorithm,

all items are taken as the set Iall and all subsets of set Iall are found. This step generates too many
candidate subsets when the size of TID_set is large. Hence, a priori law is introduced to prune the
search space early. In the process of obtaining the (h + 1)-itemsets through the intersections of the
frequent h-itemsets, a h-itemset with a support count not larger than the threshold will be removed

Processes 2019, 7, 555 5 of 15

from the intersection since any superset containing this itemset cannot be a frequent itemset and
candidates containing this itemset do no need to be generated. The process of generating subsume
indices is also improved. Just finding subsume indices for items with support counts larger than the
threshold instead of subsume indices for all items in the database reduces the time and memory used.

3.2. Algorithm and Evolution Rules

Assume that the database DB contains N transactions with t fields. The tissue-like P system with
active membranes with t + 1 cells, designed for the ETPAM algorithm, is shown in Figure 2. Frequent
patterns are generated in cells 1 to t. The union of each of these frequent patterns and its corresponding
subsume indices are formed in cell 0, where all frequent patterns are finally obtained.

Processes 2019, 7, x FOR PEER REVIEW 5 of 14

Assume that the database 𝐷𝐵 contains 𝑁 transactions with 𝑡 fields. The tissue-like P system
with active membranes with 𝑡 + 1 cells, designed for the ETPAM algorithm, is shown in Figure 2.
Frequent patterns are generated in cells 1 to t. The union of each of these frequent patterns and its
corresponding subsume indices are formed in cell 0, where all frequent patterns are finally obtained.

Figure 2. The tissue-like P system for the ETPAM algorithm.

The threshold 𝑘 is represented by 𝜃 in the P system. An object 𝑇 represents a transaction 𝑇
containing item 𝐼 . In this way, the vertical database can be transformed into objects used in the P
system. Auxiliary object 𝛽 is used to perform the comparison between the support of an itemset and
the threshold. In the comparison, one item in the itemset consumes one 𝛽, and 𝛽 means 𝑘 copies
of object 𝛽 . Object 𝜉 is the promoter of the intersection process, and the corresponding rules can be
executed only when object 𝜉 appears. Object 𝜁 is the catalyst to delete the redundant 𝑇 … in cell 𝑡, keeping the uniqueness of the object.

The tissue-like P system with active membranes for ETPAM is defined as follows: Π = {O, 𝜎 , 𝜎 , … , 𝜎 , syn, 𝜌, 𝑖 },

where:

(i) O = {𝑇 , 𝑇 ,…,𝑇 … , 𝛽 , 𝛽 ,…,𝛽 … , 𝑋 , 𝜉, 𝜁}, for 1 ≤ 𝑖 ≤ 𝑁 1 ≤ 𝑗 ≤ 𝑗 … 𝑗 ≤ 𝑡;
(ii) syn = {{0,1}, {0,2},…,{0,𝑡}; {1,2}, {2,3}, …,{𝑡-1,𝑡}};
(iii) 𝜌 = {𝑟 > 𝑟 |𝑖 < 𝑗};
(iv) 𝜎 = (𝑤 , , 𝑅), 𝜎 = (𝑤 , , 𝑅), … , 𝜎 = (𝑤 , , 𝑅);
(v) 𝑖 = 0.

In 𝜎 = (𝑤 , , 𝑅), 𝑤 , = {𝜆} and 𝑅 = {𝐼 𝐼 , …, 𝐼 … 𝑋 𝑋 , …, 𝑋 → 𝐼 𝐼 , … , 𝐼 … }

for 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑗 , …, 𝑗 ≤ 𝑡
In 𝜎 = (𝑤 , , 𝑅), 𝑤 , = 𝜆 and 𝑅 : 𝑟 = {𝑇 → 𝑇 , 𝑔𝑜} 𝑟 = {𝜃 → 𝛽 𝛽 , … , 𝛽 } 𝑟 = {𝑇 𝛽 → 𝜆} 𝑟 = {𝛿 → (𝐼) }

for 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑡
In 𝜎 = (𝑤 , , 𝑅), 𝑤 , = 𝜆 and 𝑅 : 𝑟 = {𝐼 𝑇 → (𝐼 𝑇) } 𝑟 = {𝑇 ¬ → 𝜆} 𝑟 = {𝜉𝑇 𝑇 |¬ → 𝑇 | } 𝑟 = {𝑇 → 𝑇 , 𝑔𝑜}

Figure 2. The tissue-like P system for the ETPAM algorithm.

The threshold k is represented by θk in the P system. An object Ti
j represents a transaction Ti

containing item I j. In this way, the vertical database can be transformed into objects used in the
P system. Auxiliary object β is used to perform the comparison between the support of an itemset
and the threshold. In the comparison, one item in the itemset consumes one β, and βk

j means k copies
of object β j. Object ξ is the promoter of the intersection process, and the corresponding rules can be
executed only when object ξ appears. Object ζ is the catalyst to delete the redundant Ti

j1 j2... jt
in cell t,

keeping the uniqueness of the object.
The tissue-like P system with active membranes for ETPAM is defined as follows:

Π= {O, σ1, σ2, . . . , σt+1, syn, ρ, iout},

where:

(i) O = {Ti
j, Ti

j1 j2
,. . .,Ti

j1... jt
, β j, β j1 j2 ,. . .,β j1... jt , X j1

j2
, ξ, ζ}, for 1 ≤ i ≤ N 1 ≤ j1 ≤ j2 . . . jt ≤ t;

(ii) syn = {{0,1}, {0,2},. . .,{0,t}; {1,2}, {2,3}, . . . ,{t−1,t}};
(iii) ρ = {ri > r j|i < j};
(iv) σ0 = (w0,0, R0), σ1 = (w1,0, R1), . . . , σt = (wt,0, Rt);
(v) iout = 0.

In σ0 = (w0,0, R0), w0,0 = {λ} and

R0= {I j1 I j1 j2 , . . . ,I j1 j2... jm X jm+1
j1

X jm+1
j2

, . . . ,X jm+1
jm
→ I j1 jm+1 I j1 j2 jm+1 , . . . , I j1 j2... jm+1 }

for 1 ≤ i ≤ N and 1 ≤ j1 ≤ j2, . . . , jm+1 ≤ t
In σ1 = (w1,0, R1), w1,0 = λ and
R1:

r11= {Ti
j → Ti

j, go}

r12= {θ
k
→ βk

1β
k
2, . . . , βk

t }

r13= {Ti
jβ j → λ}

r14= {δ j → (I j)go}

Processes 2019, 7, 555 6 of 15

for 1 ≤ i ≤ N and 1 ≤ j ≤ t
In σ2 = (w2,0, R2), w2,0 = λ and
R2:

r21= {I jTi
j → (I jTi

j) j′ }

r22= {Ti
j¬I j → λ}

r23= {ξTi
j1

Ti
j2
|¬

X
j1
j2

X j2
j1

→ Ti
j1 j2
|ζ}

r24= {Ti
j1 j2
→ Ti

j1 j2
, go}

r25= {θ
kTi

j1 j2
→ βk

j1 j2
}

r26= {Ti
j1 j2
β j1 j2 → λ}

r27= {δ j1 j2 → (I j1 j2X j1
j2

X j2
j1
ξ)go}

for 1 ≤ i ≤ N, 1 ≤ j1 ≤ j2 ≤ t and 1 ≤ j′ ≤ J
...

In σh = (wh,0, Rh), wh,0 = λ and
Rh:

rh1= {T j1 j2... jh−1 |¬I j1 j2 ... jh−1
→ λ}

rh2= {ξTi
j1 j2... jh−2 jh1

Ti
j1 j2... jh−2 jh2

|¬
X

jh1
jh2

X
jh2
jh1

→ T j1 j2... jh−2 jh1 jh2 |ζ}

rh3= {T j1 j2... jh−2 jh1 jh2 → T j1 j2... jh−2 jh1 jh2 , go}

rh4= {θ
kTi

j1 j2... jh−2 jh1 jh2
→ βk

j1 j2... jh−2 jh1 jh2
}

rh5= {Ti
j1 j2... jh2

β j1 j2... jh2 → λ}

rh6= {δ j1 j2... jh2 → (I j1 j2... jh2X j1
j2

X j2
j1
ξ)go}

for 1 ≤ i ≤ N and 1 ≤ j1 ≤ . . . ≤ jh2 ≤ t
...

In σt = (wt,0, Rt), wt,0 = λ and
Rt:

rt1= {T j1 j2... jt−1 |¬I j1 j2 ... jt−1
→ λ}

rt2= {ξTi
j1 j2... jt−2 jt1

Ti
j1 j2... jt−2 jt2

|¬
X

jt1
jt2

X jt2
jt1

→ T j1 j2... jt−2 jt1 jt2 |ζ}

rt3= {T j1 j2... jt−2 jt1 jt2 → T j1 j2... jt−2 jt1 jt2 , go}

rt4= {θ
kTi

j1 j2... jt−2 jt1 jt2
→ βk

j1 j2... jt−2 jt1 jt2
}

rt5= {Ti
j1 j2... jt2

β j1 j2... jt2 → λ}

rt6= {δ j1 j2... jt2 → (I j1 j2... jt2X j1
j2

X j2
j1
ξ)go}

for 1 ≤ i ≤ N and 1≤ j1 ≤ . . . ≤ jt2 ≤ t
In σt+1 = (wt+1,0, Rt+1), wt+1,0 = λ and Rt+1 = ∅.
In σ j′ = (w j,0, j′1), w j′,0 = λ and
R j′ :

r j′1= {Ti
j′ → (Ti

j′)
J−1
}

Processes 2019, 7, 555 7 of 15

r j′2= {Ti
j′T

i
j → λ} ∪ {Ti

j′T
i
j → X j

j′ } ∪ {T
i
j′T

i
j → X j′

j }

r j′3= {X
j1
j2
→ (ξX j1

j2
)go}

for 1 ≤ j′ ≤ J, 1 ≤ i ≤ N and 1 ≤ j ≤ t.
When computation starts, frequent 1-patterns are generated in cell 1, and then sent to cell 2 and

cell 0 by executing rules in parallel. At the same time, objects Ti
j of frequent 1-patterns are also sent to

cell 2. Frequent 2-patterns are then generated in cell 2 and sent to cell 3 and cell 0 by executing rules
also in parallel, and objects Ti

j of frequent 2-patterns are sent to cell 3. This process stops when all
frequent patterns are found. In cell 0, patterns that have subsumes combine with their subsumes to
obtain all frequent patterns. When computation ends, the final results are stored in cell 0. Compared to
other frequent pattern mining algorithms, the ETPAM algorithm executes evolution rules in parallel to
generate frequent patterns, the time complexity of ETPAM is reduced from O(t2) to O(t) as compared
with the original Eclat algorithm.

3.3. Computing Process

Generation of Frequent 1-Pattern Itemsets. When computation begins, objects Ti
j are entered

into cell 1 and then copies of the objects are sent to cell 2 by the rule r11. The searching process of
the candidate frequent 1-pattern I1 is taken as an example, and the searching processes of the other
candidate frequent 1-patterns are similar to that of the process of I1. A total of k copies of β1 is generated
by rule r12 and one Ti

1 consumes one β1 through rule r13. Finally if any copy of β1 is left in cell 1, I1 is not
a frequent 1-pattern because its support count is less than the threshold k; otherwise, if no copy of β1 is
left in cell 1, I1 is a frequent 1-pattern and is sent to cell 2 and cell 0 through the rule r14.

Generation of Subsume of Frequent 1-Patterns. In cell 2, extra objects Ti
j are removed first by rule

r21, and frequent 1-pattern I j acts as an inhibitor so that only objects Ti
j belonging to frequent 1-patterns

are left in cell 2. Assume that J frequent 1-patterns are obtained in cell 1, then J cells that are the same
as cell 2 are generated by rule r22. Rule r23 cannot be executed without promoter ξ. Rules in cell j′ for
1 ≤ j′ ≤ J are executed and subsumes of I j for 1 ≤ j ≤ t are generated in the corresponding cell j′ for
1 ≤ j′ ≤ J. In cell j′, objects Ti

j′ belonging to I j′ are compared with objects Ti
j belonging to I j for 1 ≤ j ≤ t

sequentially, and one Ti
j′ consumes one Ti

j. Finally, if both Ti
j′ and Ti

j remain in the cell, I j and I j′ are

not subsume of each other. If just Ti
j remains, I j is a subsume of I j′ and X j

j′ is generated by rule r j′2.

If just Ti
j′ remains, I j′ is a subsume of I j and X j′

j is generated by rule r j′2. In the searching process for

subsumes of I2, for example, after T3
2T6

2T8
2T9

2 are compared with T3
3T6

3T8
3T9

3, T1
2T2

2T4
2, and T5

3T7
3 remain,

so that I2 and I3 are not subsume of each other. After T1
2T2

2T4
2 are compared with T1

4T2
4T4

4, T3
2T6

2T8
2T9

2
remain, so that I2 is a subsume of I4, and X2

4 is generated. When all subsumes of I j′ in cell j′ are found,
computation halts, promoter ξ is generated, and promoter ξ and the subsumes are sent to cell 0 and
cell 2.

Generation of Frequent 2-Pattern Itemsets. The execution condition of rule r23 is met when
promotor ξ appears in cell 2, so that rule r23 generates objects Ti

j1 j2 as frequent 2-pattern candidates.

Subsumes of frequent 1-patterns are inhibitors of this process, so that only objects Ti
j1 j2

which are not

subsumes of each other are generated in cell 2. Duplicates of Ti
j1 j2

are removed by rule r24 to keep the

uniqueness of the object. Then Ti
j1 j2

left in cell 2 are used to find frequent 2-patterns and one copy of

Ti
j1 j2

is sent to cell 3 by rule r25. The searching process of candidate frequent 2-pattern {I1I2} is taken
as an example, and the searching process of other candidate frequent 2-patterns is similar. Totally k
copies of β12 are generated by rule r26 and one Ti

12 consumes one β12. Finally, if any β12 remains, {I1I2}
is not a frequent 2-pattern; otherwise, if no β12 remains, {I1I2} is a frequent 2-pattern and is sent to cell 0
and cell 3 together with subsumes and promotor ξ.

Processes 2019, 7, 555 8 of 15

Each of the other cells j for 3 ≤ j ≤ t executes evolution rules similar to those in cell 2 and performs
similar functions to find j-frequent patterns.

In cell 0, R0 is executed to combine frequent patterns obtained with their subsumes to get all
frequent patterns of the database. After the algorithm finishes, all frequent patterns are stored in cell 0
as the final results.

3.4. Algorithm Specification

The typical Eclat algorithm runs sequentially. However, ETPAM is executed in parallel utilizing
the nature of the tissue-like P system. A pseudo code of ETPAM is presented in Algorithm 1 in
the following.

Algorithm 1. ETPAM.

Input: Transactional database; θk representing the threshold k;
Method:
{
Rule r11: Transfer one copy of objects Ti

j to cell 2.

Rule r12: Generate βk
j for 1 ≤ j ≤ t to check the candidate frequent 1-patterns T1.

Rule r13: Check all objects Ti
j in the cell, and one object Ti

j consumes one β j. Continue until all objects Ti
j have

been checked or all k copies of β j have been consumed.
Rule r14: If all k copies of β j have been consumed, generate an object δ j to add I j to L1 as a frequent 1-pattern
and transfer I j cell 2, and cell 0.
Rule r21: Generate a new membrane j′ for each frequent 1-pattern I j, and transfer the corresponding objects I j
and Ti

j to cell j′.

Rule r j′1: In cell j′, compare objects Ti
j′ belonging to I j′ and objects Ti

j belonging to I j for 1 ≤ j ≤ j’ ≤ t in parallel,

and one Ti
j′ consumes one Ti

j. Finally, if both Ti
j′ and Ti

j remain in the cell, I j and I j′ are not subsume of each

other. If just Ti
j remains, I j is a subsume of I j′ and then X j

j′ is generated. If just Ti
j′ remains, I j′ is subsume of I j

and then X j′

j is generated. Continue this way until all subsumes of I j′ have been found.
Rule r j′2: Generate object ξ and transfer it to cell 2 and cell 0 together with all subsumes of I j.
For (2 ≤ h ≤ t and Lh−1 , ∅)
{
Rule rh1: Delete objects Ti

j1 j2... jh−1
not belonging to frequent (h − 1)-patterns.

Rule rh2: Scan all objects Ti
j1 j2... jh−1

representing the frequent (h − 1)-patterns to generate the objects Ti
j1 j2... jh

representing the candidate frequent h-patterns Th.
Rule rh3: Transfer one copy of objects Ti

j1 j2... jh
to cell h + 1.

Rule rh4: Generate βk
j1 j2... jh

for each Ti
j1 j2... jh

to check the candidate frequent h-patterns Th.

}
Rule R0: combine frequent patterns in cell 0 with their subsumes to get all frequent patterns of database.
}
Output: Frequent patterns mined from the database.

3.5. Time Complexity

In this section, the time complexity of ETPAM in the worst case is evaluated. Obtaining frequent
1-patterns needs 4 steps. Passing objects Ti

j to cell 2 and cell 0 needs 1 step and generating βk
j needs

1 step. Checking all frequent 1-pattern candidates in parallel takes 1 step. Finally sending the frequent
1-patterns obtained in cell 1 to cell 2 and cell 0 needs 1 step.

Obtaining subsumes of frequent 1-patterns needs 5 steps. Generating new membrane j′ for each
frequent 1-pattern I j needs 1 step, and transferring the corresponding objects I j and Ti

j to cell j′ needs

1 step. Comparing all Ti
j′ belonging to I j′ and Ti

j belonging to I j for 1 ≤ j ≤ j’ ≤ t in parallel and
generating subsumes of frequent 1-pattern I j′ in cell j′ in parallel take 1 step. Executing rules r j′1, r j′2,

Processes 2019, 7, 555 9 of 15

and r j′3 in parallel in each cell j′ and obtaining subsumes for all frequent 1-patterns simultaneously
take 1 step. Sending object ξ and subsumes obtained in cell 1 to cell 2 and cell 0 needs 1 step.

Obtaining frequent h-patterns needs 6 steps. Deleting extra objects Ti
j1 j2... jh−1

not belonging to
frequent (h – 1)-patterns needs 1 step. Generating candidate frequent h-patterns Th needs 1 step.
Passing objects Ti

j1 j2... jh
to cell h + 1 needs 1 step and generating βk

j1 j2... jh
needs 1 step. Checking all

frequent h-pattern candidates in parallel takes one step. Finally sending the frequent h-patterns
obtained in cell h to cell h + 1 and cell 0 needs 1 step.

Finally, in cell 0, obtaining all frequent patterns by combining all frequent patterns with their
subsumes in parallel takes 1 step.

Thus, the complexity of ETPAM is 4 + 4 + 6(t−1) + 1 = 6t + 3, which gives O (t). Table 2 presents
the time complexities of some basic frequent pattern mining algorithms. In the table, |Ch| represents the
number of candidate frequent h-patterns and |Lh| represents the number of frequent (h − 1)-patterns.
As shown in Table 2, the performance of ETPAM is better than that of other existing algorithms.

Table 2. Time complexities of some pattern mining algorithms.

Algorithm Time Complexity

Apriori [7] O(Nt|Ch| + t|Lh − 1| |Lh − 1|)
Parallel Apriori algorithm on

Hadoop Cluster [13] O(Nt|Ch| + t|Lh − 1| |Lh − 1|)
FP-growth [24] O(Nt)

Eclat [25] O(t(t + 1))
dEclat [15] O(t(t + 1))

ETPAM O(t)

4. An Illustrative Example

To give a clear demonstration about how ETPAM works, this section presents an illustrative
example to demonstrate the execution of the algorithm using the database in Table 1. As shown in
Table 1, the database contains 9 transactions. The threshold is set to k = 3.

Generation of Frequent 1-Pattern Itemsets. When computation begins, objects {T1
1T4

1T5
1 T7

1T8
1T9

1},
{T1

2T2
2T3

2T4
2T6

2T8
2T9

2}, {T3
3T5

3T6
3T7

3T8
3T9

3} {T1
4T2

4T4
4}, and {T1

5T8
5} are entered into cell 1 and then one copy is

sent to cell 2 by rule r11. The auxiliary objects β j for 1 ≤ j ≤ 5 are created by rule r12. The searching
process of candidate frequent 1-pattern I1 is used as an example. Objects {T1

1T4
1T5

1} and {T7
1T8

1T9
1} are in

cell 1 meaning that item I1 is included in the first, fourth, fifth, seventh, eighth, and ninth transactions.
After rules {T1

1β1→ λ} and {T1
4β1→ λ} are executed, objects {T5

1T7
1T8

1T9
1} remain in cell 1. Hence, I1 is

a frequent 1-pattern, and subrule {δ1→ (I1)go} sends I1 to cell 2 and cell 0. The searching processes of
I2I3I4I5 are the same as that of I1. Finally, {I1I2I3I4} are determined to be frequent 1-patterns in cell 1,
and are sent to cell 2 and cell 0.

Generation of Subsumes of Frequent 1-Patterns. In cell 2, extra objects T1
5T8

5 are removed by rule r21,
and objects {T1

1T4
1T5

1T7
1T8

1T9
1}, {T1

2T2
2T3

2T4
2T6

2T8
2T9

2}, {T3
3T5

3T6
3T7

3T8
3T9

3}, and {T1
4T2

4T4
4} stay because frequent

1-patterns I1I2I3I4 are inhibitors in rule r21. Rule r22 is executed to create 4 cells to generate subsumes
of frequent 1-patterns. In cell 2′, after T1

2T4
2T8

2T9
2 are compared with {T1

1T4
1T8

1T9
1}, {T

5
1T7

1T2
2T3

2} and T6
2

remain, so that I1 and I2 are not subsume of each other. After T3
2T6

2T8
2T9

2 are compared with {T3
3T6

3T8
3T9

3},
{T1

2T2
2T4

2T5
3} and T7

3 remain, so that I2 and I3 are not subsume of each other either. After {T1
2T2

2T4
2}

are compared with {T1
4T2

4T4
4}, {T

3
2T6

2T8
2T9

2} remain, so that I2 is a subsume of I4, and, therefore, X2
4 is

generated. To improve efficiency, just subsume indices for items with support larger than the threshold
are found. Because I5 is not a frequent 1-pattern, the process of searching subsumes of I2 ends. Object ξ,
together with X2

4, is generated and sent to cell 2 and cell 0. The searching processes in cells j′ for
1 ≤ j′ ≤ 4 are similar to that in cell 2′. All rules in cells j′ for 1 ≤ j′ ≤ J are executed in parallel, and all
frequent 1-patterns’ subsumes are obtained simultaneously. The process and results of the generation
of frequent 1-patterns are summarized in Table 3.

Processes 2019, 7, 555 10 of 15

Table 3. Generation of frequent 1-patterns.

rij Cell 0 Cell 1

0
{T1

1T4
1T5

1T7
1T8

1T9
1}, {T1

2T2
2T3

2T4
2T6

2T8
2T9

2},
{T3

3T5
3T6

3T7
3T8

3T9
3}, {T1

4T2
4T4

4} {T1
5T8

5}

1
{T1

1T4
1T5

1T7
1T8

1T9
1}, {T1

2T2
2T3

2T4
2T6

2T8
2T9

2},
{T3

3T5
3T6

3T7
3T8

3T9
3}, {T1

4T2
4T4

4},
{T1

5T8
5}, β3

1β
3
2β

3
3β

3
4β

3
5, (r12)

2 {T7
1T8

1T9
1} {T4

2T6
2T8

2T9
2} {T7

3T8
3T9

3} β5 (r13)

3 I1I2I3I4 {T7
1T8

1T9
1} {T4

2T6
2T8

2T9
2} {T7

3T8
3T9

3} (r14)

Generation of Frequent 2-Pattern Itemsets. Because the execution condition of rule r23 is met
when promotor ξ appears in cell 2, rule r23 generates {T1

12T1
14T4

12T4
14T5

13T7
13T8

12T8
13T9

12T9
13T3

23T6
23T8

23T9
23}.

Because X2
4 is an inhibitor, no objects like Ti

24 for items I2 and I4 are generated. Duplicate Ti
j1 j2

are

removed by rule r24, Ti
j1 j2

left in cell 2 are used to find frequent 2-patterns, and one copy of Ti
j1 j2

is

sent to cell 3 by rule r25. The auxiliary objects β3
12β

3
14β

3
13 and β3

23 are created by rule r26. After {T1
12T4

12}

and T8
12 are compared with β12, T9

12 remains. After T5
13T7

13 and T8
13 are compared with β13, T9

13 remains.
After T1

14 and T4
14 are compared with β14, β14 remains. Therefore, I12 and I13 are frequent 2-patterns.

Subrules {δ12 → (I12)go} and {δ13 → (I13)go} send I12I13 together with X2
4 and the promotor ξ to cell 0

and cell 3. The process and results of the generation of frequent 2-pattern itemsets are summarized
in Table 4.

Table 4. Generation of frequent 2-patterns.

rij Cell 0 Cell 2

3 I1I2I3I4 {T1
1T4

1T5
1T7

1T8
1T9

1} {T1
2T2

2T3
2T4

2T6
2T8

2T9
2} {T3

3T5
3T6

3T7
3T8

3T9
3}{T1

4T2
4T4

4}

4 I1I2I3I4 X2
4 T1

12T1
14T4

12T4
14T5

13T7
13T8

12T8
13T9

12T9
13T3

23T6
23T8

23T9
23X2

4 (r23r24)

5 I1I2I3I4 X2
4

T1
12T1

14T4
12T4

14T5
13T7

13T8
12T8

13T9
12T9

13T3
23T6

23T8
23T9

23
β3

12β
3
14β

3
13β

3
23X2

4 (r26)

6 I1I2I3I4 X2
4 T9

12T9
13β14X2

4 (r27)

7 I1I2I3I4I12I13 X2
4 T9

12T9
13X2

4 (r28)

Generation of Frequent 3-Pattern Itemsets. In cell 3, extra objects {T1
14T4

14T3
23T6

23T8
23T9

23} are removed
by rule r31 and {T1

12T4
12T5

13T7
13T8

12T8
13T9

12T9
13} stay because frequent 2-patterns I12I13 are inhibitors.

Because the execution condition of rule r33 is met when promotor ξ appears in cell 3, rule r33 generates
T8

123 and T9
123. The auxiliary objects β3

123 are created by rule r36. After T8
123 and T9

123 are compared with
β123, β123 remains, so that I123 is not a frequent 3-pattern. The process ends since there are no frequent
3-patterns. The process and results of the generation of frequent 3-pattern itemsets are summarized
in Table 5.

Table 5. Exploration process of frequent 3-patterns.

rij Cell 0 Cell 3

7 I1I2I3I4 I12I13 X2
4 T1

12T4
12T5

13T7
13T8

12T8
13T9

12T9
13

8 I1I2I3I4 I12I13X2
4 T8

123T9
123 (r32r33)

9 I1I2I3I4 I12I13X2
4 T8

123T9
123β

3
123 (r34)

10 I1I2I3I4 I12I13X2
4 β123 (r35)

11 I1I2I3I4 I12I13I24I124 (r36)

In cell 0, R0 executes to combine I2I12 with I4 and in turn to generate I24 and I124. The computation
of the P system ends at this point and all frequent patterns {I1I2I3I4 I12I13I24I124} are stored in cell 0.

Processes 2019, 7, 555 11 of 15

5. Experiments

Five databases, Connect, Mushroom, MovieItem, Retail, and T10I4D100K, from the UCI Machine
Learning Repository were used in the experiments. Some of these databases are dense and others
are sparse, and all of them are often utilized to test the performance of frequent pattern mining
methods. The characteristics of these databases are given in Table 6. All experiments were performed
on a personal computer with an Intel Core i3 processor and 4 GB of RAM under the Microsoft Windows
10 64-bit operating system. All the programs are coded in Python 3.

Table 6. Characteristics of the databases used for the experiments.

Database Transactions Items Avg. Length

T10I4D100K 100,000 1000 10.0

Mushroom 8124 120 23.0

Retail 88,162 16,470 10.3

MovieItem 943 80,000 84.8

5.1. Effectiveness of ETPAM in Identifying the Frequent Pattern Itemsets

Two databases, Mushroom and Connect, are used to verify the performance of ETPAM in
identifying the frequent patterns. The results are reported in the following.

The Mushroom database includes 8124 transactions, each transaction has 23 attributes (fields),
each attribute represents one characteristic of the mushrooms, such as the poisonousness of the
mushroom, and each attribute has 2 to 12 values for a total of 119 possible values. The purpose is to
know what attributes often appear together, i.e., to find frequent patterns in the database. The data is
preprocessed first, where each attribute value is treated as a new attribute, and each new attribute has
only two values, 1 or 0 representing yes or no. The threshold is set to k = 4062 (8124 * 0.50). The frequent
patterns found by ETPAM are presented in Table 7.

Table 7. Frequent patterns identified by ETPAM for the Mushroom database.

h Frequent Patterns

1 {2}{24}{36}{90}{34}{86}{85}{39}{53}{59}{63}{67}{76}

2

{90, 36}{86, 39}{86, 53}{86, 59}{86, 63}{86, 67}{86, 76}{86, 24}{85, 63}{85, 67}{85, 76}{85, 39}{85, 53}
{85, 59}{90, 39}{90, 53}{90, 59}{90, 63}{85, 2}{85, 24}{85, 34}{59, 63}{36, 39}{36, 59}{36, 63}{34, 39}
{34, 53}{34, 59}{34, 63}{34, 67}{34, 76}{34, 24}{34, 36}{85, 86}{34, 86}{34, 85}{86, 90}{34, 90}{85, 90}

{36, 90}{34, 36}{36, 86}{36, 85}{90, 24}

3

{34, 36, 85}{90, 36, 39}{90, 36, 59}{86, 90, 24}{86, 90, 39}{86, 90, 53}{86, 90, 59}{86, 90, 63}{85, 86, 90}
{34, 85, 90}{36, 85, 86}{85, 36, 39}{85, 36, 59}{85, 36, 63}{86, 34, 39}{86, 34, 53}{86, 34, 59}{86, 34, 63}
{86, 34, 67}{86, 34, 76}{86, 34, 24}{85, 86, 24}{85, 59, 63}{85, 34, 24}{34, 90, 24}{34, 90, 36}{34, 90, 39}
{34, 90, 53}{34, 90, 59}{34, 90, 63}{34, 36, 39}{34, 36, 59}{34, 85, 86}{34, 86, 90}{34, 36, 90}{85, 90, 39}
{85, 90, 53}{85, 90, 59}{85, 90, 63}{85, 90, 24}{85, 86, 39}{85, 86, 53}{85, 86, 59}{85, 86, 63}{85, 86, 67}
{85, 86, 76}{85, 86, 36}{36, 86, 90}{36, 85, 90}{85, 34, 39}{85, 34, 53}{85, 34, 59}{85, 34, 63}{85, 34, 67}

{85, 34, 76}{34, 36, 86}{86, 36, 39}{86, 36, 59}

4

{85, 86, 90, 39}{85, 86, 90, 53}{85, 86, 90, 59}{85, 86, 90, 63}{85, 90, 36, 59}{85, 86, 36, 39}{85, 86, 36, 59}
{85, 86, 34, 39}{85, 86, 34, 53}{85, 86, 34, 59}{85, 86, 34, 63}{85, 86, 34, 67}{85, 86, 34, 76}{85, 86, 34, 24}
{36, 85, 86, 90}{36, 34, 86, 85}{85, 34, 36, 39}{85, 34, 36, 59}{90, 86, 34, 85}{36, 90, 34, 86}{34, 36, 85, 90}
{85, 34, 90, 24}{85, 34, 90, 36}{85, 34, 90, 39}{85, 34, 90, 53}{85, 34, 90, 59}{85, 34, 90, 63}{86, 34, 90, 24}
{86, 34, 90, 39}{86, 34, 90, 53}{86, 34, 90, 59}{86, 34, 90, 63}{86, 34, 36, 39}{86, 34, 36, 59}{85, 90, 36, 39}

{85, 86, 90, 24}

5 {85, 86, 34, 90, 59}{85, 86, 34, 90, 63}{85, 86, 34, 90, 53}{85, 86, 34, 90, 24}
{85, 86, 34, 36, 39}{85, 86, 34, 36, 59}{85, 86, 34, 90, 39}

6 ∅

Processes 2019, 7, 555 12 of 15

The Connect database includes 67,557 transactions, each transaction has 43 attributes (fields),
and each attribute has 3 values for a total of 129 values. The data is preprocessed in a way similar to
that used in the Mushroom database, i.e., each attribute value is treated as a new attribute, and each
new attribute has only two values, 1 or 0, representing yes or no. The threshold is set to k = 66,205
(67,557 * 0.98). The frequent patterns found by ETPAM are presented in Table 8.

Table 8. Frequent patterns identified by ETPAM for the Connect database.

h Frequent Patterns

1 {124}{106}{34}{86}{85}{88}{19}{37}{55}{75}{109}{91}{127}

2

{109, 91}{37, 91}{109, 55}{55, 75}{106, 37}{106, 55}{106, 75}{106, 127}{106, 91}{106, 109}{19, 88}
{37, 88}{55, 88}{75, 88}{19, 37, 75}{127, 19, 37}{124, 75}{109, 124}{124, 91}{124, 127}{106, 19}

{127, 88}{109, 88}{88, 91}{19, 37}{19, 55}{19, 75}{127, 19}{109, 19}{19, 91}{37, 55}{37, 75}{127, 37}
{109, 37}{127, 55}{55, 91}{127, 75}{109, 75}{75, 91}{109, 127}{127, 91}

3

{106, 55, 91}{106, 109, 55}{19, 37, 91}{19, 55, 75}{127, 19, 55}{109, 19, 75}{19, 75, 91}{106, 127, 75}
{106, 75, 91}{106, 109, 75}{109, 127, 88}{127, 88, 91}{109, 88, 91}{109, 55, 75}{106, 127, 91}

{106, 109, 127}{106, 109, 91}{127, 75, 88}{109, 75, 88}{75, 88, 91}{109, 19, 37}{55, 75, 91}
{109, 127, 55}{127, 19, 88}{109, 19, 88}{19, 88, 91}{127, 37, 88}{109, 37, 88}{37, 88, 91}{127, 55, 88}

{109, 55, 88}{55, 88, 91}{109, 124, 75}{124, 75, 91}{124, 127, 75}{109, 19, 91}{37, 55, 75}{109, 37, 91}
{127, 37, 55}{109, 37, 55}{37, 55, 91}{127, 37, 91}{127, 55, 75}{127, 37, 75}{37, 75, 91}{109, 127, 37}

{127, 55, 91}{109, 55, 91}{127, 75, 91}{109, 127, 91}{109, 127, 75}{109, 75, 91}{109, 124, 91}
{109, 124, 127}{124, 127, 91}{109, 37, 75}{106, 127, 19}{106, 19, 91}{106, 127, 55}{109, 127, 19}

{127, 19, 91}{106, 109, 19}{106, 127, 37}{106, 37, 91}{109, 19, 55}{19, 55, 91}{127, 19, 75}{106, 109, 37}

4

{109, 75, 88, 91}{109, 127, 88, 91}{109, 127, 19, 37}{127, 19, 37, 91}{109, 19, 37, 91}{109, 127, 19, 55}
{127, 19, 55, 91}{109, 19, 55, 91}{109, 127, 19, 75}{127, 19, 75, 91}{109, 19, 75, 91}{109, 127, 19, 91}
{109, 127, 37, 55}{127, 37, 55, 91}{109, 37, 55, 91}{109, 127, 37, 75}{127, 37, 75, 91}{109, 37, 75, 91}

{109, 127, 37, 91}{109, 127, 55, 75}{127, 55, 75, 91}{109, 55, 75, 91}{109, 127, 55, 91}{109, 127, 75, 91}
{109, 124, 75, 91}{109, 124, 127, 75}{124, 127, 75, 91}{109, 124, 127, 91}{106, 109, 127, 19}
{106, 109, 19, 91}{106, 109, 127, 37}{106, 109, 37, 91}{106, 109, 127, 55}{106, 109, 55, 91}
{106, 127, 75, 91}{106, 109, 127, 75}{106, 109, 75, 91}{106, 109, 127, 91}{109, 127, 19, 88}

{127, 19, 88, 91}{109, 19, 88, 91}{109, 127, 37, 88}{127, 37, 88, 91}{109, 37, 88, 91}{109, 127, 55, 88}
{127, 55, 88, 91}{109, 55, 88, 91}{109, 127, 75, 88}{127, 75, 88, 91}

5
{109, 127, 37, 55, 91}{109, 127, 37, 75, 91}{109, 127, 19, 37, 91}{109, 127, 55, 75, 91}{109, 124, 127, 75,
91}{106, 109, 127, 75, 91}{109, 127, 19, 88, 91}{109, 127, 37, 88, 91}{109, 127, 55, 88, 91}{109, 127, 75, 88,

91}{109, 127, 19, 55, 91}{109, 127, 19, 75, 91}

6 ∅

5.2. Efficiency of the Proposed Algorithm

To verify the efficiency of the two improvements introduced into the original Eclat algorithm,
ETPAM with rules executed serially is used to compare with those of Apriori [7], Fp-growth [24],
and the original Eclat algorithm [25]. The total running time is used as a metric to evaluate performance
in experiments. The total running time of each algorithm on each database is plotted against the values
of the threshold k in Figure 3, where the vertical axis signifies the total running time in seconds and the
horizontal axis represents the different threshold values. As shown in Figure 3, ETPAM with rules
executed serially is more efficient than Apriori, Fp-growth, and Eclat for all values of the threshold.
Thus, the experimental results verify the efficiency of the improvements proposed. More importantly,
the evolution rules of the ETPAM algorithm are actually executed in parallel utilizing the nature of
tissue-like P system. For example, the process of generating subsumes of the frequent 1-pattern I j′ in
cell j′ is conducted in parallel, rules r j′1, r j′2, and r j′3 are executed in parallel in each cell j′, and the
subsumes of all frequent 1-patterns are obtained simultaneously. Running in parallel, it will use much
less running time, making the algorithm more efficient.

Processes 2019, 7, 555 13 of 15
Processes 2019, 7, x FOR PEER REVIEW 13 of 14

Figure 3. Running times of the four algorithms on the four databases.

6. Conclusions

Membrane computing, inspired by the structure and functioning of biological cells, was
introduced as a branch of natural computing. This paper introduces a tissue-like P system with active
membranes to mine frequent patterns, and proposes a novel algorithm, called ETPAM, for mining
frequent patterns based on the tissue-like P system introduced. ETPAM utilizes the parallel
mechanism of the tissue-like P system to execute evolutionary rules synchronously, and in maximum
parallel. The time complexity is decreased from O(𝑡) to O(𝑡) as compared with the original Eclat
algorithm. The experimental results using two databases show that ETPAM performed very well in
mining frequent patterns. The experimental results on four databases prove that ETPAM is very
efficient in mining frequent patterns as compared with three existing algorithms. In addition, only
several cells are needed to implement tissue-like P system by biological methods, which can greatly
reduce the computing resource consumption. For further research, some other types of P systems,
such as the spiking neural P systems (SN P systems) [26] and the cell-like P systems, can be used to
develop hopefully more effective and efficient data mining algorithms.

Author Contributions: Conceptualization, L.J., L.X. and X.L.; methodology, L.J.; software, L.J.; validation, L.J.
and X.L.; formal analysis, L.J.; investigation, L.J.; resources, L.J., L.X. and X.L.; data curation, L.J.; writing—
original draft preparation, L.J.; writing—review and editing, L.J. and X.L.; funding acquisition, X.L. and L.X.

Funding: This research was funded by the National Natural Science Foundation of China (Nos. 61472231,
61502283, 61876101, 61802234, 61806114).

Acknowledgments: This research project is partially supported by the Social Science Foundation of Shandong
Province, China (Nos. 16BGLJ06, 11CGLJ22), China Postdoctoral Science Foundation Funded Project
(2017M612339, 2018M642695).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Păun, G.; Rozenberg, G.; Salomaa, A. The Oxford Handbook of Membrane Computing; Oxford University Press:
Oxford, UK, 2010.

Figure 3. Running times of the four algorithms on the four databases.

With these improvements, the time complexity of ETPAM is decreased to O(t) from O(t2) compared
to the original Eclat algorithm. The tissue-like P system is a distributed and parallel model, and its
evolutionary rules run synchronously, non-deterministically, and in maximum parallel, making the
system computationally highly efficient. The tissue-like P system is a natural distributed parallel
computing system that can be implemented biologically. The calculation requires only a few cells,
which can reduce the computational resource requirements and improve the computational efficiency.

6. Conclusions

Membrane computing, inspired by the structure and functioning of biological cells, was introduced
as a branch of natural computing. This paper introduces a tissue-like P system with active membranes
to mine frequent patterns, and proposes a novel algorithm, called ETPAM, for mining frequent patterns
based on the tissue-like P system introduced. ETPAM utilizes the parallel mechanism of the tissue-like
P system to execute evolutionary rules synchronously, and in maximum parallel. The time complexity
is decreased from O(t2) to O(t) as compared with the original Eclat algorithm. The experimental
results using two databases show that ETPAM performed very well in mining frequent patterns.
The experimental results on four databases prove that ETPAM is very efficient in mining frequent
patterns as compared with three existing algorithms. In addition, only several cells are needed to
implement tissue-like P system by biological methods, which can greatly reduce the computing
resource consumption. For further research, some other types of P systems, such as the spiking neural
P systems (SN P systems) [26] and the cell-like P systems, can be used to develop hopefully more
effective and efficient data mining algorithms.

Author Contributions: Conceptualization, L.J., L.X. and X.L.; methodology, L.J.; software, L.J.; validation, L.J. and
X.L.; formal analysis, L.J.; investigation, L.J.; resources, L.J., L.X. and X.L.; data curation, L.J.; writing—original
draft preparation, L.J.; writing—review and editing, L.J. and X.L.; funding acquisition, X.L. and L.X.

Funding: This research was funded by the National Natural Science Foundation of China (Nos. 61472231, 61502283,
61876101, 61802234, 61806114).

Processes 2019, 7, 555 14 of 15

Acknowledgments: This research project is partially supported by the Social Science Foundation of Shandong
Province, China (Nos. 16BGLJ06, 11CGLJ22), China Postdoctoral Science Foundation Funded Project (2017M612339,
2018M642695).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Păun, G.; Rozenberg, G.; Salomaa, A. The Oxford Handbook of Membrane Computing; Oxford University Press:
Oxford, UK, 2010.

2. Păun, G. Computing with membranes. Comput. Syst. Sci. 2000, 61, 108–143. [CrossRef]
3. Păun, G. Membrane Computing; Springer: Berlin/Heidelberg, German, 2002.
4. Pan, L.; Păun, G.; Song, B. Flat maximal parallelism in p systems with promoters. Theor. Comput. Sci. 2016,

623, 83–91. [CrossRef]
5. Yahya, R.I.; Shamsuddin, S.M.; Yahya, S.I.; Hasan, S.; Alsalibi, B. Automatic 2d image segmentation using

tissue-like p system. Int. J. Adv. Soft Comput. Its Appl. 2018, 10, 36–54.
6. Wang, J.; Shi, P.; Peng, H. Membrane computing model for IIR filter design. Inf. Sci. 2016, 329, 164–176.

[CrossRef]
7. Liu, X.; Zhao, Y.; Sun, M. An improved apriori algorithm based on an evolution-communication tissue-like p

system with promoters and inhibitors. Discret. Dyn. Nat. Soc. 2017, 2017, 1–11. [CrossRef]
8. Mai, T.; Vo, B.; Nguyen, L.T.T. A lattice-based approach for mining high utility association rules. Inf. Sci.

2017, 399, 81–97. [CrossRef]
9. Kabir, M.M.J.; Xu, S.; Kang, B.H.; Zhao, Z. A new multiple seeds based genetic algorithm for discovering

a set of interesting boolean association rules. Expert Syst. Appl. 2017, 74, 55–69. [CrossRef]
10. Hoseini, M.S.; Shahraki, M.N.; Neysiani, B.S. A new algorithm for mining frequent patterns in can tree.

In Proceedings of the 2015 2nd International Conference on Knowledge-Based Engineering and Innovation
(KBEI), Tehran, Iran, 5–6 November 2015.

11. Raval, R. F3 algorithm for association rules. Int. J. Comput. Appl. 2017, 164, 6–11. [CrossRef]
12. Wei, Y.; Yang, R.; Liu, P. An improved apriori algorithm for association rules of mining. In Proceedings of

the 2009 IEEE International Symposium on IT in Medicine & Education, Jinan, China, 14–16 August 2009;
Volume 1, pp. 942–946.

13. Ezhilvathani, A.; Raja, K. Implementation of parallel apriori algorithm on Hadoop cluster. Int. J. Comput. Sci.
Mob. Comput. 2013, 2, 513–516.

14. Ergen, B. Frequent pattern mining under multiple support thresholds. WSEAS Trans. Comput. Res. 2016, 4.
15. Jia, K.; Liu, H. An improved FP-growth algorithm based on som partition. In Proceedings of the Third

International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2017,
Changsha, China, 22–24 September 2017; pp. 166–178.

16. Suvalka, B.; Khandelwal, S.; Patel, C. Revised ECLAT Algorithm for Frequent Itemset Mining. In Information
Systems Design and Intelligent Applications; Springer: New Delhi, India, 2016.

17. Ma, Z.; Yang, J.; Zhang, T.; Liu, F. An improved eclat algorithm for mining association rules based on
increased search strategy. Int. J. Database Theory Appl. 2016, 9, 251–266. [CrossRef]

18. Jusoh, J.A.; Man, M. Modifying iEclat Algorithm for Infrequent Patterns Mining. Adv. Sci. Lett. 2018, 24,
1876–1880. [CrossRef]

19. Vo, B.; Le, T.; Coenen, F.; Hong, T. Mining frequent itemsets using the n-list and subsume concepts. Int. J. Mach.
Learn. Cybern. 2016, 7, 253–265. [CrossRef]

20. Yu, X.; Wang, H.; Zhang, X.; Wang, Y. Effective algorithms for vertical mining probabilistic frequent patterns
in uncertain mobile environments. Int. J. Ad Hoc Ubiquitous Comput. 2016, 23, 137. [CrossRef]

21. Song, B.; Zhang, C.; Pan, L. Tissue-like p systems with evolutional symport/antiport rules. Inf. Sci. 2017, 378,
177–193. [CrossRef]

22. Song, B.; Pan, L. The computational power of tissue-like p systems with promoters. Theor. Comput. Sci. 2016,
641, 43–52. [CrossRef]

23. Dam, T.L.; Li, K.; Fournier-Viger, P.; Duong, Q. An efficient algorithm for mining top-rank-k frequent patterns.
Appl. Intell. 2016, 45, 96–111. [CrossRef]

Processes 2019, 7, 555 15 of 15

24. Han, J.; Pei, J.; Yin, Y. Mining frequent patterns without candidate generation. In Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data, Dallas, TX, USA, 15–18 May 2000; pp. 1–12.

25. Zaki, M.J. Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 2000, 12, 372–390.
[CrossRef]

26. Pan, L.; Păun, G.; Zhang, G. Spiking neural p systems with communication on request. Int. J. Neural Syst.
2017, 27, 1750042. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

