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Abstract: Clustering techniques can group genes based on similarity in biological functions. However,
the drawback of using clustering techniques is the inability to identify an optimal number of
potential clusters beforehand. Several existing optimization techniques can address the issue. Besides,
clustering validation can predict the possible number of potential clusters and hence increase the
chances of identifying biologically informative genes. This paper reviews and provides examples of
existing methods for clustering genes, optimization of the objective function, and clustering validation.
Clustering techniques can be categorized into partitioning, hierarchical, grid-based, and density-based
techniques. We also highlight the advantages and the disadvantages of each category. To optimize the
objective function, here we introduce the swarm intelligence technique and compare the performances
of other methods. Moreover, we discuss the differences of measurements between internal and
external criteria to validate a cluster quality. We also investigate the performance of several clustering
techniques by applying them on a leukemia dataset. The results show that grid-based clustering
techniques provide better classification accuracy; however, partitioning clustering techniques are
superior in identifying prognostic markers of leukemia. Therefore, this review suggests combining
clustering techniques such as CLIQUE and k-means to yield high-quality gene clusters.

Keywords: gene clustering; swarm intelligence; biological functions detection; informative genes

1. Introduction

Analysis of gene expression levels is essential in studying and detecting genes functions. According
to Chandra and Tripathi [1], genes that have similar gene expression levels are likely to involve similar
biological functions. The authors showed that the clustering process was quite useful to identify
co-expressed genes in a group of genes and, in addition, to detect unique genes in different groups.
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Therefore, clustering can be quite helpful to extract valuable knowledge from a large amount of
biological data [2], which could lead to prevention, prognosis, and treatment in biomedical research.

Cai et al. [3] developed a random walk-based technique to cluster similar genes. The authors show
that the proposed method was useful in strengthening the interaction between genes by considering
the types of interactions that exist in the same group of genes. Many previous random walk-based
methods managed to extract local information from a large graph without knowledge of the whole
graph data [4]. In a random walk-based method, a gene is important if it interacts with many other
genes [5–8]. As illustrated in Figure 1, gene 1 has a higher degree than gene 2 (two outgoing links)
compared to one outgoing link from gene 3 to gene 4. In this case, gene 1 is the most important gene
among the four genes shown in the hypothetical gene network.
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Several previous studies have noted the importance of clustering to identify co-expressed genes
in a cluster and inactive genes in another cluster [1,9]. Clustering can also discover the fundamental
hidden structure of biomedical data, which can be used for diagnosis and treatments [9]. In addition,
clustering is extremely vital for identifying cancer subtyping and the detection of the tumor.

Researchers typically focus on clustering by assuming the number of clusters beforehand, which
can be seen in [10,11]. This problem can lead to the inability of the clustering techniques to obtain an
optimal number of centroids and hence results in poor quality of clusters [11,12]. In previous studies,
several proposed approaches managed to discover the optimal number of clusters by simply tuning
and optimizing the parameters of the clustering method. This can be done by repeating the process of
analyzing the eigenvalues of the affinity matrix, which are equal to the number of desired clusters [13].
In addition, rotating normalized eigenvectors and squared-loss mutual information (SMI) can be
employed in the clustering process to obtain an optimal number of clusters [14,15]. Besides, the elbow
method and the average silhouette method are the other examples to identify the optimal number of
clusters in previous studies [15,16]. The elbow method identifies the optimal number of clusters by
calculating sum of squared error for each number of clusters (k) from a range of k values. The average
silhouette method computes the average silhouette values of genes for different values of k (number
of clusters). Then, this method selects the optimal number of clusters that has the maximum average
silhouette values from the range of k values. Optimization of the objective function and validation
of clustering can improve the quality of clusters [11]. The optimization for the objective function of
clustering can identify the best solution among a set of solutions. On the other hand, clustering validation
is used to determine clusters in the data using an appropriate measurement [17]. Clustering validation
can also evaluate the goodness of the clustering structure based on the given class labels [18]. Thus,
validation is an essential step because it assists in the identification of which cluster is more informative
compared to other clusters [19].

This paper focuses on reviewing existing computational methods on genes clustering using the
notion of optimizing the objective function and validation.

2. Gene Network Clustering Techniques

In general, clustering can be categorized into partitioning, hierarchical, grid-based, and
density-based techniques [11,17,20–22]. In Table 1, we show differences among categories of clustering
techniques. The table also provides some information such as time complexity, computing efficiency,
convergence rate, scalability, and initialization of cluster number. Partitioning clustering assigns the
data objects into a number of clusters fixed beforehand. This technique identifies the number of
centroids and assigns the objects to the nearest centroid. Hierarchical clustering groups the data based
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on the distance of the objects to form clusters. This technique can be either started with large data
and aggregated into a small group or started from a small group of data and merged until all the
data are in one large group. Grid-based clustering divides each dimension of data space to form a
grid structure. Density-based clustering separates the data according to the density of the objects.
Traditionally, hierarchical, grid-based, and density-based techniques do not require cluster number
as an input parameter [20,23]. In the view of Jain [17], hierarchical clustering is more versatile than
partitioning clustering. With the discovery of clusters with good robustness and flexibility, grid-based
and density-based techniques have been particularly useful [24]. They are also helpful for dealing with
large spatial data and the proper use of expert knowledge. Grid-based and density-based techniques
also aim to identify data densities and to split the data space into grid structures when looking
for groupings [25]. Grid-based clustering techniques are more efficient compared to density-based
clustering techniques; however, the use of summarized information makes these techniques lose
effectiveness in cases where the number of dimensions increases [26].

Table 1. Differences among categories of clustering techniques.

Categories Time
Complexity

Computing
Efficiency

Convergence
Rate Scalability Initialization of

Cluster Number

Partitioning Low High Low Low Yes
Hierarchical High High Low High No
Grid-based Low High Low High No

Density-based Middle High High High No

In Table 2, we present several examples of clustering techniques done by previous researchers.
The table also summarizes the advantages and the disadvantages of the techniques. From this table,
k-means clustering is the most popular technique, even though k-means suffers from the shortcoming
of identifying the number of potential clusters before the clustering setup.

Table 2. Examples of popular clustering techniques along with their advantages and disadvantages.

Clustering Techniques Categories Advantages Disadvantages References

Fuzzy C Means (FCM) Partitioning
Minimize the error function belonging
to its objective function and solve the
partition factor of the classes.

Unable to achieve
high convergence. [27,28]

K-means Clustering Partitioning
Use a minimum “within-class sum of
squares from the centers” criterion to
select the clusters.

Need to initialize the number
of clusters beforehand. [9–12,29–33]

Partitioning Around Medoids
(PAM) Partitioning

Deal with interval-scaled
measurements and general
dissimilarity coefficients.

Consumes large central
memory size. [34]

Self-Organizing Maps (SOM)s Partitioning
Suitable for data survey and getting
good insight into the cluster structure
of data for data mining purposes.

Distance dissimilarity
is ignored. [35–38]

Agglomerative Nesting
(AGNES)

Hierarchical
(agglomerative)

Build a hierarchy of clustering from a
small cluster and then merge until all
data are in one large group.

Starts with details and then
works up to large clusters,
which is affected by
unfortunate decisions in the
first step.

[19,34]

EISEN Clustering Hierarchical
(agglomerative)

Carry out a clustering in which a
mean vector represents each cluster
from data in the group.

Starts with details and then
works up to large clusters,
which can be affected by
unfortunate decisions in the
first step.

[19]

Divisive Analysis (DIANA) Hierarchical
(divisive)

Perform a task starting from a large
cluster containing all data to only a
single dataset.

Not generally available and
rarely applied in most studies. [19,34]

Clustering in Quest (CLIQUE) Grid-based
Can automatically find subspaces in
lower-dimensional subspaces with
high-density clusters.

Ignores all projections of
dimensional subspaces. [39,40]
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Table 2. Cont.

Clustering Techniques Categories Advantages Disadvantages References

Grid-Clustering Technique for
High-Dimensional and Large
Spatial Databases (GCHL)

Grid-based Efficient and scalable while handling
high dimensionality issue. Insensitive to noise. [26,41]

Statistical Information
Grid (STING) Grid-based Facilitate several kinds of spatial

queries and less computational cost.
Difficult to identify
multiple clusters. [42,43]

Density-Based Spatial
Clustering of Applications
with Noise (DBSCAN)

Density-based
Can detect clusters with different
shapes and able to handle ones with
different densities.

Optimization issue. Difficult
to select appropriate
parameter values.

[44,45]

Random Walk based
Clustering Density-based Reflect the topological features of a

functional network.
Considers the interaction
between two genes. [46–48]

Relative Core Merge
(RECOME) Density-based Can characterize based on a step

function of its parameter.
Scalability issue. Hard to
handle a large volume of data. [45]

According to the reviewed clustering techniques in Table 2, this experimental work aims to
investigate which category of clustering techniques would perform better in clustering genes. Gene
expression data from the leukemia microarray study by Golub et al. [49] are used in this study. These
data consist of 3051 genes, 38 tumor mRNA samples [27 acute lymphoblastic leukemia (ALL) and
11 acute myeloid leukemia (AML)] [50]. The clustering techniques investigated in this experimental
work are k-means clustering (partitioning), agglomerative nesting (AGNES) (hierarchical), clustering in
quest (CLIQUE) (grid-based), and density-based spatial clustering of applications with noise (DBSCAN)
(density-based). The results in terms of percentage of accuracy are shown in Table 3. The experimental
work was carried out using stratified ten-fold cross-validation and a support vector machine as a
classifier. The selected clusters in Table 3 were validated based on silhouette width. According to Table 3,
the CLIQUE was able to achieve the highest classification accuracy when applied on the leukemia dataset
compared to other clustering techniques. In addition, Table 3 also shows several genes were biologically
validated as prognostic markers for leukemia when PubMed text mining was used. Prognostic marker
was commonly used to differentiate between good or poor disease outcomes [51]. This validation
was done to show the relationship between genes and prognostic markers of leukemia [52]. Although
CLIQUE achieved the best classification accuracy, the technique identified 67 genes as prognostic
markers of leukemia out of 919 genes in the selected cluster. On the other hand, k-means had the best
performance in identifying prognostic markers of leukemia (8%). The remaining techniques were able
to achieve between 6% and 8% in determining the prognostic markers of leukemia over the number of
genes in the selected clusters.

Table 3. Comparative results of the clustering technique applied on leukemia gene expression data.

Categories Clustering
Techniques Parameter (s)

Number of Genes
in the Selected

Cluster

Number of
Prognostic

Markers

Accuracy
(%)

Partitioning K-means k = 2 275 22 71.50

Hierarchical AGNES k = 2 339 22 78.50

Grid-based CLIQUE
k = 2

dimension = 10
density = 0.2

919 67 89.00

Density-based DBSCAN k = 2
minPts = 10 1548 103 73.00

Note: k is the number of clusters to be selected; dimensions are divided into several equal-width intervals; density
is the density threshold; minPts is the minimum size of clusters.

2.1. Category 1: Partitioning Clustering

Detection of clusters using partitioning clustering has low time complexity and high computational
cost [53]. However, there are specific problems related to this technique. One of these problems is
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detecting clusters inappropriate for non-convex data. This could be because clustering techniques
cannot spatially separate the data [54]. Other disadvantages are the need to initialize the number of
clusters beforehand, and that the clustering result is sensitive to the intended number of possible clusters.
Fuzzy C Means (FCM), k-means clustering, Partitioning Around Medoids (PAM), and Self-Organizing
Maps (SOM) are all examples of partitioning clustering [9–12,27–38]. PAM is a variation of k-means
clustering [55], and it is more robust in terms of accuracy compared to k-means clustering, for instance,
when applied to classify cancer types [56,57].

2.2. Category 2: Hierarchical Clustering

Hierarchical clustering’s scalability is relatively high in cluster detection [53]. One benefit of
the method is that it can detect the hierarchical relationship among clusters easily. However, the
major drawback associated with hierarchical clustering is the high computational cost. Agglomerative
(bottom-up) and divisive (top-down) are the categories of hierarchical clustering [2,35,58]. The way of
merging clusters and identification of the node levels can differentiate between agglomerative and
divisive hierarchical clustering [58]. Agglomerative hierarchical clustering (AHC) combines the most
adjacent pair of clusters, forming a group from bottom to top [59]. Several strategies of AHC are used
to identify the distance between clusters, which are single linkage, complete linkage, centroid linkage,
average linkage, Ward’s method, and the probability-based method [25,58,59]. On the other hand,
divisive hierarchical clustering is useful to identify clusters with different densities and shapes [58,59].
The method starts from all samples in a group and then splits the samples into two sub-clusters, which
are then divided into further sub-clusters and so on [58]. For AHC, node-level is the diameter of a new
cluster formed at the splitting step. The node-level of divisive methods is to divide the groups based on
their diameters. Agglomerative nesting (AGNES), EISEN clustering, and divisive analysis (DIANA) are
examples of hierarchical clustering [19,34]. Garzón and González [19] used these clustering techniques
to group similar genes before the step of the gene selection.

2.3. Category 3: Grid-Based Clustering

The design of grid-based clustering divides the entire data space into multiple, non-overlapping
grid structures [24,59]. This method performs faster than density-based clustering. Grid-based clustering
can benefit from dividing the data space into grids to reduce its time complexity [22,60]. CLIQUE,
grid-clustering technique for high-dimensional very large spatial databases (GCHL), and statistical
information grid (STING) are examples of grid-based clustering [39–43]. The GCHL technique can
discover concave (deeper) and convex (higher) regions when applied in medical and geographical
fields and by using the average eight direction (AED) technique [26,41]. However, both techniques
struggle to identify complex clusters from high dimensional data. CLIQUE partitions the data space
into cells and searches subspaces by counting the number of points in each cell [61]. Searching a
suitable set of dimensions for each cluster can form the candidate subspace for the centroid of the
cluster. Different groups of points are clustered in different subspaces [62].

2.4. Category 4: Density-Based Clustering

Usually, the regions contain points with high density in the data space, which makes density-based
clustering mistake them as clusters [59]. Mechanisms of aggregation in density can characterize the
clustering [45]. A significant advantage of density-based clustering is that it can discover differently
shaped clusters and noise from data [22,24,63]. However, density-based clustering has a high runtime
analysis to detect clusters [64]. DBSCAN, random walk, and Relative Core Merge (RECOME) are
examples of density-based clustering [44–48]. Historically, a random walk uses the theory of Markov
chain [48,65]. In most studies, the random walk has been used to infer and to optimize the structural
properties of networks [65,66]. Much of the current literature on the random walk is on ranking the
genes concerning their specific probabilities from high to low [67,68]. In literature, a random walk
mostly uses the topological similarity in networks to identify genes with a similar disease.
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3. Optimization for Objective Function of Partitioning Clustering Techniques

Optimization for objective function can improve the efficiency of partitioning clustering techniques
during initialization of the intended cluster number [11,33]. Swarm intelligence is widely used as the
objective function for a clustering problem. The number of intended clusters can be predicted based on
the typical search of the patterns [69,70]. Swarm intelligence can also be applied through maximizing
or minimizing the objective function of clustering [69,71,72]. In most studies, swarm intelligence has
been mostly used in the field of optimization [73,74].

Swarm intelligence refers to the collective behavior of decentralized, self-organized systems of
living creatures. The swarm intelligence systems consist typically of a population of simple agents or
boids interacting locally with one another and with their environment. The inspiration often comes
from nature, especially biological systems [75,76].

For modeling the behavior of a swarm, the techniques are made up of animals and insects, such
as bees, ants, birds, fishes, and so on [74,77]. Most recent studies used swarm intelligence to solve
problematic real-world problems such as networking, traffic routing, robotics, economics, industry,
games, etc. [73,74]. Hence, clustering techniques can benefit from swarm intelligence [74].

Swarm intelligence can optimize the objective function of clustering based on population and
evolution strategies [11,33]. This function is usually used to determine the fitness of each particle
since the community has a set of particles (known as a swarm), and each particle represents a solution.
Table 4 compares the use of optimization in population and evolution strategies. Both optimization
strategies are designed to imitate the best features in nature and produce a better quality of solution
efficiently [78,79]. Previous studies have explored the use of optimization in a generation with more
than 1000 populations before the convergence step, but it was not computationally efficient [80].

Table 4. Comparison of the use of optimization between population and evolution strategies.

Strategies Population-Based
Evolution

Functions Exploration Exploitation

Between technique
and solution

The technique can reach
the best solution within
the search space.

Express the ability of the technique
to reach the global optimum
solution, which was around the
obtained local solutions.

Optimize the mathematical functions of
the technique with continuously
changeable parameters and extend to
solve discrete optimization problems.

Application Metaheuristic search for global optimal solutions using
informative parameters.

Processes of selection, recombination,
and mutation.

Weakness Difficult to avoid problems of local minima and
early convergence. Need to control and adjust parameters.

Aim Imitate the best features in nature and produce a better quality of solution efficiently.

Table 5 summarizes existing techniques of swarm intelligence based on the strategies together
with their usages. Xu et al. [81] found particle swarm optimization (PSO) is faster than both artificial
bee colony (ABC) and genetic algorithm (GA) because PSO can perform without any complicated
evolution. Previous studies have also shown some drawbacks of ABC, which are the limited ability
of exploitation, slow convergence speed, and low-quality solutions [82]. In the review of GA and
PSO algorithms, Gandomi et al. [79] identified the main purposes of these techniques, which solved
significant problems faster.
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Table 5. Summary of existing techniques of swarm intelligence.

Techniques Strategies Usage Fitness References

Artificial Bee Colony (ABC) Population Can stimulate searching food process of bees based on the found food sources quality. Position and nectar amount of a food source. [37,82]

Ant Colony Optimization (ACO) Population Mimic ant behavior to solve optimization problems. Pheromone values. [77,83]

Ant Lion Optimization (ALO) Population High exploitation to explore search space and quickly converge to a global optimum. Ant location. [11,33]

Bat Algorithm Population Uses the frequency-based tuning and pulse emission rate changes that can lead to
better convergence. Bat behavior. [78,80,84]

Bee Algorithm Population Imitate food foraging behavior of swarms of honeybees to find the optimal solution. Frequency of the dance. [85]

Cuckoo Search (CS) Population Combine the obligate brood parasitic behavior of some cuckoo species with Lévy flight
behavior of some birds and fruit flies. Quality of cuckoo bird eggs. [79]

Firefly Algorithm (FA) Population Carry out nonlinear design optimization and solve unconstrained stochastic functions. Brightness of the firefly. [70,86]

Gravitational Search
Algorithm (GSA) Population Emulate the law of Newtonian gravity to solve various nonlinear optimization problems. Intelligence factors. [87,88]

Particle Swarm Optimization (PSO) Population Balance the weights of a neural network and sweep the search space using
a swarm of particles. A “space” where the particles “move”. [71,77,81,89]

Simulated Annealing (SA) Population Use principles of statistical mechanics regarding the behavior of many atoms at
low temperature. Single bit-flips. [90,91]

Differential Evolution (DE) Evolution Maintain a population of target vectors at each iteration for stochastic search and
global optimization. Global minimum. [71]

Evolution Strategy (ES) Evolution Emphasize the use of normally distributed random mutations (main operator). Several operators needed to consider in the analysis. [92]

Evolutionary Programming (EP) Evolution Use the self-adaptation principle to evolve the parameters on searching. No recombination operator and difficult to identify
useful values for parameter tuning. [92]

Gene Expression
Programming (GEP) Evolution Extremely versatile and greatly surpasses the existing evolutionary techniques. Several genetic operators needed to function on

selected chromosomes during reproduction. [93,94]

Genetic Algorithm (GA) Evolution Use genes with mechanisms to mimic survival of the fittest and inspire the genetics with
the evolution of populations. Priority of the genetic strings. [71]

Genetic Programming (GP) Evolution Can select variables and operators automatically then assemble into suitable structures. No clearly defined termination point in biological
processes operating. [95,96]

Memetic Algorithm Evolution Useful on the property of global convexity in the search space. Genetic operators (crossover and mutation) needed to
consider in the analysis. [97–99]
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3.1. Strategy 1: Population-Based Optimization

Population-based optimization is performed in terms of exploration and exploitation [69,100].
Exploration is the technique able to reach the best solution within the search space, while exploitation
expresses the ability of the technique to reach a global optimum solution. Metaheuristic search can
apply in this optimization for global optimal solutions using informative parameters. However, the
optimization still has difficultly avoiding the problems of local minima and early convergence [11,33,101].
Several examples of population-based optimization are reviewed, which are ant colony optimization
(ACO), ant lion optimization (ALO), firefly algorithm (FA), and particle swarm optimization
(PSO) [11,33,70,71,77,81,83,86,89].

In the literature related to PSO, most previous studies used PSO because it does not have any
complex evolution [81]. Fister et al. [70] found that FA is suitable for multi-modal optimization and
fast convergence.

3.2. Strategy 2: Evolution-Based Optimization

Evolution-based optimization is involved in the processes of selection, recombination, and
mutation [102]. The selection of evolution strategy fails to deal with changing environments, and it
threatens the self-adaptation with its control parameters (internal model) [103,104]. For recombination
processes (in terms of discrete and intermediate processes), it performs with control parameters on object
variables, standard deviations, and rotation angles. The mutation mechanism makes the techniques
evolve its control parameters (standard deviations and covariances). Evolution-based optimization can
optimize the mathematical functions of the technique with continuously changeable parameters and
extend to solve discrete optimization problems. This strategy can deliver a high quality of solutions and
allows the technique to move toward better solutions in the search space with a population [105,106].
GA is one of the techniques using evolution strategy, which is commonly used for clustering based
on selection, crossover, and mutation. In previous studies, most algorithms were derived from GA,
such as evolution strategy (ES) and evolutionary programming (EP) [92]. The memetic algorithm
is the extension of GA and includes local search optimization for problem-solving [97–99]. Genetic
programming (GP), on the other hand, is the extension of GA that has been successfully applied and
used to solve many problems [95,96]. Moreover, gene expression programming (GEP) uses the character
of linear chromosomes and has been applied in symbolic regression and block stacking [93,94].

4. Clustering Validation in Measurements

Previous studies have evaluated the identified gene clustering in terms of distance [1]. If they are
not within a distance regarding a specified gene in each experimental condition, then the specified
gene is classified as an inactive gene. Otherwise, the specified gene is co-expressed.

Clustering validation can be measured in terms of internal and external criteria [17,18,100,107].
Table 6 summarizes the differences between internal and external validations. In general, internal
criteria can assess the fitness between clustering structure and data. External criteria can measure the
performance by matching cluster structure to prior information. As mentioned by Handl et al. [23],
internal validation suffers from bias regarding clusters number and partitioning structure from data.
The goal of internal validation is measured based on compactness and separation [18,107]. Compactness
is defined as a measure of how close the objects are in a cluster based on variance. Separation measures
either how a cluster is distinct or how well separated it is from other clusters. Handl et al. [23] held the
view that external validation can suffer from biases in a partitioning according to cluster number and
distribution of groups with class sizes.

Table 7 sets out examples of measurements to validate the quality of clusters. As can be seen
from the table, previous studies commonly used Euclidean distance and silhouette width. In general,
silhouette width can validate the clustering performance in terms of pairwise difference between and
within cluster distances [18,107]. The maximum values of the silhouette width can identify an optimal
number of clusters.
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Table 6. The difference in measurements between internal and external validations.

Criteria of Validation
Measurements Internal External

Aim Assess the fitness between
clustering structure and data.

Measure the performance by matching
cluster structure to prior information.

Suffer from bias
• Number of clusters
• Partitioning structure from data

• Number of clusters
• Distribution of cluster with class

sizes in a partitioning

Table 7. Examples of previous studies in clustering validation.

Measurements Categories Usage References

Average of sum of
intra-cluster distances Internal Measure assessing cluster compactness

or homogeneity. [11,33]

Connectivity Internal Degree of the connectedness of clusters. [1,23]

Davies and Bouldin
(DB) index Internal Measure intra- and inter-cluster using spatial

dissimilarity function. [108]

Dunn index Internal
Ratio of the smallest distance among
observations in the different cluster to the
most considerable intra-cluster distance.

[1,23]

Euclidean distance Internal Compute distances between the objects to
quantify their degree of dissimilarity. [19,31,34,109]

Inter-cluster distance Internal Quantify the degree of separation between
individual clusters. [11]

Manhattan distance Internal Correspond to the sum of lengths of the other
two sides of a triangle. [34]

Pearson correlation
coefficients (PCC) Internal Measure between-state functional similarity. [23,110]

Silhouette width Internal

Measure the degree of confidence in a
clustering assignment and lie in the interval
[−1, +1], with well-clustered observations
having values near +1 and near -1 for poorly
clustered observations.

[1,18,19,31,32,109]

Square sum function of
the error Internal Measure the quality of cluster either by

compactness or homogeneity. [12,23,111]

Entropy External Measure mutual information based on the
probability distribution of random variables. [30,112,113]

F-measure External
Assess the quality of clustering result at the
level of entire partitioning and not for an
individual cluster only.

[11,23,30,33]

5. Discussion

An efficient clustering technique is the one capable of extracting useful information about the
behavior of a gene. According to Oyelade et al. [114], ensemble clustering (a combination of two or more
phases of clustering) can generate more robust and better quality clusters compared to single clustering.
Table 8 summarizes the ensemble methods for clustering that were used by previous researchers.
In addition, Oyelade et al. [114] also showed that hierarchical clustering is more suitable to handle real
datasets, such as image data, compared to partitioning clustering, but it is computationally expensive.
Advanced technological developments can isolate a large group of cells. Biological data can provide a
better understanding of the complex biological processes. For example, single-cell RNA sequencing
can help to expose biological processes and medical insights [115]. The k-means clustering typically
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performs better than hierarchical clustering in smaller datasets, but it requires a long computational
time [114,115]. Other than that, large amounts of bulk data can address biological dynamics and
cancer heterogeneity. Tang et al. [115] proposed High-order Correlation Integration (HCI), which uses
k-means clustering and Pearson’s correlation coefficient in the experiments. Their results showed
that HCI outperforms the existing methods (k-means clustering and hierarchical clustering) under
single-cell and bulk RNA-seq datasets. Unsupervised clustering is one of the powerful techniques used
in single-cell RNA sequencing to define cell types based on the transcriptome [116]. Fully unsupervised
clustering techniques (e.g., intelligent k-means and kernel k-means) are applied to analyze genes in
colorectal carcinoma [117]. Other than that, random walk-based clustering, GCHL, and CLIQUE
clustering techniques are also used in unsupervised manners [26,41,46–48,61,67].

The purpose of optimization for objective function and validation is to achieve quality clusters.
Most of the previous studies used swarm intelligence to optimize the parameters of clustering
techniques and to identify the optimal number of possible clusters [118]. The objective function of
clustering techniques defines optimization as maximizing the accuracy of the centroid or the cluster
center, especially for partitioning clustering techniques. It is because partitioning clustering needs to
initialize either the number of clusters or the number of centroids beforehand. Furthermore, clustering
validation is also essential to measure within or between the identified clusters [19].

Table 8. Summary of the existing ensemble methods used in clustering.

References Ensemble Methods Clustering Techniques Use

Deng et al. [24] Grid-based and Density-based
Spatial Clustering (GRIDEN)

Grid-based Density-based
(DBSCAN) Enhances clustering speed.

Oyelade et al. [114]
Masciari et al. [119]

Microarray Data Clustering
using Binary Splitting
(M-CLUBS)

Hierarchical (divisive
and agglomerative)

Overcomes the effect of size and
shape of clusters, number of clusters,
and noise for gene expression data.

Oyelade et al. [114]
Bouguettaya et al. [120]

Efficient Agglomerative
Hierarchical Clustering (KnA)

Hierarchical (agglomerative)
Partitioning (k-means) Relatively consistent in synthetic data.

Bouguettaya et al. [120]
Lin et al. [121]

Cohesion-based
Self-Merging (CSM)

Partitioning (k-means)
Hierarchical (divisive)

Clusters the datasets of arbitrary
shapes very efficiently.

Darong and Peng [122]
Grid-based DBSCAN Technique
with Referential Parameters
(GRPDBSCAN)

Grid-based
Density-based (DBSCAN)

Finds clusters of arbitrary shape and
removes noise.

In this research, leukemia data containing 3051 genes and 38 samples [49] were used to evaluate the
performance of each clustering techniques category. The genes obtained by the clustering techniques
were different from one technique category to another; however, the number of target clusters was
the same among the techniques. As a result, the grid-based clustering technique provided higher
classification accuracy than other clustering techniques. The technique was able to identify 7.29% of
the prognostic markers in leukemia data. On the other hand, k-means clustering achieved the highest
percentage (8%) of identifying prognostic markers in leukemia, but the classification accuracy in this
case was quite poor.

A summary of optimal cluster analysis studied by previous researchers is shown in Table 9.
According to the table, k-means clustering was the most used in the research. Integration of optimization
is critical to its use in research because it can solve the issue of k-means clustering that requires initializing
the number of clusters beforehand [10,11].



Processes 2019, 7, 550 11 of 18

Table 9. Summary of optimal cluster analysis.

References Clustering Techniques Optimization for Objective Function
of Partitioning Clustering Techniques Clustering Validation

Majhi and Biswal [11,33] K-means clustering Ant Lion Optimization (ALO)

• Average of sum of
intra-cluster distances

• F-measure

Ye et al. [12] K-means clustering Cuckoo Search Square sum function of the error

Mary and Raja [30] K-means clustering Ant Colony Optimization (ACO)
• Entropy
• F-measure

Garg and Batra [32]
• Decision Tree Criterion (DTC)
• K-means clustering Cuckoo Search Optimization (CSO)

• Mean Square Error (MSE)
• Silhouette width

Acharya et al. [91] Multi-Objective Based Bi-Clustering Simulated Annealing (SA) Euclidean distance

Labed et al. [111] K-Harmonic Means Cuckoo Search Algorithm (CSA)
• Davies and Bouldin (DB) index
• Square sum function of the error

Shanmugam and Sekaran [118] Fuzzy C Means (FCM) Ant Lion Optimization (ALO) Square sum function of the error

Carneiro et al. [122] Network-based techniques
(e.g., clustering and dimensionality reduction) Particle Swarm Optimization (PSO) Euclidean distance
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6. Conclusions

In summary, this paper reviewed examples of existing computational methods for clustering genes
with similar biological functions. As a result, we found that partitioning, hierarchical, grid-based, and
density-based are the categories of clustering techniques. Clustering can identify a high-quality cluster
that is helpful in biological mechanisms and could lead to the identification of new genes related to
potentially known or suspected cancer genes [67,117,123].

Among the categories of clustering, grid-based and density-based techniques are more suitable
to be used to cluster objects in large spatial data. These techniques are inappropriate for artificial
and biological datasets such as iris, wine, breast tissue, blood transfusion, and yeast datasets [24,114].
On the other hand, density-based clustering techniques are useful if used to cluster gene expression
data [114]. Moreover, hierarchical clustering techniques are useful to handle synthetic and real datasets
(e.g., image data). However, these techniques have some limitations when the data are very large [114].
Finally, partitioning clustering techniques are inappropriate for non-convex data but suitable for
smaller datasets [53,114,115].

Grid-based clustering (CLIQUE) was more efficient than other categories of clustering (e.g., k-means
clustering, DBSCAN, and AGNES), but it was difficult to identify multiple clusters in cases of high
dimensional data types. Although k-means clustering (category: partitioning) was sensitive to initializing
the number of clusters, it provided a higher chance of identifying prognostic markers of leukemia.
A prognostic marker is useful for identifying a disease outcome, which can be helpful in cancer treatment
and drug discovery as well [52]. However, the quality of clusters is usually affected by initializing
the number of intended clusters, especially for partitioning clustering. Therefore, the optimization of
the objective function and validation can help clustering techniques to identify the optimal number of
clusters with better quality [11,89]. This paper also showed the two types of optimization strategies,
which are population and evolution. Most of the existing techniques used for optimization utilize
population strategies. Carneiro et al. [124] also concluded that the use of optimization could generate
better classification together with the use of clustering and topological data. In addition, this paper
also reviewed clustering validation and its measurements criteria. Internal and external criteria are
commonly used to measure the cluster structure. Besides, genes in clusters can belong to a specific
pathway, which can reflect the genes’ functioning in biological processes [125]. For example, BCL2
associated with X apoptosis regulator (BAX) was among the genes identified in our experimental work,
which is also a prognostic marker of leukemia. The BAX gene was encoded in the pro-apoptosis proteins,
which could increase its expression and decrease the expression of anti-apoptosis (e.g., Bcl-2 gene) in the
treatment of leukemia [126,127]. Moreover, clustered genes can identify metabolic gene clusters related
to the discovery of metabolite in bacteria and fungi [127]. Identifying genes in clusters can not only
allow us to discover the informative gene and the prognostic marker for the specific disease, but it can
also provide a clue about the cluster dictated by signature enzymes. The signature enzyme can catalyze
reactions and further tailor the product. Hence, the genes can be encoded in the pathway with enzymes.

Based on the experimental work, the CLIQUE and the k-means clustering techniques produce better
results in terms of classification accuracy and identifying cancer markers. Therefore, this review suggests
combining clustering techniques such as CLIQUE and k-means to yield more accurate gene clustering.

Although the optimal cluster analysis is the focus of this review, the findings can be applied to
different areas.
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