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Semicontinuous Distillation Process

— = == Control Signal

Fchargjng(t) ——> Process Stream

_,|T|_
m
PR ey Y

¥
H
I
|
I

F. discharging( t)  \——— -@4-
|

PC: Pressure controller | CC: Concentration controller | LC: Level Controller
FF: Feedforward control

Process Equipment:

Process Vessel [Middle Vessel].
Distillation column.

Control System:

Pressure Control

Distillate Concentration Control
Bottoms Concentration Control
Reflux Drum level Control
Sump level Control

Side stream flow control

Characteristics of the process:
« Economic at intermediate production rates.
* Flexible operation and modular.
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Semicontinuous Distillation Process
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Example Trajectories
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*Pascall, A. and Adams, T.A,, 2013. Semicontinuous separation of dimethyl ether (DME) produced
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Mathematical description of the process dynamics

FDxzp) Semi-explicit DAEs

Continuous states: x, z
Time invariant parameters: p

Oscillating Discrete states: {1, 2, 3}

Hybrid
System

1. Semi-explicit DAE systems: 3

2. Transition Conditions: 3

3. No state variable jumps during
transition.

Stop tank drain and start feed chargﬁ when
Liquid level falls below the limit

Download Slides at PSEcommunity.org/LAPSE:2019.1134 6
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Semicontinuous Distillation Process Dynamics

System Characteristics:

1.
2.

3.

The system operates in a [imit cycle, which is its steady-state.
A limit cycle is a closed and isolated state trajectory that is uniquely determined by p (design
variables).

The cycle has a period of oscillation T(p) (an implicit function of p).
po ()
x(t p) = | O
x(0; p) X>(t)

>
x7(8) | |
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Methods for finding limit cycle

Simple i.  Guaranteed convergence
Method ii. Speed of convergence is
| dependent on the system's
Brute Force parameters.
Method iii. Difficult to tell if a steady-state is
reached.
Sophisticated
Methods

i.  Fast convergence.

ii. Canimpose quantitative
convergence criteria to
terminate the algorithm.

Shooting Methods
Collocation Methods

Download Slides at PSEcommunity.org/LAPSE:2019.1134 g
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Semicontinuous Distillation Process Design

Design Objective
“Meet product quality requirements at the end of the cycle, while
maintaining feasible operation during the cycle”

Discrete Design Variables:
* Number of stages

* Feed stage location

« Side stream stage location
« Equipment sizes

Continuous Design Variables:
 Reflux rate.

* Side stream flowrate.

« Controller tuning parameters.

What makes semicontinuous distillation design so

complex?

1. The total processing time is unknown (7(p)).

2. Time spent in each mode is also unknown (At®(p)). stCEVCVQr'gidﬁ!Ser}
3. The initial state of the system is also unknown (x(0; p)). LAPSE:2019.1134

Adams, T.A. and Pascall, A., 2012. Semicontinuous thermal separation systems. Chemical Engineering & Technology, 35(7), pp.1153-1170.
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Sequential Design Methodology

Find discrete design variable
values and reflux rate that
meet desired product purities
using a “hypothetical
continuous distillation system”

Disadvantages:

1. Used some state variables to
visually ascertain
convergence to a limit cycle.

Keeping the discrete design
variable values fixed, find 2. Difficult to tell if a steady-
controller tuning parameter state (limit cycle) is reached
values that converge to a limit during optimization phase.
cycle using the Brute force
method. 3. Could not exploit problem

Use particle swarm algorithm to structure to use better
find controller tuning parameter optimization techniques.
values that minimize cost while

meeting Design objective.

Download Slides at PSEcommunity.org/LAPSE:2019.1134 1
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Back-stepping Design Methodology

Find discrete design variable values and
reflux rate values for a side stream
flowrate to feed ratio of = 1 that meets
hydraulic feasibility at the steady-state
of a “hypothetical continuous distillation
system”

Sample points in the [continuous]
design space and simulate the system
here using the Brute force method to
collect information on cycle feasibility
and nature of steady-state for domain

restriction.

Infeasible

Use particle swarm algorithm to find continuous
design variable values that minimize cost while
meeting Design objective.

Disadvantages:

1.

Use some state variables to
visually ascertain convergence
to a limit cycle.

Requires sampling of a
number of points in the
design space to ensure cycle
feasibility and ascertain the
nature of steady-state.

Could not exploit problem
structure to use better
optimization techniques.

Download Slides at PSEcommunity.org/LAPSE:2019.1134
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Algorithm for using the Single Shooting Method for semicontinuous distillation design

1. Guess a state that could lie on the
periodic orbit (x94¢5(0; p)).
2. Guess the period of each individual
mode (Atgves®(p), k = 1, 2, 3).

1

Numerically integrate to check if the mode
transition conditions and the periodicity
conditions are met (within a tolerance)
when using the guesses.

lNo

Use periodicity boundary conditions and
mode transition conditions to find a new
guess using Newton's Method.

Repeat until desired tolerance is met

What is a good initial state?

Choose the state of previously described
continuous distillation system as an initial
guess. (Obtained by solving a system of
nonlinear algebraic equations.)

How is time period of each mode

guessed?

1. Use Newton's method to better estimate
the time periods of individual modes.

2. Use these estimates as initial guess in the
algorithm.

Download Slides at PSEcommunity.org/LAPSE:2019.1134 12
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Some Implementation Details

1. Modeled semicontinuous distillation system in python using the CasADi modeling language.
X CasADi

2. Distillation modeling details: Fixed pressure drop, fixed top stage pressure, constant molar
overflow, no vapour holdup, theoretical trays, perfect mixing on trays, total condensation
without sub-cooling, adiabatic operation, partial reboiler.

3. Differential Equations were reformulated to add a dummy time state variable to fix the
integration horizonto t € [0 1].

4. Periodicity constraints (x(tf) — x(t+7) = 0) were imposed on the differential state variables and
not on the algebraic state variables for well-posedness (avoiding over specification).

dials
<

IDAS IPOPT (COIN-OR)

0w
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Case study — Hexane, Heptane, Octane

1. Total number of stages : 5, Side stream stage: 2, Feed Stage: 3 [24 differential variables; 39
algebraic variables];
2. Max error in residual: less than 0.0005; Same design variable values.

3. Assumptions: ideal vapour and solution.

Aspen Plus Dynamics
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Case study — Hexane, Heptane, Octane

min Cycle Time

x = continuous decision variables
S.t.
Boundary Value Problem
Distillation Model Equations
Started from poor initial guess.
Solution time: 40 minutes in CasADi

Optimal found to be close to previously known best from other methods (PSO, by hand, etc.)

Download Slides at PSEcommunity.org/LAPSE:2019.1134 15
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Case study — Hexane, Heptane, Octane

1.

2.
3

Total number of stages : 40, Side stream stage: 14, Feed Stage: 25 [129 differential variables; 319
algebraic variables]

Assumptions: ideal vapour and solution.

Max error in residual: less than 0.0005

25
20 \
- VZ\/\
315
£
=10 |
A =S5(t) - Python ==5(t) - Aspen
5 -
O | | | | |
0 2 4 6 8 10 12
Time (h)
(takes approx. 40 wall clock min vs. approx. 1 wall clock day to find a cycle) 16
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Conclusions and Future work

1. The new design methodology is an automatic way of directly finding
the cycle for chosen values of the design variables.

2. A quantitative termination criteria is available.

3. Explore the influence of various design variables on the limit cycle
characteristics (such as cycle time).

4. Explore the use of gradient-based optimization techniques for design
optimization.
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