# Training All Chemical Engineers in Computing and Data Science



colab

## Vocareum

OTRE DAME

#### **Prof. Alexander Dowling**

adowling@nd.edu dowlinglab.nd.edu Department of Chemical and Biomolecular Engineering University of Notre Dame, Notre Dame, IN November 11, 2019 AIChE Annual Meeting Orlando, FL









NOTRE DAME

Funding:

## **Research: Process Systems Engineering**

Large Projects:

- Molecules Materials Mathematical Modeling **Computational Optimization Applied Bayesian Statistics**
- Energy & Sustainability **Applications**

A.I.O.

CISTAR

IDAES







#### Chemical Engineering Suggested 4 Year Curriculum University of Notre Dame entering FA18

#### Current Practice: Computing & Statistics

MATLAB in freshman engineering sequence

Sophomore-required Numerical & Statistical Analysis (NSA)

Ad-hoc computing & statistics in upper-level classes:

"You learned this as sophomores... just figure it out" – Prof. Anonymous

#### Vision

Vertically integrate computing and statistics throughout the undergraduate curriculum

## **Vertical Integration: Opportunities and Challenges**

### **Numerical Methods**

Equation solving (thermo., separations) Optimization (controls, design) Numeric integration (transport, reactions)

### **Statistics and Data Analysis**

Probability (physical chemistry) Visualization Regression Error Analysis Uncertainty Propagation

### Challenges

Difficult to learn advanced topics sophomore year (e.g., PDEs, BVPs)

"Brian drain" without repeated exposure

Common software tools?

How to avoid burdening all faculty?



### **Modernizing Numerical and Statistical Analysis**

### Backward Course Design Set Clear Learning Objectives

At the end of the semester, you should be able to...

- 1. Create mathematical models and apply computational methods to analyze systems using basic principles of chemical engineering (e.g., mass and energy balances, thermodynamic equilibrium, etc.)
- 2. Analyze data and quantify uncertainty using standard statistical techniques and mathematical models grounded in engineering fundamentals
- 3. Independently plan, implement, and debug short (100 to 300 lines) **Python computer programs** to analyze data, solve engineering mathematical models, and visualize results

### **Major Changes**

#### **Reorganized class topics**

- Removed advanced topics (QR factorization, compression with SVD, trust regions, BVPs, PDEs)
- Emphasized fundamentals, especially probability & statistics
- Added mass and energy balance examples

Switched to Python, with great student buy-in

Incorporated active learning into lectures

**Shortened assignments** 

NOTRE DAME

### **Active Learning is Essential for Computing and Statistics**









Right: Felder and Brent (2015), *Teaching and Learning STEM: A Practical Guide* 

### Spring 2019: Cloud-based Google Colaboratory (Jupyter Notebooks)

colab.research.google.com

**Benefits of Google Colaboratry:** 

Like Google Docs, but for code

Integrated with **Google Drive**: automatic versioning, easy sharing

Removes barriers to access: students can complete assignments from any internet connect computer – no need to support 80+ local Python installations

Facilitates active learning

Free

NOTRE DAME



I show this slide on day 1.

## Making your time more effective



## Making your time more effective



activities



## Fall 2019: Cloud-based Vocareum (Jupyter Notebooks)

www.vocareum.com

**Benefits of Vocareum:** 

Many of the same cloud-based benefits as Colaboratory

Integrated with Learning Management System (e.g., Sakai) and gradebook

Supports **autograding** via nbgrader (with some enhancements)

Supports plagiarism detections (if you want it)

Paid service, but responsive technical support



## Fall 2019: Cloud-based Vocareum (Jupyter Notebooks)

www.vocareum.com

**Benefits of Vocareum:** 

Many of the same cloud-based benefits as Colaboratory

Integrated with Learning Management System (e.g., Sakai) and gradebook

Supports **autograding** via nbgrader (with some enhancements)

Supports plagiarism detections (if you want it)



**Bottom Line:** Autograder (Vocareum) enables accountability for meaningful home activities before class, which translates to more engaging class sessions.



## **Excited Students to Become Long-Term Learners**

Success Stories and Lessons Learned

Show students how computing and statistics:

- Makes them competitive for jobs
- Helps them in future classes & career
- Connects to chemical engineering & society

#### **Extension Assignments**

Watch TED talk, listen to podcast, etc.

Answer brief reflection questions

Completion grade, counts towards dropped homework

#### Examples:

*Planet Money,* "What Causes What?" *Hidden Brain,* "The Scientific Process" *TED Talks*: Bias and Algorithms

### Set them up for early success

- Require pseudocode
- Embrace the autograder

# Show them how to study & learn independently

NOTRE DAME 12



### **Special Thanks to Prof. Jeff Kantor**

| ຸດ | Search or jump to                                            | Pull requests issues    | Marketplace Explo | re                           |                                   |                     | 📌 +- 📓- |  |
|----|--------------------------------------------------------------|-------------------------|-------------------|------------------------------|-----------------------------------|---------------------|---------|--|
|    | C jckantor / CBE30338                                        |                         |                   | 🕲 Watch 🕶                    | 7 🖈 Star                          | 21 ¥ Fork 18        |         |  |
|    | ↔ Code ① Issues @ □] Pul                                     | requests @ III Projects | o 🗉 Wiki 🕕 S      | ecurity insights             |                                   |                     |         |  |
|    | Chemical Process Control http://jckantor.github.io/CBE30338/ |                         |                   |                              |                                   |                     |         |  |
|    | 3 508 commits                                                | ₽ 1 branch              | ⊙ 0 releases      | LL 2 contributors            | 4                                 | View license        |         |  |
|    | Branch: master * New pull reques                             | t                       | (                 | Create new file Upload files | Find File                         | Clone or download + |         |  |
|    | Ekantor Update 02.06-Exothermic-CSTR.jpynb                   |                         |                   |                              | Latest commit de4755c 13 days ago |                     |         |  |

#### https://github.com/jckantor

Chemical Process Control Introduction to Chemical Engineering Analysis Introduction to Operations Research Process Operations



#### **CBE 30338**



View the Project on GitHub jckantor/CBE30338

#### **CBE 30338 Chemical Process Control**

This repository comprises a collection of Jupyter/Python notebooks in support of **CBE 30338 Chemical Process Control** taught at the University of Notre Dame.

The links below display the notebooks as regular HTML web pages. From there you can run the notebook on Google Colaboratory or download to run on your own laptop. To run on your own laptop you will need to install Jupyter and Python 3, such as the excellent Anaconda distribution from Continuum Analytics.

Please let me know (jeff at nd.edu) if you any thoughts or suggestions on how these notebooks could be improved for teaching and learning the principles of Chemical Process Control.

#### **Table of Contents**

#### **Chapter 1.0 Getting Started**

- · 1.1 Getting Started with Python and Jupyter Notebooks
- 1.2 Python Basics
- 1.3 Python Conditionals and Libraries
- 1.4 Python Numeric Integration Revisited

#### Chapter 2.0 Process Modeling

2.1 Process Variables

JUPYTER FAQ </> 🧮 🌎 🚳 📩

CBE30338 / notebooks

Jupyter

This notebook contains course material from CBE30338 by Jeffrey Kantor (jeff at nd.edu); the content is available on Github. The text is released under the CC-BY-NC-ND-4.0 license, and code is released under the MIT license.

< Simulation and Optimal Control | Contents | Soft Landing a Rocket >

CO Open in Colab

This project is maintained by ickantor

Hosted on GitHub Pages - Theme by orderedlist

#### Simulation and Optimal Control in Pharmacokinetics

#### Installations and Initialization

Pyomo and ipopt are now preinstalled on Google Colaboratory. On MacOS and Windows PC, a one-time installation of pyomo and ipopt is required. The following commands will perform the needed installation when using the Anaconda distribution of Python.



# Training All Chemical Engineers in Computing and Data Science



colab

## Vocareum

OTRE DAME

#### **Prof. Alexander Dowling**

adowling@nd.edu dowlinglab.nd.edu Department of Chemical and Biomolecular Engineering University of Notre Dame, Notre Dame, IN November 11, 2019 AIChE Annual Meeting Orlando, FL





