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Abstract: In this work, a closed-loop identification method based on a reinforcement learning
algorithm is proposed for multiple-input multiple-output (MIMO) systems. This method could be
an attractive alternative solution to the problem that the current frequency-domain identification
algorithms are usually dependent on the attenuation factor. With this method, after continuously
interacting with the environment, the optimal attenuation factor can be identified by the continuous
action reinforcement learning automata (CARLA), and then the corresponding parameters could be
estimated in the end. Moreover, the proposed method could be applied to time-varying systems
online due to its online learning ability. The simulation results suggest that the presented approach
can meet the requirement of identification accuracy in both square and non-square systems.

Keywords: reinforcement learning; MIMO; CARLA; closed-loop identification

1. Introduction

With the rapid development of modern industry, it becomes increasingly difficult for the traditional
model control methods to properly control complex process due to the uncertainty, time-delay,
multivariable coupling, and constraints between input and output. It is a challenge for the traditional
identification methods to obtain optimal results, particularly in multivariable systems, due to their
complex structure, various parameters, and time-varying in industrial applications. Methods for the
identification of multivariable systems go back to the 1960s, but most identification methods require
the observation to be noise-free. This situation together with their heavy computational cost makes
them difficult to be applied in practice [1]. In view of the above problems, many researchers proposed
replacing the state space model with a polynomial matrix to describe the multivariable system. In 1975,
Guidozi [2] proposed the equivalence relation between the observable canonical form of system state
and the canonical form of an input–output difference equation, and established the mapping relation
between the parameters of the state equation and the observed input–output data. Subsequently,
some researchers proposed row subspace identification methods based on the Hankel matrix. In these
methods, the first step is to obtain the augmented observability matrix (or state sequence) of the system,
and then the parameter matrix of each subspace is calculated. The main representative methods
include multivariable output error state space (MOESP) [3,4], numerical algorithms for subspace
state-space system identification (N4SID) [5,6], and canonical variate analysis (CVA) [7,8]. At first,
these methods of subspace identification were difficult to apply online, and were very computationally
intensive in recursive decomposition. With the development of technology, they have been widely
applied in industrial practice due to the advantage that they do not depend on any prior knowledge in
the identification of the multivariable system. However, the objective of multivariate identification
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methods based on state space models is not to find the optimal solution, but the Pareto suboptimal
solutions, so there is substantial room for improvement in the performance of these methods.

Methods for the identification of multivariable systems based on state space have large
computational demand, take a long time, and it is difficult for them to achieve the global optimal
solution. Therefore, many researchers have focused on identification methods based on the transfer
function matrix or other models (i.e., to transform the state space model into a transfer function model
through the Laplace transform). Researchers have proposed several methods for the transfer function n
matrix modeling of multivariable systems, such as the instrumental model method, the sub-sub model
recursive method, the combined identification algorithm (CIA), the extended least squares method,
and the multi-innovation recursive identification method, which have greatly promoted the direction of
multivariable system identification based on the transfer function matrix model. With the instrumental
model, the identification of the transfer function model can be decomposed into several sub-models,
and it has attracted increasing attention. In [9], the least squares method was used to eliminate the bias
in a multi-input single-output (MISO) system, but this method is still difficult to apply online, and it has
harsh preconditions and assumptions. Ding et al. [10] proposed a bias-compensation-based recursive
least-squares algorithm to solve the problem of the identification in non-stationary systems. On the
basis of the nearest Kronecker product and low-rank approximation, Camelia et al. [11] proposed a
low-complexity recursive least-squares (RLS) algorithm, which has good robustness against additive
noise and good identification effect. The instrumental model [12] can solve the problem of the unknown
information vector in the model. Du et al. [13] proposed a robust output error model identification
method, and used the auxiliary model to estimate the noiseless output under random noise, which
is suitable for the time-delay industrial process under load disturbance. In order to eliminate the
interference of abnormal points in the observation, the multi-innovation concept was introduced to
accelerate the convergence of the model [14]. Based on the sub-model (MISO), Li et al. [15] proposed a
sequential excitation method for a multiple-input multiple-output (MIMO) system. With sequential
excitation signals, the multiple-input multiple-output (MIMO) system could be decomposed into
several equivalent single-input single-output (SISO) systems in an open-loop control.

In recent years, the open-loop step response test has been a common method in the field of system
identification, and is simple to operate and easy to implement. However, there are still some issues:
(1) Open-loop identification is usually not permitted in field systems. Considering the factors of
safety and economy, the output of the controller is required within a limited range once the system is
running. (2) The input signal is usually limited to a step-function signal, and the test time is limited
to the transition time. It is often affected by external disturbance and the change of internal working
conditions. Therefore, authors in [16–19] proposed frequency response estimation methods for the
identification of the closed-loop system. However, the existing methods still have some limitations (e.g.,
the accuracy depends on the choice of attenuation factor). The value of the attenuation factor is usually
given according to prior knowledge. Jin et al. [20] proposed an intelligent searching algorithm to
obtain the range of the attenuation factor, and achieved good results. However, for large-scale complex
systems, it is time-varying and the attenuation factor easily falls into local premature convergence.

Learning automata (LA) have potential applications in system control. Li et al. [21] proposed
a coral reef algorithm based on LA for the coverage control problem of heterogeneous directional
sensor networks. Mohammed et al. [22] developed a fuzzy maximum power point tracking controller
using the information collected by LA through the learning process. Thus, a novel method based
on a reinforcement learning algorithm, namely continuous action reinforcement learning automata
(CARLA), is presented here to solve the issue mentioned above. After continuously interacting with
the environment, an optimal attenuation factor can be achieved by CARLA, and then the system
parameters of the system can be estimated. Moreover, the proposed method can be used online and
applied to time-varying systems due to its online learning ability.
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2. Materials and Methods

2.1. Background

Frequency response methods can be applied to the parameter estimation of open-loop and
closed-loop systems, but their accuracy depends on the value of the attenuation factor, which is
usually obtained from prior knowledge. Some researchers [20,23] proposed the use of heuristic search
algorithms (e.g., particle swarm optimization (PSO) and its improved methods) to obtain the optimal
value. However, it is difficult to solve the issue of the on-line identification of time-varying systems.
An online adaptive learning method is required to find the optimal solution of the parameters within
the contiguous space. To solve these problems, a frequency response estimation (FRE) method based
on continuous action reinforcement learning automata (CARLA-FRE) is proposed in this paper.

2.2. Basic Reinforcement Learning

As an important branch of machine learning, reinforcement learning (RL) [24] interacts with the
environment actively and constantly, updates iterations based on feedback, and finally gives the optimal
strategy. It contains the main elements of agent, state, action, and rewards, and its learning target is to
obtain the optimal strategy to maximize the long-term cumulative rewards. As shown in Figure 1,
the most important feature of reinforcement learning is the capability of autonomous and online
learning without any prior knowledge and state transition probability. Firstly, the agent perceives
the state of the environment and takes various exploratory actions according to the accumulative
compensation. After taking the action, the environment undergoes a state transition and enters into a
new state. At the same time, the behavior strategy is evaluated, and the feedback is returned to the
learning system. After receiving the feedback of the reward or the punishment, the agent modifies
its strategies continuously to meet the requirements of the environment, and the whole process is
iteratively updated until the optimal strategy is obtained.
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2.3. Continuous Action Reinforcement Learning Automata (CARLA)

The target of system identification is to obtain the appropriate attenuation factor, which is a
problem of finding the optimal action. Because the action space is continuous, a continuous action
reinforcement learning automata (CARLA) [25,26] is proposed in this paper. Compared with other
algorithms, CARLA can use the probability density function to select behavior in continuous space
with a stochastic or unknown system model. The system learns interactively with the environment in
a trial-and-error manner, and gets better behavior strategies by strengthening signals, increasing the
probability of the action by strategy iteration, and finally obtains the optimal parameters online [27–30].

For CARLA, each action x is a mapping of a cumulative probability density function (CPDF),
registered as f (x). With reinforcement signal β, the density functions are updated many times, and the
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optimal decision variables with the maximum of the corresponding CPDF is obtained. During the
process of the iteration, the reinforcement signal is determined by the evaluation function of the last
iteration. Therefore, the whole process of learning and updating is always optimized in the direction
of better results, and the ultimate goal is to achieve long-term rewards rather than one-step rewards, so
as to ensure the global optimality. The learning process is as follows:

CARLA algorithm

1: Initialize the probability density function f 0(xi): establish the uniform distribution of CPDFs according to
the range of the parameter;
2: Actions selection: select actions (or parameters) randomly based on the CPDF value;
3: System evaluation: take the action, substitute parameters into the system to obtain the responding curve,
and calculate the fitness function J(xi);
4: Calculate the enhanced signal value β according to the value of the fitness function;
5: Update each CPDF value according to the enhanced signal value;
6: Update behavior parameters: introduce the normal random number generator to update the action
parameters at the next moment;
7: If the stopping condition has not been reached, return to step 2 until the convergence condition is met.

3. Frequency Response Estimation Based on CARLA (CARLA-FRE)

3.1. Frequency Response Estimation Based on CARLA (CARLA-FRE)

In order to improve learning efficiency of the algorithm, the threshold value of attenuation factor
obtained in [31] is used as the initial region of CARLA (i.e., xi

∈ [xi
min, xi

max]). Then, using the powerful
interactive learning ability of CARLA, the optimal parameters can be obtained online to improve the
accuracy and effectiveness of frequency response estimation. The learning process is shown in Figure 2,
and the details of the algorithm are as follows:

(1) Selection of the test signal: The input functions with the characteristics of continuous second-
order derivability can be used as the excitation signals of frequency response estimation. Therefore,
there are many choices of test signal, including the step signal r(t) = c, the pulse signal r(t) = 1/δ(t),
the exponential attenuation signal r(t) = e−kt, and the composite function r(t) = te−kt.

(2) Selection of the test mode: This includes open-loop identification and closed-loop identification,
according to the process requirements and environmental conditions. If the system is asymptotically
stable and the external disturbance is small or the disturbance signal is regular, it may be a good choice to
adopt a simple open-loop testing mode. If the process requires high safety and stability, large shutdown
loss, and sensitive to external disturbance, it will be necessary to choose the closed-loop approach.

(3) Selection of the model structure: The establishment of a system model includes structure
selection and parameter identification. The former selects the model structure according to the
characteristics of the process, including model order and time delay. The latter estimates model
parameters on the basis of the model structure. This paper focuses on the problem of model parameter
estimation.

Steps (1)–(3) can be regarded as the preparation stage of the test, which can seriously affect the
accuracy of system identification.

(4) Analysis of system parameters: This part focuses on the frequency response estimation method.
The mathematical expressions of the relationship between system parameters and input–output can be
given by analyzing the transfer function of the system. Then, the frequency response of the expression
can be obtained by substituting s = a + jw, where a is the attenuation factor. With the appropriate
attenuation factor a, the parameter estimation can be obtained. The traditional approach is to give
the value of a directly according to experiential knowledge, or using a heuristic searching algorithm.
However, in practice, the system often has time-varying characteristics, and the attenuation factor
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usually falls into local premature convergence. Therefore, an online learning method is required to
acquire appropriate parameters adaptively.Processes 2019, 9, x FOR PEER REVIEW 7 of 20 
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(5) Online optimization of attenuation factor based on CARLA:
a. Initialize the attenuation factor a(0). According to the literature, the range of the attenuation

factor can be set as a ∈ [amin, amax] in advance. For each iteration k, the action a(k) can be selected
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according to the probability density function f (a, k). In the beginning, the probability density function
f (a, k) can be initialized as in Formula (1):

f (xi, 0) =


1

xi
max−xi

min
, xi
∈

[
xi

min, xi
max

]
0, xi <

[
xi

min, xi
max

] . (1)

b. Select the attenuation factor. Select the attenuation factor a according to the value of the
probability distribution function (as Formulas (2) and (3))— the attenuation factor a with the maximum
value of probability distribution function f (a, k) is the best.

F(xi, k) =
∫ xi

0
f (xi, k)dxi (2)

xi∗ = argmax
xi

F(xi, k) (3)

c. Calculate the cost function J(a, k). According to the cost function, the cost function value under
the current attenuation factor a will be calculated as Formula (4). It is the integral square error (ISE) of
the real output and the estimated output of the system.

J(X, k) =
∫

(∆e)2dt (4)

J(X, k) =
∫

(∆e)2dt ≈
M∑

T=1

(YT − yT)
2 (5)

d. Calculate the enhancement signal β(k). By substituting the cost value J(a, k), average cost value
Jmean, and minimum cost value Jmin into Formula (6), the enhancement signal β(k) can be calculated
to measure the performance of the evaluation. The closer the value of β(k) is to 1, the better the
performance of the system under the attenuation factor. On the contrary, the closer the value of β(k) is
to 0, the worse the performance of the system under the attenuation factor.

β(k) = min
{

max
{

0,
Jmean − J(X, k)

Jmean − Jmin

}
, 1

}
(6)

e. Update the value of the probability density function corresponding to the current attenuation
factor a. After the system takes action to change the environment, it will give feedback to this policy,
and update the probability density function corresponding to the iteration action by strengthening the
signal. The probability density function f (a, k + 1) corresponding to the selected attenuation factor
can be updated according to Formula (7):

f (xi, k + 1) =

 αk( f (xi, k) + β(k)H(xi, r)), xi
∈

[
xi

min, xi
max

]
0, xi <

[
xi

min, xi
max

] , (7)

where H(xi, r)) is the Gaussian nearest neighbor function, whose value represents the possibility of
action change. The specific formula is as follows:

H(xi, r)) = λ exp

− (xi
− r)2

2σ2

, (8)

αk =
1∫ xi

max

xi
min

( f (xi, k) + β(k)H(xi, r))dxi
, (9)
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λ =
gh

(xi
max − xi

min)
, (10)

σ = gw(xi
max − xi

min), (11)

where gh and gw represent the height and width of the Gaussian distribution function, respectively.
They determine the speed and depth of the learning process, respectively. According to previous
work [32], gw = 0.02 and gh = 0.3 are usually selected if the sample number is 500 in the calculation of
the strengthened signal, r is the action parameter, and a is the normalized factor, which can keep the
value of the probability density function within [0,1].

f. Update attenuation factor parameters. In order to solve the problem of large computations
when updating the probability density function value and the probability distribution value in step b,
this paper proposes an improved method as follows:

α(k + 1) =
{

norm(α(k),ωe(1−β(k))),α(k) ∈ [αmin,αmax]

α(k),α(k) < [αmin,αmax]
, (12)

where norm
(
α(k),ωe(1−β(k))

)
is the normal-distribution random number simulator with α(k), ωe(1−β(k)),

and ω as the average, standard deviation, and learning rate factor, respectively. It can be seen that
the learning time of the improved algorithm is linear with the number of iterations. Compared with
the previous method using the integral operation to calculate the value of the probability distribution
function, the calculation and learning time of the improved algorithm are significantly reduced without
any loss of learning performance.

g. Update the iterations to achieve the optimal attenuation factor a which makes the estimated
output as close as possible to the real output.

(6) Substitute the learned optimal attenuation factor into the mathematical expression in step (4)
to obtain the parameter estimation. After obtaining the system estimation model, it can be applied to
the internal model control.

3.2. The Applications of CARLA-FRE in MIMO Systems

In industrial applications, due to the complex structure, various parameters, and the coupling
relationship between the loops of multivariable systems, the traditional identification methods are
difficult to use effectively in multivariable systems. Li [15] proposed a multivariable system identification
method based on sequential step signals. With the sequential step method, the multiple-input multiple-
output (MIMO) system could be equivalently decomposed into several single-input single-output
(SISO) systems. Then, the analytic expressions of model parameters of these sub-systems could be
obtained by frequency response estimation. The simulation results reveal that the presented approach
could match the requirements of identification accuracy both in square and non-square systems.

3.2.1. Closed-Loop Identification for Square Multivariate Systems

A multivariable square closed-loop control system n× n is depicted in Figure 3, where Gs(s) is
the controlled object, Gc(s) is the distributed diagonal controller, R is the system input vector, Y is the
system output vector, E is the deviation vector, and U is the controller output vector.

R(s) = [r1, · · · , rn]
T (13)

Y(s) = [y1, · · · , yn]
T (14)

U(s) = [u1, · · · , un]
T (15)
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Gs(s) =


gs11(s) gs12(s) · · · gs1n(s)
gs21(s) gs22(s) · · · gs2n(s)

...
...

. . .
...

gsn1(s) gsn2(s) · · · gsnn(s)

 (16)

Gc(s) =


gc1(s) 0 · · · 0

0 gc2(s) · · · 0
...

...
. . .

...
0 0 · · · gcn(s)

 (17)
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According to the above, it can be known that

Y = GcGs(R−Y). (18)

So, we can get:
y1

y2
...

yn

 =


gc1 0 · · · 0
0 gc2 · · · 0
...

...
. . .

...
0 0 · · · gcn




gs11 gs12 · · · gs1n

gs21 gs22 · · · gs2n
...

...
. . .

...
gsn1 gsn2 · · · gsnn




r1 − y1

r2 − y2
...

rn − yn

. (19)

Then, the MIMO system can be equivalently decomposed into several SISO systems as follows:
y1 = gc1gs11(r1 − y1) + · · ·+ gcngs1n(rn − yn)

y2 = gc1gs21(r1 − y1) + · · ·+ gcngs2n(rn − yn)
...

yn = gc1gsn1(r1 − y1) + · · ·+ gcngsnn(rn − yn)

. (20)

A method to simplify the identification process of closed-loop systems was proposed in the
literature, in which the system deviation could be regarded as the input signal, that is, r(t) could be
replaced with e(t) = r(t)− y(t) of the identification process, and the closed-loop system was equivalent
to the open-loop system. Therefore, Formula (20) can be further expressed as Formula (21):

y1 = gc1gs11 e1 + · · ·+ gcngs1n en

y2 = gc1gs21 e1 + · · ·+ gcngs2n en
...

yn = gc1gsn1e1 + · · ·+ gcngsnnen

. (21)
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Then, n step excitation signals are applied to the system successively and n groups of vector
relationships can be obtained for each MISO system, depicted, for example, as Formula (22):

y1
i = gcigsi1e1

1 + · · ·+ gcigsine1
n

y2
i = gcigsi1e2

1 + · · ·+ gcigsine2
n

...
yn

i = gcigsi1en
1 + · · ·+ gcigsinen

n

, (22)

where r j
i is the excitation signal of the input channel of the ith subsystem under the jth test, y j

i
is the output signal of the output channel of the ith subsystem under the jth test, and then the
deviation signal of the channel can be obtained, e j

i = r j
i − y j

i , that is, the equivalent input signal in the
identification process.

Therefore, the following expression can be obtained by matrix transformation:
y1

i
y2

i
...

yn
i

 = gci


e1

1 e1
2 · · · e1

n
e2

1 e2
2 · · · e2

n
...

...
. . .

...
en

1 en
2 · · · en

n




gsi1

gsi2
...

gsin

 =


gcie1
1 gcie1

2 · · · gcie1
n

gcie2
1 gcie2

2 · · · gcie2
n

...
...

. . .
...

gcien
1 gcien

2 · · · gcien
n




gsi1

gsi2
...

gsin

. (23)

That is,
Yi = Fi·Gsi , (24)

where
Yi =

[
y1

i y2
i · · · yn

i

]T
, (25)

Fi =


gcie1

1 gcie1
2 · · · gcie1

n
gcie2

1 gcie2
2 · · · gcie2

n
...

...
. . .

...
gcien

1 gcien
2 · · · gcien

n

, (26)

Gis =
[

gsi1 gsi2 · · · gsin

]T
. (27)

Since the closed-loop system is asymptotically stable and the input signal is continuously
differentiable, it can be proved that Fi is a non-singular square matrix. So, Formula (28) can be further
obtained according to Formula (24):

Gsi = Fi
−1
·Yi =

adj(Fi)

det(Fi)
·Yi, (28)

where Fi
−1 is the inverse matrix of Fi, adj(·) is the adjoint matrix operator, and det(·) is the matrix

determinant operator.
According to Formula (28), the MIMO system identification problem can first be decomposed into

several MISO subsystem problems, and then further decomposed into SISO identification problems.

Gsi j =

n∑
k=1

F∗kjy
k
i

det(Fi) i
(29)

Gsi j is the transfer function of the decomposed equivalent subsystem (SISO) of the MISO system,
and F∗kj is the joint factor of the jth row of the F matrix under the kth test.
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For Formula (29), if the assumption that ui j = det(Fi), yi j =
n∑

k=1
F∗kjy

k
i , ui j, and yi j can be regarded

as the equivalent input and output of the SISO system identification problem, MISO can be further
decomposed into several SISO identification problems. Considering that the presented CARLA-FRE
is applicable for a variety of excitation signals, the parameters of the decomposed equivalent SISO
system can be estimated using CARLA-FRE. Then, the identified SISO can be combined into a MIMO
system according to Formulas (24) and (19) to complete the multivariable system identification.

3.2.2. Closed-Loop Identification for Non-Square Multivariate Systems

For multivariable non-square systems, due to the inconsistency between the input and output
dimensions of the system, the inverse matrix of the equivalent matrix F does not exist, making the
methods above difficult to apply directly. Based on the idea of the first method in [17], this paper
adjusts the decentralized controller into a centralized controller, establishes an association between
the input and output of each loop in the MIMO system, and then constructs a solvable matrix form.
A multivariable non-square closed-loop control system of m× n, (m , n) is shown in Figure 4, where
Gs(s) is the controlled object, Gc(s) is the central controller, R is the system input vector, Y is the system
output vector, E is the deviation vector, and U is the controller output vector.

Gc(s) =


gc11(s) gc12(s) · · · gc1n(s)
gc21(s) gc22(s) · · · gc2m(s)

...
...

. . .
...

gcn1(s) gcn2(s) · · · gcnm(s)

 (30)
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Figure 4. Closed-loop control schematic diagram of a multivariable non-square system.

In a non-square system structure, m times signals are applied to the input of the system in turn,
and the system will output n response signals at a time, that is, m× n (m , n) groups of equations are
generated. The system can be decomposed and calculated according to Formulas (28) and (29), and the
pseudo-inverse of the matrix is selected to replace it accordingly.

4. CARLA Algorithm Performance Verification

The continuous action reinforcement learning algorithm has strong online search and learning
ability and can converge to the optimal value after full ergodic learning, without prior knowledge to
set parameters. In order to test the identification ability of the CARLA algorithm, it was compared
with the particle swarm optimization and the parallel diffuse algorithm (fireworks algorithm, FWA)
by employing standard test functions. Here the Sphere, Rosenbrock, Griewank, Rastrigin, Ackley,
and Schwefel’s problem 22 functions were selected to illustrate the applicability and performance of
the CARLA algorithm.

(1) Sphere function:

f (x) =
n∑

i=1

x2
i , (31)
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As can be shown in Figure 5.
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Figure 5. Three-dimensional graph of the Sphere function.

The Sphere function has a unique global minimum value, which is obtained by the sum of squares
when the minimum value is taken by independent variables with the same definition of domain.

(2) Rosenbrock function:

f (x) =
N−1∑
i=1

[
(1− xi)

2 + 100(xi+1 − xi
2)

2
]
. (32)

As shown in Figure 6, Rosenbrock’s global optimum lies in a smooth, narrow and parabolic valley.
Due to the limited information, it is difficult to determine the search gradient and find the optimal
solution. Therefore, it is often used to test the optimization performance of the non-convex function of
the optimization algorithm, and the function can find the minimum value 0 at x∗ = (1, · · · , 1).

(3) Griewank function:

min f (xi) =
N∑

i=1

xi
2

4000
−

N∏
i=1

cos(
xi
√

i
) + 1, (33)

where |xi| ≤ 8.
As shown in Figure 7, the Griewank function has many local minimum points, and the number

is related to the dimension of variables. It can detect the ability of the algorithm to jump out of the
local minimums and the global minimum value f(0) = 0, which is generally recognized as a difficult
complex multimodal problem for the optimization algorithm.
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(4) Rastrigin function:

min f (xi) =
D∑

i=1

[
xi

2
− 10 cos(2πxi) + 10

]
, (34)

where xi ∈ [−5.12, 5.12].
As shown in Figure 8, the Rastrigin function is a multi-peak function, and there are about 10n

local minimum points within the range of
{
xi ∈ [−5.12, 5.12], i = 1, 2 · · · n

}
. Similar to the Griewank
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function, it is also a typical nonlinear multi-modal function, and the peak shape features ups, downs,
and jumps, so it is difficult to optimize and find the global optimal value.
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(5) Ackley function:

f (X) = −20e
−

1
5

√
1
n

n∑
i=1

xi
2

− e
1
n

n∑
i=1

cos(2πxi)
+ 20 + e. (35)

As shown in Figure 9, when the dimension of the Ackley function increases, its direction gradient
and forward direction are various. This function can detect the global convergence speed of an
algorithm. The function finds a minimum value 0 at x∗ = (0, · · · , 0).
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(6) Schwefel’s problem 22 function:

f (X) =
n∑

i=1

|xi|+
n∏

i=1

|xi|, (36)

where |xi| ≤ 10.
As shown in Figure 10, Schwefel’s problem 22 function, proposed by Schwefel, is a continuous

and smooth multimodal function which belongs to the classical test functions. When the independent
variable approaches infinity, the function forms a large number of local extremum regions, and the
global optimal value is located at the boundary of the definition domain. The function finds its
minimum value 0 at x∗ = (0, · · · , 0).Processes 2019, 9, x FOR PEER REVIEW 15 of 20 
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The parameter configuration is shown in Table 1.

Table 1. Parameter configuration of the test functions.

Standard Function
Type Dimensionality Sweet Spot Optimal

Fitness Value
Search Interval

Settings

Sphere 30 [0,0, . . . ,0] 0 (−100,100)
Rosenbrock 30 [1,1, . . . ,1] 0 (−2.048,2.048)
Griewank 30 [0,0, . . . ,0] 0 (−8,8)
Rastrigin 30 [0,0, . . . ,0] 0 (−5.12,5.12)
Ackley 30 [0,0, . . . ,0] 0 (−8,8)

Schwefel’s problem 22 30 [0,0, . . . ,0] 0 (−10,10)

Particle swarm optimization (PSO), parallel diffuse algorithm (FWA), and continuous action
reinforcement learning (CARLA) algorithms were respectively tested for the standard functions above.
The results are shown in Table 2. FWA and CARLA algorithms had better search accuracy than the
PSO algorithm, and both could accurately obtain function parameter estimation.
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Table 2. Parameter configuration of the test function. PSO: particle swarm optimization.

Standard
Function Type

PSO FWA CARLA

Mean
Value

Standard
Deviation

Mean
Value

Standard
Deviation

Mean
Value

Standard
Deviation

Sphere 0 0 0 0 0 0
Rosenbrock 66.59 204.29 12.16 12.82 8.91 10.22
Griewank 0 0.01 0 0 0 0
Rastrigin 6.77 7.70 0 0 0.01 0.21
Ackley 0.043 0.042 0 0 0 0

Schwefel’s problem 22 23.93 13.61 0 0 0 0

5. Simulation

5.1. Square Multivariate System: Wood-Berry Model

The Wood-Berry double distillation towel model is a classic multivariate model in industrial
production. The identification of the Wood-Berry model has drawn the attention of academic
and industrial researchers due to the complex characteristics of multi-parameters, large time-delay,
and strong coupling relationships. Many works, including Li’s sequence identification method
based on step response (frequency response estimation, FRE) [33,34], Cheng’s identification method
based on heuristic search (NLG-particle swarm optimization, NPSO) algorithm [20], Cao’s intelligent
search algorithm based on parallel diffuse type algorithm (modified fireworks explosion optimization
algorithm-FRE, MFA-FRE) [23], etc., have acquired many achievements. In this paper, some comparative
simulations between the presented CARLA-FRE and the methods above were carried out to estimate
the parameters of the Wood-Berry model (see Figure 11).
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The transfer function of the Wood-Berry model is:

Gs(s) =

 12.8e−s

16.7s+1
−18.9e−3s

21s+1
6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1

.
The sequential step signal is:

R =

[[
r1

1
r1

2

]
,
[

r2
1

r2
2

]]
=

[[
1
2

]
,
[

4
2

]]
.

Four methods were used to respectively identify the mentioned multivariable closed-loop system,
and the results are presented in Table 3. It can be seen that several methods achieved high estimation
accuracy in the parameter identification of the Wood-Berry model. In addition, the CARLA-FRE
method proposed in this paper can be implemented online and adjusted automatically with the change
of objects.
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Table 3. Wood-Berry model identification results. (FRE: frequency response estimation; NPSO-FRE:
NLG-particle swarm optimization-FRE; MFA-FRE: modified fireworks explosion optimization
algorithm-FRE).

Wood-Berry G11(s) G12(s) G21(s) G22(s)

Actual model 12.8e−s

16.7s + 1
−18.9e−3s

21s + 1
6.6e−7s

10.9s + 1
−19.4e−3s

14.4s + 1
Method in [26] (FRE) 12.7929e−1.0044s

16.6193s + 1
−18.9e−3.01s

21.001s + 1
6.5998e−6.9852s

10.9205s + 1
−19.3942e−3.006s

14.4339s + 1
error (%) 0.98 0.34 0.40 0.47

Method in [20]
(NPSO-FRE)

12.7984e−1.0027s

16.6942s + 1
−18.8996e−3.0002s

20.9990s + 1
6.5996e−7.0005s

10.9001s + 1
−19.4000e−3.0007s

14.4001s + 1
error (%) 0.32 0.014 0.015 0.024

Method in [23] (MFA-FRE) 12.7979e−1.0025s

16.6910s + 1
−18.9001e−3.0001s

21.0001s + 1
6.6000e−7.0001s

10.8999s + 1
−19.4001e−3.0001s

14.4001s + 1
error (%) 0.32 0.004 0.008 0.005

Method in this paper
(CARLA-FRE)

12.7981e−1.0014s

16.6901s + 1
−18.9002e−3.0003s

21.0004s + 1
6.6003e−7.0002s

10.9005s + 1
−19.3987e−3.0003s

14.4005s + 1
error (%) 0.21 0.013 0.012 0.021

5.2. Non-Square Multivariate System: Shell Model

Multivariable non-square systems exist widely in industrial production, and this paper takes
the Shell model of a standard non-square model [35] as an example to test the proposed method.
The closed-loop control of the Shell model is shown in Figure 12:
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Gaussian white noises with a noise-to-signal ratio (NSR) of 10% and 20% were applied to verify
the effectiveness of the algorithm, and the results were compared with the MAF-FRE method, as shown
in Table 4. It can be seen that both methods achieved high estimation accuracy in the parameter
identification of the Shell model, and the CARLA-FRE method proposed in this paper could better
adapt to changes in the external environment.

Table 4. Identification results of the Shell model.

Actual Model
Noise 0% Noise 20%

MFA-FRE CARLA-FRE MFA-FRE CARLA-FRE

119e−5s

21.7s + 1
118.9998e−5.0174s

21.7255s + 1
118.9828e−5.0132s

21.7027s + 1
118.9987e−5.0479s

21.6557s + 1
118.9825e−5.0143s

21.7031s + 1
error (%) 0.47 0.29 1.16 0.32

40e−5s

337s + 1
39.9877e−5.0240s

336.1787s + 1
39.9862e−5.0179s

336.7018s + 1
40.1770e−4.7120s

338.3429s + 1
39.9783e−5.0258s

336.7251s + 1
error (%) 0.75 0.39 6.45 0.65
−21e−5s

10s + 1
−20.9072e−5.0085s

9.9200s + 1
−20.9563e−5.0037s

9.9677s + 1
−20.8994e−5.3567s

9.9907s + 1
−20.9273e−5.0042s

9.9381s + 1
error (%) 1.41 0.61 7.71 1.05

77e−5s

50s + 1
76.8300e−5.0102s

49.7549s + 1
76.9137e−5.0114s

49.9371s + 1
76.7488e−5.1236s

49.8870s + 1
76.9029e−5.0313s

49.9218s + 1
error (%) 0.92 0.47 3.02 0.91
76.7e−3s

28s + 1
76.6657e−2.9980s

28.0045s + 1
76.7128e−3.0026s

27.9438s + 1
76.4512e−2.9641s

27.8876s + 1
76.7241e−3.0129s

29.9039s + 1
error (%) 0.52 0.31 2.31 0.81
−50e−5s

10s + 1
−50.0989e−5.0012s

9.9980s + 1
−49.9611e−5.0043s

0.9837s + 1
−50.0425e−5.1011s

9.9356s + 1
−49.9217e−5.0183s

0.9731s + 1
error (%) 0.24 0.25 2.75 0.79

93e−5s

50s + 1
93.0011e−5.0112s

49.6576s + 1
93.0118e−5.0185s

49.8194s + 1
93.1022e−4.7869s

49.9881s + 1
93.0237e−5.0386s

49.7621s + 1
error (%) 0.91 0.74 4.39 1.27
−36.7e−5s

166s + 1
−36.7903e−5.0097s

166.1148s + 1
−36.7198e−5.0238s

165.9671s + 1
−36.7061e−4.8760s

165.6667s+1
−36.7237e−5.0934s

165.7830s + 1
error (%) 2.70 0.55 2.70 2.06
−103.3e−4s

23s + 1
−103.2389e−4.0098s

23.0009s + 1
−103.2471e−4.0184s

22.9744s + 1
−103.3141e−4.0012s

23.0023s + 1
−103.2176e−4.0421s

22.8761s + 1
error (%) 0.31 0.62 0.29 1.67

6. Conclusions

This paper proposed a frequency response estimation method based on a continuous action
reinforcement learning machine. It could solve closed-loop identification problems of multivariable
square systems and non-square systems. Some comparative simulations between the presented method
and existing methods were carried out. The classic Wood-Berry model (square system) and the Shell
model (non-square system) were chosen to test the algorithms. From the results, it was found that the
proposed method could not only achieve good identification accuracy, but also had stronger online
learning ability and anti-interference ability.

Author Contributions: M.J. carried out the simulations and wrote the paper. Q.J. developed the model and
designed the article. All authors have read and approved the final manuscript.

Funding: This research was funded by the Social Science Foundation of Beijing (No. 15JGC188).

Acknowledgments: The authors are grateful to the anonymous reviewers for their valuable recommendations.

Conflicts of Interest: The authors declare no conflicts of interest.



Processes 2019, 7, 546 18 of 19

References

1. Gupta, R.D.; Fairman, F.W. Parameter estimation for multivariable systems. IEEE Trans. Autom. Control 1974,
19, 546–549. [CrossRef]

2. Guidorzi, R. Canonical structures in the identification of multivariable systems. Automatica 1975, 11, 361–374.
[CrossRef]

3. Verhaegen, M. A novel non-iterative mimo state space model identification technique. IFAC Proc. Vol. 1991,
24, 749–754. [CrossRef]

4. Nakayama, M.; Oku, H.; Ushida, S. Closed-loop identification for a continuous-time model of a multivariable
dual-rate system with input fast sampling. IFAC PapersOnLine 2018, 51, 415–420. [CrossRef]

5. Moor, B.D.; Overschee, P.V. Numerical algorithms for subspace state space system identification. In Trends in
Control; Springer: London, UK, 1995.

6. Gumussoy, S.; Ozdemir, A.A.; McKelvey, T.; Ljung, L.; Gibanica, M.; Singh, R. Improving linear state-space
models with additional niterations. IFAC PapersOnLine 2018, 51, 341–346. [CrossRef]

7. Larimore, W.E. Canonical variate analysis in identification, filtering, and adaptive control. In Proceedings of
the 29th IEEE Conference on Decision and Control, Honolulu, HI, USA, 5–7 December 1990; pp. 596–604.

8. Pilario, K.E.S.; Cao, Y.; Shafiee, M. Mixed kernel canonical variate dissimilarity analysis for incipient fault
monitoring in nonlinear dynamic processes. Comput. Chem. Eng. 2019, 123, 143–154. [CrossRef]

9. Zheng, W.X. Unbiased identification of multivariable systems subject to colored noise. In Proceedings
of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, USA, 14–16 December1994;
Volume 2863, pp. 2864–2865.

10. Feng, D.; Tongwen, C.; Li, Q. Bias compensation based recursive least-squares identification algorithm for
miso systems. IEEE Trans. Circuits Syst. II Express Briefs 2006, 53, 349–353. [CrossRef]

11. Elisei-Iliescu, C.; Stanciu, C.; Paleologu, C.; Benesty, J.; Anghel, C.; Ciochina, S. Efficient recursive least-squares
algorithms for the identification of bilinear forms. Digit. Signal Process. 2018, 83, 280–296. [CrossRef]

12. Ding, F.; Xie, X. Recursive estimation of parameters of transfer function matrix subsub-model: Instrumental
model method. Control Decis. 1991, 6, 447–452.

13. Du, J.; Dong, S.; Liu, T.; Zhao, J. Multi-innovation based identification of output error model with time delay
under load disturbance. IFAC PapersOnLine 2018, 51, 224–228. [CrossRef]

14. Ding, F.; Xie, X.; Fang, C. Multi-innovation identification method for time-varying systems. Acta Autom. Sin.
1996, 22, 85–91.

15. Li, S.Y.; Qi, C.K. A Structured Closed-Loop Identification Method for Multivariable Systems based on Step
Response Testing. Chinese Patent CN148268, 7 April 2004.

16. Liu, T.; Gao, F. A frequency domain step response identification method for continuous-time processes with
time delay. J. Process Control 2010, 20, 800–809. [CrossRef]

17. Liu, T.; Zhang, W.; Gao, F. Analytical decoupling control strategy using a unity feedback control structure for
mimo processes with time delays. J. Process Control 2007, 17, 173–188. [CrossRef]

18. Romano, R.A.; Pait, F. Matchable-observable linear models and direct filter tuning: An approach to
multivariable identification. IEEE Trans. Autom. Control 2017, 62, 2180–2193. [CrossRef]

19. Morales Alvarado, C.S.; Garcia, C. Comparison of statistical metrics and a new fuzzy method for validating
linear models used in model predictive control controllers. Ind. Eng. Chem. Res. 2018, 57, 3666–3677.
[CrossRef]

20. Jin, Q.B.; Cheng, Z.J.; Dou, J.; Cao, L.T.; Wang, K.W. A novel closed loop identification method and its
application of multivariable system. J. Process Control 2012, 22, 132–144. [CrossRef]

21. Li, M.; Miao, C.; Leung, C. A coral reef algorithm based on learning automata for the coverage control
problem of heterogeneous directional sensor networks. Sensors 2015, 15, 30617–30635. [CrossRef]

22. Mohammed, S.S.; Devaraj, D.; Ahamed, T.P.I. Learning automata based fuzzy mppt controller for solar
photovoltaic system under fast changing environmental conditions. J. Intell. Fuzzy Syst. 2017, 32, 3031–3041.
[CrossRef]

23. Liting, C. Research of Identification and Internal Model Control for Non-Square Multivariable System with Time
Delay; Beijing University of Chemical Technology: Beijing, China, 2015.

24. Sutton, R.S.; Barto, A.G. Reinforcement learning: An introduction. IEEE Trans. Neural Netw. 1998, 9, 1054.
[CrossRef]



Processes 2019, 7, 546 19 of 19

25. Najim, K.; Poznyak, A.S. Learning Automata: Theory and Applications; Pergamon: Oxford, UK, 1994.
26. Narendra, K.S.; Thathachar, M.A. Learning Automata: An Introduction; Prentice-Hall: London, UK, 1989.
27. Xuejing, G.; Mingru, Z.; Zhiliang, W.; Yucheng, G. Parameter learning optimization of intelligent controller

based on carla-pso composite model. Appl. Res. Comput. 2019, 3, 678–680.
28. Anari, B.; Torkestani, J.A.; Rahmani, A.M. Automatic data clustering using continuous action-set learning

automata and its application in segmentation of images. Appl. Soft Comput. 2017, 51, 253–265. [CrossRef]
29. Howell, M.N.; Best, M.C. On-line pid tuning for engine idle-speed control using continuous action

reinforcement learning automata. Control Eng. Pract. 2000, 8, 147–154. [CrossRef]
30. Irandoost, M.A.; Rahmani, A.M.; Setayeshi, S. A novel algorithm for handling reducer side data skew in

mapreduce based on a learning automata game. Inf. Sci. 2018, 501, 662–679. [CrossRef]
31. Jin, Q.; Jiang, B.; Cheng, Z. A novel identification method based on frequency response analysis. Trans. Inst.

Meas. Control 2016, 38, 44–54. [CrossRef]
32. Howell, M.N.; Frost, G.P.; Gordon, T.J.; Wu, Q.H. Continuous action reinforcement learning applied to

vehicle suspension control. Mechatronics 1997, 7, 263–276. [CrossRef]
33. Mei, H.; Li, S. Decentralized identification for multivariable integrating processes with time delays from

closed-loop step tests. Isa Trans. 2007, 46, 189–198. [CrossRef]
34. Mei, H.; Li, S.Y.; Cai, W.J.; Xiong, Q. Decentralized closed-loop parameter identification for multivariable

processes from step responses. Math. Comput. Simul. 2005, 68, 171–192. [CrossRef]
35. Jing, Q.; Yan, G.; Liu, Z.; Song, A. Decoupling internal model control for non-square process with time delays.

In Proceedings of the IEEE 2010 International Conference on Measuring Technology and Mechatronics
Automation (ICMTMA 2010), Changsha City, China, 13–14 March 2010.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

