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Abstract: With the increasing use of Computational Fluid Dynamics to investigate multiphase flow
scenarios, modelling surface tension effects has been a topic of active research. A well known
associated problem is the generation of spurious velocities (or currents), arising due to inaccuracies
in calculations of the surface tension force. These spurious currents cause nonphysical flows which
can adversely affect the predictive capability of these simulations. In this paper, we implement the
Continuum Surface Force (CSF), Smoothed CSF and Sharp Surface Force (SSF) models in OpenFOAM.
The models were validated for various multiphase flow scenarios for Capillary numbers of 10−3–10.
All the surface tension models provide reasonable agreement with benchmarking data for rising
bubble simulations. Both CSF and SSF models successfully predicted the capillary rise between
two parallel plates, but Smoothed CSF could not provide reliable results. The evolution of spurious
current were studied for millimetre-sized stationary bubbles. The results shows that SSF and CSF
models generate the least and most spurious currents, respectively. We also show that maximum time
step, mesh resolution and the under-relaxation factor used in the simulations affect the magnitude of
spurious currents.

Keywords: surface tension modelling; VOF; rising bubbles; capillary rise

1. Introduction

For a comprehensive understanding of flow physics in multiphase systems, which is ubiquitous
in both nature and technological processes, consideration of surface tension is important. For instance,
the break down of a fluid jet into droplets is used to form droplets in inkjets [1] and lab-on-chip
devices [2] while the thinning and breakdown dynamics of non-Newtonian fluid filaments is critical in
its application in jetting [3,4]. Flow scenarios such as underground water flows [5], oil recovery [6]
and paper-based microfluidics [7] are examples of flow through porous media where dominance of
surface tension may produce a capillary rise. The detachment diameter of the bubble [8,9] and shape
of rising bubble [10] during bubble evolution in champagne, boiling and electrochemical gas evolution
is dependent on surface tension, as is the droplet size produced during atomisation of fuels [11],
spraying [12,13] and growth of a bubble in confined geometries [14]. The effect of surface tension is
also important in events such as nucleation of bubbles [15,16] and droplets [17].

Due to the importance and complex nature of multiphase flows, numerical simulations, especially
computational fluid dynamics (CFD), are commonly used to study and understand these processes.
The CFD strategies used to model multiphase flows can broadly be divided into four categories:
Euler–Euler (EE), Euler–Lagrange (EL), interface tracking and capturing methods. The EE approach
assumes that phases are interpenetrating, which is efficient when modelling large-scale industrial
processes [18,19], while EL tracks the dispersed phases individually, which can be computationally
expensive [20,21]. As both EE and EL approaches do not resolve the complete interactions between
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the phases, they require so called “closure laws” (see [18–21]). Interface tracking methods, such
as the moving mesh method, use a separate boundary-fitted moving mesh for each phase [22].
Although interface tracking methods are quite accurate, they are typically used to model bubble
or droplets with mild-moderate deformations [22,23] but to handle complex interface deformations
these methods require a global or local re-meshing [24]. Interface capturing methods use a fixed grid
with functions to capture the interface such as the Volume Of Fluid method (VOF) [25], level-set [26]
and diffuse interface methods [27]. Other methods available in the literature employ a hybrid interface
tracking-capturing approach, such as the immersed boundary [28] and front tracking method [29].
Due to its ability to conserve mass (both level-set [30] and phase-field [31] models have difficulties in
conserving mass), robustness and ability to produce reasonably sharp interfaces VOF is very popular in
multiphase simulations [32–57] and implemented in both commercial (ANSYS Fluent R© and Flow-3D R©)
and open source (OpenFOAM R©) CFD packages.

Due to the popularity of open source CFD packages, this paper predominantly delves into the
VOF formulation and reported development in interFoam, which is the VOF-based solver available
in OpenFOAM R©. In the VOF method, a scalar function representing the volume fraction of phases
in the computational cells is advected. The advection of the volume fraction equation is done using
specific discretisation schemes, such as the interface compression method [58], to prevent the excessive
smearing of the interface thickness. Apart from interface compression method, recent work has
explored reconstruction of interface using techniques such as the isoAdvector method [59,60] and piece
wise linear interface calculation (PLIC) algorithm [61]. Although the VOF approach in theory produces
a sharp interface, the “real” VOF, which is implemented in solvers such as interFoam, produces a
non-sharp interface, which stretches over a few computational cells. This non-sharp nature of the
volume fraction leads to errors in the calculated curvature which generates spurious currents that is
quantified in the work by Harvie et al. [62], appearing as vortices around the interface (see [63,64]).
The presence of these spurious currents introduces non-physical velocities near the interface, which
can increase the interfacial mass transfer while modelling condensation [32] and evaporation [57]
scenarios and adversely effects the accuracy of simulations. In the literature, spurious currents in VOF
methods can be reduced by the following approaches:

• force balance, which is achieved by discretising the surface tension and pressure forces at the same
location [65];

• accurate calculation of the curvature (see Table 1); and
• choosing the appropriate time step for the solver (see [63]).
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Table 1. An overview of improved curvature calculations and surface tension models developed for
VOF method.

Publication Remarks

Brackbill et al. [66] Introduced the Continuum Surface Force (CSF) and density scaled
CSF models. These methods are very common due to its relatively
straightforward implementation in a VOF framework.

Ubbink [67] Proposed using a smoothed volume fraction to calculate curvature (referred
to as “Smoothed CSF” in this paper). Using a smoothed volume fraction
to compute the curvature instead of non-smoothed volume fraction in
CSF model reduced spurious current up to one order of magnitude [56].
This method has been used in modelling condensing bubbles [32] and
droplets in microfluidic devices [56]. A similar smoothening of α1 was
proposed by Heyns and Oxtoby [68].

Sussman and Puckett [69] Developed a fully coupled level-set VOF (CLSVOF) method which combines
the mass conservativeness of VOF method with smoothness of the
level-set function to reduce spurious currents. The CLSVOF method has
been used to applications such as splashing droplets [45], flow through
microfluidic devices [46], wave breaking [47] and droplet evaporation [43].
Another variant of coupled level set approach is the simple coupled level-set
VOF (S-CLSVOF) proposed by Albadawi et al. [70].

Raessi et al. [71] Proposed a method to calculate κ based on advected normals. The spurious
currents were lower than CSF (within the same order) while modelling cases
such as stationary bubble, rising bubble and Rayleigh–Taylor instability [71].

Renardy and Renardy [72] Introduced parabolic reconstruction of surface tension (PROST) algorithm
which uses a least-squares fit of the interface to a quadratic surface.
The spurious current produced by the algorithm is lower by two orders
of magnitude compared to CSF [72]. The model was used to simulate droplet
deformation including breakup [48,72].

Cifani et al. [61] Implemented piecewise linear interface calculation (PLIC) algorithm
(proposed by Youngs [73]) to reconstruct the interface in interFoam and
managed to reduce spurious currents.

Pilliod and Puckett [74] Developed an efficient least squares volume-of-fluid interface reconstruction
algorithm (ELIVRA) which reconstructs the interface using a least square
method to fit the interface to a linear surface.

Popinet [75] Proposed calculating curvature using height functions. Use of height
functions have reduced spurious current (slightly outperformed PROST
algorithm [75]) and has been shown to model flow in microchannels [49],
rising bubble [34,44] and other multiphase flows [50].

Raeini et al. [76] Introduced a sharp surface force formulation to calculate the capillary force,
which is then filtered to reduce the spurious currents (known as FSF model).
Neglecting the filtering terms in the FSF model provides a sharp surface
formulation of surface tension known as SSF, which is described in [42].
The SSF has been reported to be reduce the spurious currents by two to
three orders in comparison to CSF [42]. The FSF model has been reported
to provide periodic bursts in the velocity fields but lower spurious current
than SSF [42]. The approach has been used to model bubbles in microfluidic
devices [51] and flow through porous media [52].

Denner et al. [77] Proposed the use of artificial viscosity model, which applies artificial shear
stress in the tangential direction to interface, to dampen the spurious currents.
The model has been used to model rising bubble and capillary instability of
a water jet [77].

Lafaurie et al. [78] Proposed an alternative to the CSF model, known as the Continuum Surface
Stress (CSS) model, determines surface tension as divergence of stress tensor
without relying on complex curvature calculations. Due to imbalance in
the surface tension and pressure, CSS model can also produce spurious
currents [35] which has reported to be in the same order as CSF [72].
CSS model has been used to model static droplets and rising bubbles [35],
but it does not provide reliable results for falling films [41].
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To analyse the force balance (described in [65]), Deshpande et al. [63] evaluated interFoam
and showed that there is no imbalance in the surface tension and pressure forces due to
inconsistent discretisation. However, the iterative process, which is used to solve pressure equation,
introduces an imbalance which is related to the user defined tolerance level of the solution [63].
An overview of literature that provides an improved estimate of the interface curvature and surface
tension modelling approaches is provided in Table 1. The improved representation of the interface
(which aids in accurate calculation of the interface curvature) is provided bycoupled level-set VOF
(CLSVOF) method, height functions and interface reconstruction algorithms (like piecewise linear
interface calculation (PLIC), parabolic reconstruction of surface tension (PROST) and efficient least
squares volume-of-fluid interface reconstruction (ELIVRA) algorithms), whereas the other methods
discussed in Table 1 provide alternative approaches to model surface tension. To ensure that spurious
currents do not grow over time, a stability condition, proposed by Brackbill et al. [66], for explicit
treatment of surface tension is

∆t <

√
ρavg(∆x)3

2πσ
, (1)

where ∆x, σ and ρavg are grid spacing, surface tension and average of density of both phases,
respectively. As proposed by Galusinski and Vigneaux [79], a comprehensive constraint on the
time step must consider the effect of both density and viscosity which can be expressed as

∆t ≤ 1
2

(
C2τµ +

√
(C2τµ)2 + 4C1τ2

ρ

)
, (2)

where τµ and τρ are time scales which are defined as
√

ρavg(∆x)3/σ and µavg∆x/σ, where µavg

is the average dynamic viscosity between the phases, respectively. An evaluation of interFoam,
by Deshpande et al. [63], proposed that time step should satisfy

∆t ≤ max
(

C2τµ, 10C1τρ

)
, (3)

along with the time step constraint discussed in Equation (2). Deshpande et al. [63] also calculated
the values of C1 and C2 for interFoam to be equal to 0.01 and 10, respectively. Further details of the
numerical methods used to model surface tension is available in the recent review work by Popinet [80].

In the literature, comparison between surface tension models is often done for a specific of flow
phenomenon and at times a static scenario is used to quantify the spurious currents. Some examples
of flow phenomena used to compare surface tension models are rising bubbles whose diameters are
in the order of few millimetres [33–35], translating and rotating bubbles [64], oscillating droplets or
bubbles [34], stagnant bubbles or droplets [34,35,39,64], Rayleigh–Taylor instability [37,38], Taylor
bubbles [64], falling films [41], droplet splashing [38,39], capillary rise [42] and bubble evolution [37,40].
These typically compare the CSF model with height functions [33,34,64], PROST [37], PLIC [42],
CLSVOF and its variants [37–40,64], FSF and SSF [42], and CSS [35,41] models. Although the flow
scenarios that are used to compare surface tension models are diverse, they can be broadly categorised
based on the dominance of surface tension in the flow using the Capillary number (Ca), which is
defined as the ratio of viscous to surface tension forces in the system. Flow phenomena such as
capillary rise and stationary bubbles are examples of low values of Ca whereas flows with larger values
of Ca include rising bubbles and falling films.

During processes such as gas evolution during electrochemical reactions and boiling, nucleated
bubbles grow by mass transfer across the interface [15,16] or coalescence [8], but once the bubble
detaches it may deform as it rises up and/or interacts with other bubbles [53]. Other complex
processes, such as splashing, involve droplet spreading on a surface which is accompanied by formation
of secondary smaller droplets at the rim [81]. To reliably model these processes, surface tension
models must be able to accurately handle flow scenarios with both small and large capillary numbers.



Processes 2019, 7, 542 5 of 24

In literature, the work by Hoang et al. [56] implemented the Smoothed CSF approach to model the
steady motion of bubbles in a straight two-dimensional channel, the formation of bubbles in two-
and three-dimensional T-junctions, and the breakup of droplets in three-dimensional T-junctions.
A study by Heyns and Oxtoby [68] implemented a selection of surface tension modelling approaches
(e.g., the CSF, a variant of Smoothed CSF and a force-balanced higher-resolution artificial compressive
formulation) to model a stationary bubble. To the best of the authors’ knowledge, a recent study by
Yamamoto et al. [36] is the only one of its kind where different surface tension models (i.e., S-CLSVOF,
density scaled S-CLSVOF and CSF) are compared based on a variety of processes with various capillary
numbers (e.g., rising bubbles, capillary rise, capillary wave and thermocapillary flows).

In this study, we implemented three different surface tension models, namely CSF [66], Smoothed
CSF [67] and SSF [76], in interFoam available in OpenFOAM 6. To investigate the capability of the
surface tension models to handle various flow scenarios, we used two benchmark cases:

• two-dimensional rising bubbles (proposed by Hysing et al. [54], Klostermann et al. [55]); and
• two-dimensional capillary rise.

These two benchmark cases were selected due to their relevance in a variety of processes.
To compare the spurious currents generated by the surface tension models, a stationary bubble
was simulated. For practical applications, the time step constraint can substantially increase the
computational time, thus the temporal development of the spurious currents with the surface tension
models were also examined. Furthermore, the evolution of spurious currents with mesh resolution and
under-relaxation factor used for the simulations was also investigated. In the interest of knowledge
dissemination, the solvers and the test cases (implemented in OpenFOAM 6) discussed in the paper
are available in the Supplementary Materials.

2. Numerical Model

2.1. Governing Equations

The VOF approach (developed by Hirt and Nichols [25]) denotes the individual phases using a
scalar function called volume fraction, represented as

α1(~x, t) =


0 (within Phase 2 or gas)

0 < α1 < 1 (at the interface)

1 (within Phase 1 or liquid),

(4)

where α1 is the volume fraction of liquid. The fluid properties such as density (ρ) and viscosity (µ) in a
control volume are calculated as

χ = χ1α1 + χ2α2 where χ ∈ [ρ, µ], (5)

where χ1 and χ2 represent the fluid property of liquid and gas phase, respectively.
Considering the fluids to be incompressible, isothermal and immiscible, the VOF approach solves

a single set of continuity and momentum equation for the whole domain. The continuity equation is
written as

∇ · ~U = 0, (6)

where ~U is the fluid velocity. The momentum equation is

∂ρ~U
∂t

+∇ · (ρ~U~U) = −∇p + ρ~g +∇ · µ
(
∇~U +∇~UT

)
+ ~Fst, (7)
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where last term represents the surface tension forces, the second last term is the viscous term, ~g is the
acceleration due to gravity and p is the pressure. Advection of the volume fraction of liquid (α1) is
implemented in interFoam as

∂α1

∂t
+∇ · (α1~U) +∇ · (α1(1− α1) ~Ur) = 0, (8)

where the third term is an artificial compression term used to sharpen the interface [58,61]. The artificial
compression term uses a relative velocity (~Ur) defined as

~Ur = Cα

∣∣∣∣∣ φ

|S f |

∣∣∣∣∣~n f , (9)

where φ, S f , Cα and ~n f are the velocity flux, cell surface area, an adjustable compression factor and unit
normal vector to the cell surface, respectively. In the literature, Cα can be set between 0 and 4, where
Cα equal to zero and one correspond to the case of no and moderate compression, respectively [56].
The increase in the value of Cα sharpens the interface but increases the magnitude of spurious currents
(see [51,56]). To model practical flow scenarios using interFoam, the value of Cα is generally set to
unity [32,63].

2.2. Surface Tension Models

This section introduces the three surface tension models: CSF, Smoothed CSF and SSF.

2.2.1. The Continuum Surface Force (CSF) Model

Proposed by Brackbill et al. [66], the CSF model provides a volumetric representation of surface
tension, represented as

~Fst = σκ∇α1, (10)

where σ is the surface tension and κ is the curvature, defined in Equation (13). The unit normal vector
at the interface is calculated as

n̂ =
∇α1

|∇α1|+ δ
, (11)

where δ is a small non-zero term to ensure that the denominator does not become zero. δ is calculated

as 10−8/
(

∑N Vi
N

)1/3
, where N is the number of computational cells and ∑N Vi provides the sum of the

volumes of individual cells (represented by i). Once n̂ is calculated, it is corrected to account for wall
adhesion through

n̂ = n̂wcosθ + t̂wcosθ (12)

where θ is the contact angle of the gas–liquid interface at the walls (measured in the liquid phase),
and n̂w and t̂w are unit vectors that are normal and tangential to the wall, respectively [82].
The curvature of the interface is then calculated as

κ = −∇ · n̂. (13)

2.2.2. The Smoothed CSF Model

The Smoothed CSF model (by Ubbink [67]) proposed modifying CSF by modifying the calculation
of curvature of interface by using a smoothed volume fraction of liquid (α1).

The smoothed volume fraction field is calculated using a smoother proposed by Lafaurie et al. [78],
which has been implemented in the literature [32,56] and is represented as

α̃1 =
∑N

f=1 < α1 >c−→ f S f

∑N
f=1 S f

, (14)
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where the indices c and f are the cell and face centre indices, respectively. < α1 >c−→ f represents
the interpolation of α1 from cell to face centre. The smoothening of volume fraction, done using
Equation (14), is applied twice to obtain a smooth volume fraction field, which is used in Equation (15).
Implementation of Equation (14) in interFoam is done using the subroutine developed in the work
by [56]. Based on the smoothed volume fraction field, the unit normal to the interface is calculated as

˜̂n =
∇α̃1

|∇α̃1|+ δ
, (15)

which is then corrected for wall adhesion (based on Equation (12)). The curvature of the interface is
then calculated as

κ̃ = −∇ · ˜̂n. (16)

The surface tension can be represented using the modified curvature (κ̃ in Equation (16)), which
can be represented as

~Fst = σκ̃∇α1. (17)

2.2.3. The Sharp Surface Force (SSF) Model

In the SSF model, proposed by Raeini et al. [76], smoothened and sharpened volume fraction
fields are used to calculate curvature and gradient of of volume fraction.

The smoothened volume fraction (αs) is calculated based on interpolating the cell-centred values
of α1 to the cell faces using a three consecutive smoothening steps described using Equations (18a)–(18c)

αs1 = C
〈
< α1 >c−→ f

〉
f−→c

+
(

1− C
)

α1, (18a)

αs2 = C
〈
< αs1 >c−→ f

〉
f−→c

+
(

1− C
)

αs1, (18b)

αs = C
〈
< αs2 >c−→ f

〉
f−→c

+
(

1− C
)

αs2, (18c)

where C is set equal to 0.5. The unit normal to the interface is then calculated as

n̂s =
∇αs

|∇αs|+ δ
, (19)

which is then corrected for wall adhesion (based on Equation (12)). The curvature (κs) is calculated
using Equation (19) as

κs = −∇ · n̂s. (20)

The interface curvature is smoothed by using a three step procedure, which can be broadly
summarised into Equations (21a), (21c), and (21d). The first step involves smoothening the curvature
calculated in Equation (20) as

κ f 1 =
(

2
√

αc(1− αc)
)

κs +
(

1− 2
√

αc(1− αc)
)

κ∗s (21a)

where αc is defined as min(1,max(α1,0)) and

κ∗s =

〈
< wκs >c−→ f

〉
f−→c〈

< w >c−→ f

〉
f−→c

, w =
√

αc(1− αc) + 10−3. (21b)
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The second step further smoothens the curvature (calculated in Equation (21a)) as

κ f 2 =
(

2
√

αc(1− αc)
)

κs +
(

1− 2
√

αc(1− αc)
)

κ∗s2, where κ∗s2 =

〈
< wκ f 1 >c−→ f

〉
f−→c〈

< w >c−→ f

〉
f−→c

. (21c)

The final step calculates the the final curvature as

κ f inal =
< wκ f 2 >c−→ f

< w >c−→ f
. (21d)

The surface tension is then given as

~Fst = σκ f inal∇αsh, (22)

where αsh is a sharpened volume fraction of liquid defined in Equation (23).

αsh =
1

1− Csh

[
min

(
max

(
α1,

Csh
2

)
, 1− Csh

2

)
− Csh

2

]
, (23)

where Csh is a sharpening coefficient. A value of Csh=0 reduces αsh to α1, whereas Csh=1 provides
sharp representation of the interface (which is numerically unstable). We used Csh=0.98 for static cases
and Csh=0.5 for dynamic cases.

3. Solver Settings

To simplify the treatment of pressure boundary condition and density change across the interface,
interFoam uses prgh which is defined as p − ρ~g · ~x, where ρ~g · ~x is the hydrostatic component
of pressure [58]. The volume fraction evolution equation (Equation (8)) is solved using the
Multidimensional Universal Limiter with Explicit Solution (MULES) algorithm, which preserves
the boundedness of volume fraction [61,63]. Once volume fraction is solved, the continuity equation
(Equation (6)) and momentum equation (Equation (7)) are solved using the Pressure Implicit with
Splitting of Operator (PISO) algorithm [83]. In PISO, a predicted velocity is updated using a pressure
correction procedure to advance velocity and pressure fields in time [58,63]. To understand the
implementation and solution algorithm of the governing equations (Equations (6)–(8)) in interFoam,
please refer to the work by Rusche [58] or Deshpande et al. [63]. The discretisation schemes, solvers
and others parameters used to solve the governing equations for all the simulations discussed in
this paper are presented in Tables 2–4, respectively. Under-relaxation factors, if set to less than
unity, cause damping of the solution, which can lead to longer computational time for the solution
reach to a steady state value. In flow scenarios where there is no steady state solution, using an
under-relaxation factor can lead to erroneous results due to under-prediction of the flow variables.
We used an under-relaxation factor in the solver equal to one for dynamic cases and 0.9 for static cases.
The effect of using an under relaxation factor of one on static cases is also investigated.
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Table 2. Discretisation schemes.

Modeling Term Keyword Scheme Remarks

Time derivatives ddtSchemes Euler First order implicit method (see [84])

Divergence term
∇ · (ρ~U~U)

∇ · (~Uα1)

∇ · ( ~Ucα1(1− α1))

vanLeerV
vanLeer
interfaceCompression

Modified vanLeer for vector fields (see [84])
See [85]
See [63]

Gradient term gradSchemes linear Operator with ∇ (see [84])
Laplacian term laplacianSchemes linear corrected Operator with ∇2 (see [84])

Others
snGradSchemes
interpolationSchemes

corrected
linear

Surface normal gradients (see [84])
Interpolates values (see [84])

Table 3. Solvers used for the discretised equation.

Equation Linear Solver Smoother/Preconditioner Tolerance

Pressure correction equation PCG DIC 10−20 (based on [63])
Momentum equation smoothSolver symGaussSeidel 10−12

Volume fraction equation smoothSolver symGaussSeidel 10−12

Table 4. Other parameters used in solving the discretised equations.

Parameter Value Notes

nAlphaCorr 2 Number of α1 correction [55]; typically set equal to 1 or 2
for time-dependent flows [86].

nAlphaSubCycles 1 Represents the number of sub-cycles within α1
equation [84].

cAlpha (Cα) 1 Used for interface compression in Equation (9).
MULESCorr yes Switches on semi-implicit MULES [87].
nLimiterIter 3 Number of MULES iterations over the limiter [87].
momentumPredictor no Controls solving of the momentum predictor; typically

set to ’no’ for multiphase and low Reynolds number
flows [84].

minIter 1 Minimum number of iterations used in momentum
calculation.

nOuterCorrectors 1 PISO algorithm is selected by setting this parameter equal
to unity (in PIMPLE algorithm) [84].

nCorrectors 3 The number of times the PISO algorithm solves the
pressure and momentum equation in each step; usually
set to 2 or 3 [84].

nNonOrthogonalCorrectors 0 Used when meshes are non-orthogonal [84].

4. Validation: Benchmark Test Cases

4.1. Two Dimensional Rising Bubbles

Due to the computational overhead of modelling a three-dimensional rising bubble, we model the
buoyancy driven motion of a single bubble as proposed by Hysing et al. [54], Klostermann et al. [55].
The work by Hysing et al. [54] reported benchmarking data such as the bubble shape, rising velocity
and circularity for two cases. These benchmarking data are produced based on numerical simulations
using codes such as TP2D, FreeLIFE and MoonNMD [54]. In the work by Klostermann et al. [55],
the benchmark proposed by Hysing et al. [54] was used to evaluate the VOF solver in OpenFOAM R©

(i.e., interFoam) for various meshes.
The computational domain used for the simulation is a rectangle of dimensions 1 m × 2 m where

the bubble of diameter 0.5 m was initialised such that the centre of the bubble is at a distance of 0.5 m
from the bottom and side walls. As mesh convergence could not be achieved perfectly in previous
works [36,55], we used a uniform grid 160 × 320 for the simulations, corresponding to the fine mesh
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used in [54]. The pressure boundary conditions used in the simulations were zero gradient on the
side and bottom walls, and a Dirchlet condition (equal to zero) at the top wall. The volume fraction of
fluid used a zero gradient boundary condition on all walls. The velocity boundary conditions used
for the simulations were no slip on top and bottom walls, but slip condition was implemented for the
side walls. The fluid properties associated with the test cases, which are abbreviated as TC1 and TC2,
are tabulated in Table 5. The maximum Courant number used by the solver was set equal to 0.01 and
maximum time step permitted was based on Equations (2) and (3). The test cases are distinguished
based on Reynolds (Re), Eötvös (Eo) and Capillary (Ca) numbers, which are defined as

Re =
UgL
ν1

, Eo =
ρ1U2

g L
σ

, Ca =
Eo
Re

(24)

with L and Ug being the characteristic length scale (equal to 0.5 m) and characteristic velocity (defined
as
√
|~g|L), respectively. The bubble shape was obtained at α1 = 0.5 and rising velocity was calculated

based on bubble volume averaged vertical component of the velocity vector [54,55]. For validation,
we used the the data reported by Klostermann et al. [55] and Hysing et al. [54] (for the predictions by
the FreeLIFE solver, which is referred to as ’Benchmark’ in this paper) for a uniform grid of 160 × 320.

Table 5. Physical parameters used for the rising bubble simulations (see [54]).

Cases ρ1(kg/m3) ρ2(kg/m3) ν1(m2/s) ν2(m2/s) σ(N/m) ~g(m/s2)* Re Eo Ca

TC1 1000 100 10−2 10−2 24.5 (0 −0.98 0) 35 10 0.286
TC2 1000 1 10−2 10−1 1.96 (0 −0.98 0) 35 125 3.571

*~g is the reduced gravity as described in [54].

The first test case, TC1, corresponds to the case where surface tension effects are dominant [55].
The temporal evolution of the bubble as predicted by the various surface tension models is compared
in Figure 1. Due to the stronger surface tension effects, the interface deforms into an ellipsoidal
bubble (see Figure 2). The bubble shape (at t = 3 s) predicted by CSF model provides a slightly better
agreement to the benchmark data compared to the other surface tension models. The surface tension
models also tend to underpredict the position of the bubble at t = 3 s. This underprediction could be
attributed to the lower rising velocity (see Figure 3), which has also been reported in previous studies
using OpenFOAM [36,54,55]. Although bubble shape and rising velocity provide an overview of the
capability of the surface tension models, the quantification of the errors associated with the models
was based on the maximum rising velocity (Vmax) and the time at which the Vmax occurred (tabulated
in Table 6). The benchmarking data show that SSF model provides a better agreement to the data
reported by Hysing et al. [54] (absolute error is less than 2%) and Klostermann et al. [55] (absolute
error is nearly 1.5%) in comparison to the other models.
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Figure 1. Temporal evolution of the bubble for TC1: (a) t = 0.5 s; (b) t = 1.5 s; and (c) t = 2.5 s.
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Figure 2. Validation Bubble shape for TC1 at t = 3 s: (a) bubble morphology; and (b) detailed.

Table 6. Benchmark quantities for TC1.

Parameter CSF Smoothed CSF SSF [55] Benchmark ([54])

Vmax 0.2366 0.2375 0.2386 0.2365 0.2419
t(Vmax) 0.9632 0.9491 0.9104 0.9219 0.9270
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Figure 3. Validation Bubble rising velocity for TC1: (a) temporal changes of bubble rising velocity; and
(b) detailed.

The other test case, TC2, corresponds to a case where the surface tension effects are lower [55]. This
results in larger deformation of interface as the bubble evolves (see Figure 4) and eventually forms a
skirted bubble that has thin filaments that breaks down into smaller droplets (see Figure 5). Comparing
the surface tension models to the benchmark for final bubble shape shows that the models agree
quite well (see Figure 5) but there is a difference between the models with respect to the prediction
of the skirted part of the bubble (see Figure 5b). Figure 6 shows that the surface tension models in
comparison to the benchmark data under-predicts the rise velocity. Comparing with the benchmark,
the SSF model provides the closest agreement for Vmax1 (absolute error is nearly 3.5% [54] and less
than 0.1% for [55]) and t(Vmax1) (absolute error is nearly 3–3.5% for both [54,55]) (see Table 7). On the
other hand, CSF model agrees with the benchmarking data for Vmax2 (absolute error is nearly 5.7% [54]
and 0% for [55]) and t(Vmax2) (absolute error is nearly 0.6% for both [54,55]) (see Table 7).
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Figure 4. Temporal evolution of the bubble for TC2: (a) t = 0.5 s; (b) t = 1.5 s; and (c) t = 2.5 s.

Table 7. Benchmark quantities for TC2.

Parameter CSF Smoothed CSF SSF [55] Benchmark ([54])

Vmax1 0.2434 0.2429 0.2427 0.2431 0.2514
t(Vmax1) 0.7663 0.7637 0.7502 0.7250 0.7281

Vmax2 0.2302 0.2290 0.2260 0.2302 0.2440
t(Vmax2) 1.9721 1.9700 1.9729 1.9594 1.9844
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Figure 5. Validation Bubble shape for TC2 at t = 3 s: (a) bubble morphology; and (b) detailed.
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Figure 6. Validation Bubble rising velocity for TC2: (a) temporal changes of bubble rising velocity; and
(b) detailed.
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In the previous work by Klostermann et al. [55], the spurious currents were reported to be the
reason for the error between the benchmark ([54]) and their simulations (for both TC1 and TC2). Thus,
the differences in the predictions, for the rising bubble simulations, between the three surface tension
models considered in this paper and their departure from the benchmark can also be attributed to
spurious currents generated by these models (which is discussed below). For TC2, the larger variation
between the surface tension models after the first peak in the transient evolution of the rise velocity
(see Figure 6) can be attributed to the differences in the shapes of filament or satellite droplets (based
on the work of Yamamoto et al. [36]). Interestingly, there are also some differences in the predictions by
the CSF model (for both TC1 and TC2) and the data reported by Klostermann et al. [55], which could
be attributed to the difference in the solver settings (e.g., the discretisation schemes, linear solvers and
number of iterations) and/or the variations within the different versions of OpenFOAM. The influence
of the discretisation schemes on the predicting the flow variables has been previously investigated
in [88,89] but further investigation into the effects of other solver settings (e.g., the choice of linear
solver and number of iterations) on the solution is required to quantify its effect. As OpenFOAM gets
updated, some of the functionalities and/or the algorithms are modified, for example, the artificial
interface compression term used in advection of α1 (defined in Equation (9)) is computed differently
in the older versions of the software (see [55]). To the best knowledge of the authors, no study
has reported a comparison of the performance of various versions of OpenFOAM for specific flow
scenarios. These settings, especially discretisation schemes and interface compression algorithms,
would effect the generation and evolution of spurious currents, which could be the potential source of
the discrepancy between our simulations and the data reported in literature.

4.2. Two-Dimensional Capillary Rise

The rise of liquid through a narrow tube or between two parallel plates, which occurs as a
consequence of the wetting of the walls by the liquid, is known as capillary rise. As the liquid rises,
it reaches a point of equilibrium when the vertical component of the force exerted by surface tension is
balanced by the gravitational force acting on the risen liquid column. This equilibrium point (for liquid
rising between two vertical parallel plates) is denoted using a height (hb), which can be analytically
calculated as

hb =
2σcosθ

∆ρ|~g|a , (25)

where ∆ρ is the difference between densities of liquid and gas, and a is the distance between the
plates [90].

To study capillary rise, we used a rectangular domain of dimensions 1 mm × 20 mm, where a
(defined in Equation (25)) is equal to 1 mm, with a uniform mesh of 20 × 400. This mesh resolution
provided the most accurate prediction of capillary rise for the same computational domain while using
CSF model in the previous work by Yamamoto et al. [36]. The boundary conditions for velocity field
imposes a no slip boundary condition for the walls and pressure based condition (applied to both inlet
and outlet) that computes inlet velocity based on the patch-face normal component of the internal-cell
velocity and outflow using the zero gradient condition. The volume fraction field uses a zero gradient
condition at walls (with a contact angle of 45◦) and outlet, along with a Dirchlet condition (equal to one)
at inlet. The boundary condition for pressure uses a Dirichlet condition (equal to zero) at inlet and
outlet whereas the walls use a Neumann boundary condition. The materials properties used for the
simulations are described in Table 8. The initial volume fraction of liquid in the domain is set such
that the liquid–gas interface is at a height of 8 mm from the bottom surface. The maximum time step
(which satisfies both Equations (2) and (3)) and maximum Courant number were set equal to 3.5 µs
and 0.1, respectively.
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Table 8. Physical parameters used for the capillary rise simulations.

ρ1(kg/m3) ρ2(kg/m3) ν1(m2/s) ν2(m2/s) σ(N/m) ~g(m/s2)* Ca

1000 1 10−6 1.4 × 10−5 0.07 (0 −10 0) 0.0014
*This value of ~g is used to study capillary rise by Yamamoto et al. [36].

Once the interface position stabilised (see Figure 7), the capillary height hb,calc was calculated
approximately from the volume fraction field as

hb,calc =

∫
S α1dS

a
, (26)

where the numerator is the area occupied by the liquid in the computational domain [36]. The capillary
rise height calculated from the simulations is compared to the analytically derived hb (which was
determined to be 9.9 mm using Equation (25)) in Table 9.

Table 9. Errors associated with the surface tension models on prediction of capillary rise.

Surface Tension Model hb,calc (mm) E(h) = (hb,calc − hb)/hb

CSF 9.16 −0.076
Smoothed CSF Capillary height did not stabilise during simulations (see Figure 7)

SSF 9.26 −0.065
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Figure 7. Evolution of the water column during capillary rise.

Table 9 shows that SSF model provides a better prediction of the capillary rise height compared
to CSF model. A previous work by Yamamoto et al. [36] reported an error of 7.7% for a capillary
rise model using the CSF model. Interestingly, the Smoothed CSF model could not provide a reliable
capillary rise prediction due to the oscillation of the water column (see Figure 7). This discrepancy can
be explained based on the evolution of the spurious currents (Usc defined in Equation (27)), which
are plotted in Figure 8. The magnitude of spurious currents (Usc) generated in the simulations was
computed at each time step as

Usc = max(|~U|). (27)

The periodic growth and decay of the spurious currents in the Smoothed CSF model (see Figure 8)
results in the unrealistic motion of the interface whereas the CSF model which has much larger
magnitude of spurious currents is much more periodic (see Figure 8), which reduces the net motion of
the liquid–gas interface. Compared to CSF and Smoothed CSF models, the spurious current evolution
in the SSF model is lowered by nearly two orders of magnitude (see Figure 8).



Processes 2019, 7, 542 15 of 24

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

t (s)

U
s
c
 (

m
/s

)

 CSF

 Smoothed CSF

 SSF

Figure 8. Evolution of spurious currents during the capillary rise simulations. It is worth pointing
out that the figure is plotted using data extracted at every 500th point from the dataset obtained from
simulations in order to reduce the rendering time of the image but care has been taken to showcase the
larger temporal variations of Usc.

5. Analysis: Spurious Current

To study the spurious currents generated during the simulations, we simulated a stationary
bubble where the effect of gravity was neglected. A bubble of diameter 2R was set at the centre
of a square domain of dimensions 4R × 4R. The properties of the two phases and other physical
parameters used for the simulations described in this section are tabulated in Table 10. For these
simulations, the boundaries were assigned the Dirichlet condition, equal to 101325 Pa, for pressure
and zero gradient condition for both α1 and ~U. The simulations were run until an end time of 0.05 s to
ensure that initial transients (if any) were eliminated with maximum time step calculated based on
Equations (2) and (3) along with maximum Courant number of 0.1.

Table 10. Physical parameters used for the simulations in the analysis of spurious current.

ρ1(kg/m3) ρ2(kg/m3) ν1(m2/s) ν2(m2/s) σ(N/m) ~g(m/s2)

1000 1 10−6 1.48 × 10−6 0.07 (0 0 0)

The accuracy of the surface tension models was calculated based on the following parameters:
Laplace pressure, magnitude of spurious currents and mass imbalance. For a two-dimensional bubble,
the Laplace pressure can be calculated using the Young–Laplace equation as

∆p′c =
σ

R
. (28)

The Laplace pressure inside the bubble was calculated from the simulation as

∆pc =

∫
V α2 pdV∫
V α2dV

− p0, (29)

where p0 is the operating pressure (which was equal to 101325 Pa). The mean error associated with the
Laplace pressure calculated by the various surface tension models was determined as

E(∆pc) =
∆pc − ∆p′c

∆p′c
, (30)
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where the overbar represents the time averaged variables.

5.1. Stagnant Bubble of Few Millimetres

In this test case, we modelled a bubble with a radius of 2.5 mm using fluid properties described
in Table 10 and under-relaxation factor of 0.9. The computations were performed using a uniform
structured grid. The total number of mesh elements and maximum time step (which satisfies both
Equations (2) and (3)) used in the simulations are described in Table 11.

Table 11. Details of mesh and the associated maximum time step calculated based on Equations (2)
and (3) used for stationary bubble simulations.

Mesh Mesh Resolution (mm2) Total Number of Cells R/δx* Maximum Time Step (s)

M0 0.5 × 0.5 400 5 9 × 10−5

M1 0.25 × 0.25 1600 10 3 × 10−5

M2 0.125 × 0.125 6400 20 1 × 10−5

M3 0.083 × 0.083 14400 30 6 × 10−6

*R/δx is the ratio of the radius of the bubble and the cell size.

To understand how spurious currents occur with various surface tension models, Usc is plotted
at t = 0.05 s for the grid described by M3 in Figure 9. In the surface tension models considered in
this study, the spurious currents occur around the interface but their magnitudes are much larger in
the bubble than outside. To quantify the spurious currents from the simulations, the magnitude of
spurious currents and capillary pressure are tabulated in Table 12. The spurious currents generated by
the surface tension models tends to reduce with finer meshes for both SSF and Smoothed CSF. On the
other hand, the increase in spurious current for CSF can be explained based on the dependence on the
mesh size (∆x) is given by

C∆x ∼
√

σ

ρ∆x
, (31)

where C∆x is the magnitude of the spurious velocities (studied for CSF model [63,66]). Equation (31)
indicates that smaller mesh sizes result in larger values of spurious currents for CSF model. As shown
in Table 12, the Laplace pressure predicted by the surface tension models does not perfectly match ∆p′c
but both Smoothed CSF and SSF provides a better prediction in comparison to CSF.
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(a) CSF (b) Smoothed CSF

(c) SSF
Figure 9. Comparison of spurious current generated by surface tension models at t = 0.05 s using M3
mesh. The gas–liquid interface in the domain is represented using a contour (in white) that is plotted at
α1 = 0.5.

Table 12. Comparison of spurious currents based on mesh and surface tension models (using an
under-relaxation factor of 0.9).

Surface Tension Model Mesh Usc Ca =
ρ1ν1Usc

σ ∆pc E(∆pc) Mass Imbalance

CSF

M0 0.133 0.002 22.29 −0.20 0
M1 0.171 0.002 23.03 −0.18 0
M2 0.174 0.002 24.06 −0.14 0
M3 0.189 0.003 24.77 −0.12 0

Smoothed CSF

M0 0.096 0.001 24.12 −0.14 0
M1 0.088 0.001 25.14 −0.10 0
M2 0.062 0.001 25.19 −0.10 0
M3 0.049 0.001 26.09 −0.07 0

SSF

M0 0.045 0.001 23.95 −0.14 0
M1 0.087 0.001 25.12 −0.10 0
M2 0.036 0.001 25.88 −0.08 0
M3 0.041 0.001 25.55 −0.09 0
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5.2. Effect of Time Step

The two time step constraints were from Brackbill et al. [66] (Equation (1)) and
Deshpande et al. [63] (Equations (2) and (3)). To study the effect of time step constraint, the simulations
used a bubble of 2.5 mm with the M3 mesh (see Table 11) and fluid properties described in Table 10
using an under-relaxation factor of 0.9. The maximum time steps (∆t) used for the simulations are
25 µs (based on [66]) and 6 µs (based on [63]).

The temporal evolution of Usc is compared for the surface tension models in Figure 10. Using
the time step dictated by Deshpande et al. [63], the spurious currents generated by the CSF model are
reduced by less than half in comparison to when time step constraint proposed by Brackbill et al. [66]
was used. The other models show an absolute difference in the mean spurious current of nearly 7%
and 6%, respectively, for the time step constraints (see Table 13).
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Figure 10. Evolution of spurious currents for various surface tension models.

Table 13. Comparison of spurious currents for the time stepping constraints based on M3 mesh and
surface tension models (while using an under-relaxation factor of 0.9).

Surface Tension Model Usc based on Brackbill et al. [66] Usc based on Deshpande et al. [63]

CSF 0.395950 0.189170
Smoothed CSF 0.052188 0.048619

SSF 0.038550 0.040984
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5.3. Effect of Under-Relaxation Factor

To understand the effect of under-relaxation factor, we considered a case which used an
under-relaxation factor of unity for modelling the stationary bubble of 2.5 mm with M3 mesh. Table 14
provides a summary of the spurious current and the Laplace pressure in the bubble. Comparison of
the results from under-relaxation factor of 0.9 (see Table 12) and 1 (see Table 14) shows that spurious
currents generated by Smoothed CSF model is substantially larger when using a larger under-relaxation
factor (nearly twice). The SSF model provides the least amount of spurious currents for both the
under-relaxation factors and the CSF model generates larger spurious currents with larger mesh
density (as described by Equation (31)). It is also worth pointing out that the evolution of spurious
currents for the time step constraints provide marginally higher spurious currents for CSF model
(0.1% using the time step constraint by Equation (1)) but the Smoothed CSF and SSF models show a
spurious current reduction by nearly 10% and 11%, respectively (see Table 15). Based on the evolution
of spurious currents based on time step constraint, the SSF model generates the least spurious current
when compared to Smoothed CSF and CSF models.

Table 14. Comparison of spurious currents based on mesh and surface tension models (using no
under-relaxation and time step dictated by Deshpande et al. [63]).

Surface Tension Model Mesh Usc Ca =
ρ1ν1Usc

σ ∆pc E(∆pc) Mass Imbalance

CSF

M0 0.158 0.002 22.27 −0.20 0
M1 0.279 0.004 23.09 −0.18 0
M2 0.510 0.007 24.34 −0.13 0
M3 0.723 0.010 24.47 −0.13 0

Smoothed CSF

M0 0.154 0.002 24.02 −0.14 0
M1 0.122 0.002 24.97 −0.11 0
M2 0.104 0.001 25.21 −0.10 0
M3 0.075 0.001 26.03 −0.07 0

SSF

M0 0.042 0.001 24.07 −0.14 0
M1 0.065 0.001 24.86 −0.11 0
M2 0.033 0.000 26.04 −0.07 0
M3 0.036 0.001 25.64 −0.08 0

Table 15. Comparison of spurious currents for the time stepping constraints based on M3 mesh and
surface tension models (while providing no under-relaxation to the flow variables).

Surface Tension Model Usc based on Brackbill et al. [66] Usc based on Deshpande et al. [63]

CSF 0.722930 0.723390
Smoothed CSF 0.082800 0.075458

SSF 0.040016 0.035903

6. Conclusions

In the study, we successfully implemented CSF, Smoothed CSF and SSF models in OpenFOAM
and compared them based on their ability to simulate a two-dimensional stationary bubble, rising
bubbles and capillary rise. The flow scenarios modelled corresponds to a variety of capillary numbers
(in the order of 10−3, 0.1 and 1), which is relevant in various industrial processes. The numerical
simulations show that:

• For a stationary bubble with a 2.5 mm radius, CSF and SSF models generate the most and
least amount of spurious currents, respectively. For the finest mesh used, Smoothed CSF and
SSF models reduce spurious currents by nearly one-tenth and one-twentieth of the CSF model
(when no under-relaxation factor is used), respectively. When using a lower under-relaxation
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factor (for the finest mesh), Smoothed CSF and SSF models reduce the spurious currents by
approximately one-fourth of the CSF model.

• The time step constraints proposed by Brackbill et al. [66] and Deshpande et al. [63] show
that spurious currents generated by the CSF is significantly reduced while using a lower
under-relaxation factor. In Smoothed CSF and SSF models, when using the same under-relaxation
factor, the time step constraint slightly reduces the spurious currents by 6–7%. Interestingly, when
no under-relaxation is used, the CSF model generates marginally larger (nearly 0.1%) spurious
currents with the time step constraint proposed by Deshpande et al. [63], but other models show a
reduction in spurious current by less than 10%.

• The Laplace pressure in the bubbles predicted by Smoothed CSF and SSF is more accurate with an
error of 7–9% for the higher mesh densities than CSF model with negligible imbalance in mass of
the phases.

• Although using a lower under-relaxation factor reduces the spurious currents and predicts the
Laplace pressure in the stationary bubble (for all the surface tension models considered) quite
reasonably, it can adversely effect the accuracy of dynamic cases such as rising bubbles by
underestimating the flow variables.

• Using a higher mesh density results in larger spurious currents for CSF model but they are reduced
for both Smoothed CSF and SSF models for the static case considered.

• The effect of mesh resolution was studied only for the stationary bubble in this work. For the case
of rising bubbles, previous works [36,55], using the CSF model, reported challenges in achieving a
mesh independent solution. Similarly, for capillary rise using the CSF model, Yamamoto et al. [36]
reported an increasing error when using a finer mesh. The meshes used in this paper correspond
to the finest grid (used in FreeLIFE solver) implemented by Hysing et al. [54] and the grid that
provided a most accurate model for capillary rise in the work by Yamamoto et al. [36]. We expect
similar effects of mesh resolution for both Smoothed CSF and SSF models for dynamic cases,
as they are variants of the same formulation. The quantification of these errors will be treated in
future work.

• Rising bubbles were successfully modelled using the surface tension models and validated
based on the final bubble shape and rising velocities proposed by Hysing et al. [54] and
Klostermann et al. [55].

• Modelling the capillary rise with SSF was shown to provide a more accurate representation than
the CSF model. Interestingly, the Smoothed CSF could not reliably simulate capillary rise due to
spurious currents.

Although the surface tension models considered in this study did not eliminate spurious currents
entirely, the comparison provides insights into the limitations of these models. Based on the simulations
done in this study, the SSF model seems to provide a versatile surface tension formulation that
generates small spurious currents and provides a more accurate representation of various processes in
comparison to the standard CSF model.
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