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From linear to circular economy ...
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Québec policy on organic waste management:

ban on organic waste incineration and disposal by 2022




Biomethanation: conversion of
organic waste into bioenergy and bio-products
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Digestate processing

Digestate
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: S Mechanical separation
S_OI'C! fracUon. P Liquid fraction:
Rich in organic Rich in N, K, (P)

matter, P, Ca, Mg
High potential for
nutrient recovery
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Soil conditioner




Nutrient recovery processes
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Precipitation — struvite, calcium phosphates
Ammonia stripping — NH;

Acidic air scrubbing — ammonium sulfates

" ation — H,0, N-K concentrates
fion and harve t"omass




Potential flow diagram of a biorefinery for
nutrient and energy recovery

Problem: Optimal combination different for each waste stream

Chemicals rale

Research question: What is the optimal combination of unit
processes and what are the optimal operating conditions?

> Given: Particular waste stream

> Optimal:
« Maximal resource recovery (nutrients, energy)
« Maximal end-product quality
« Minimal energy and chemical requirements
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Approach = Mathématical models



CHALLENGES




Modelling challenges

« Process complexity | => Need for advanced process models

Chemical products
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Control challenges

« Strict product quality h * No selection of
specifications raw materials
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Control challenges

* Need for a paradigm shift

A A
Effluent limit Biorefinery | Upperquality limit

I contro I)M
/Ww/\' Lower quality limit
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Optimization challenges

Choice of the technologies End-product distribution?
and operational settings?

Location? Economic optimization?

— Need for a holistic end-user focused approach to
planning and optimization of resource recovery projects ! | 3




PROPOSED
APPROACH




Quality by Design

Target product
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Combined three-phase physicochemical-
biological process models

Reactor model

Fast

. :
reac Ion Chemical PHREEQC
spe

ciation model

Numerical

solution? Species Species

Slow
reactions

Physico- Biochemical
‘. chemical model model .’

=> Improved potential to predict end-product quality
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Global sensitivity analysis (GSA) for
optimal treatment train configuration

1. Model selection
(NRM library)

5. Model quality
evaluation

6. Factor ranking
‘ Acquired
understanding

7. Optimal

3. Monte Carlo
simulation
treatment train
4. Multivariate configuration
linear regression
Increased process insights
=> Control strategies and risk assessment

2. Selection
of factors
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Monitoring and quality control

« Real-time measurement of critical process parameters and
critical quality attributes

=> Towards a regulatory Process Analytical Technology (PAT) framework ?
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Multi-dimensional decision-support systems
(DSS) for holistic optimization: opt‘im-{g

Waste

Waste
treatment

End-
product
distribution
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Multi-dimensional decision-support systems
(DSS) for holistic optimization
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Multidimensional S
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Mathematical
process models
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Agile software development for fast DSS
implementation

Planning &

Developing

New feature

Iteration ALearning Evaluating

features

List of prioritized
features

Fast end-user focused and communication-based approach
=> Nutrient stakeholder platforms
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APPLICATION
EXAMPLE




Process 1: Struvite precipitation

S\
Fluidized bed

Magnesium |

Liquid
digestate

I Source: adapted from Ostara (2015)

Treated

effluent Struvite =

MgNH,PO,:6H,0
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Monte Carlo simulation results: Effect of
temperature on P precipitation
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Process 2: NH; stripping and absorption

Treated gas

phase
NH; (gas)
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I Source: adapted from Colsen (2015)



Monte Carlo simulation results: Impact of
chlorides on NH; recovery efficiency

/70
y = -0,53x + 62,05

o))
o

9]
o

N
o

- N
o o

NH;-recovery efficiency (%)
S S

0 20 40 60
CL_in (mol m™3)

= Practical implication for treatment train design: If preceding
P-precipitation — use Mg(OH),/MgO instead of MgCl,

27



Using GSA results for treatment train
configuration

C-recovery P-recovery N-recovery

Use of Chloride inhibition W

Mg(OH),/MgO Phosphate inhibition W

NRM-
Settle

Removal of Ca, Fe =X Ca-inhibiton ¥ ™ Scaling W

ioi Fe/Al impurities W Sy
and Al precipitates P sulfate

Consumables Recovered products
— Costs — Revenues
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Treatment train optimization:
Economic analysis

Financial benefits:

~ variable costs:

— 5 $ m3 manure y!
Optimized 90 $ ton! solids y!
Biorefinery

~ variable + capital costs:
2 $ m= manure y!
40 $ ton! solids y*!

Subsidies

\ ZeroCost-Biorefinery
ay-back time: 7 years
ot (p y years)

balances
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Use of DSS to find a market for the
recovered end-products
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TAKE-HOME
MESSAGE




Numerical methods are a must for integrating
and optimizing the value chain !
« Nothing is lost, nothing is created,
everything is transformed! »
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