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Abstract

Growing social and economic pressures demand technological innovations

that enable the widespread usage of unconventional sources of water. These

challenges motivate the emerging fit-for-purpose paradigm, wherein water is

provided at the precise quality level of the intended application. Unfortunately,

to date, fundamental advances in materials and nanotechnology have been slow

to advance this paradigm. Using examples from membrane science and engi-

neering, we highlight the critical need to bridge research at the molecular and

nano-scales with development at the device and systems-scales to fully realize

sustainable fit-for-purpose water technology. Specifically, we present four op-

portunities for computing and data science to accelerate convergence of sustain-

able water research: materials informatics and inverse design, model-based de-

sign of experiments, superstructure optimization, and uncertainty quantification.

As such, we highlight opportunities to collaboratively revolutionize molecular-

to-systems engineering of sustainable water technologies, but emphasize open

communication between data scientists and water-focused researchers using a

common vocabulary as a significant hurdle.
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Graphical Abstract

Introduction

Driven by factors such as economic and population growth, aging infrastruc-

ture, and increased concerns regarding pollution, water sustainability research

is undergoing a paradigm shift to emphasize the highly interconnected and in-

terdependent nature of Earth-water-human systems. Moreover, an increased5

awareness of the vulnerabilities within existing water supply and management

infrastructure has driven interest in the use of non-traditional water resources

(e.g., seawater desalination, wastewater reuse) to meet growing demands. As

such, several modifications and alternatives to centralized water treatment sys-
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tems that produce water of a single, potable quality have been proposed. For10

example, distributed systems that incorporate regenerative treatment technolo-

gies tailored to provide fit-for-purpose water closer to its point of use could

be incorporated as part of larger networks [1]. Mihelcic et al. [2] broadly de-

fine sustainable engineering as “the design of human and industrial systems to

ensure that humankinds use of natural resources and cycles do not lead to di-15

minished quality of life due either to losses in future economic opportunities or

to adverse impacts on social conditions, human health, and the environment”.

In this context, sustainable water systems maximize reuse and minimize envi-

ronmental impact by utilizing a series of treatment processes and recycle loops

to produce water at a purity level demanded by the requirements of its users.20

Moreover, dissolved solutes in waste waters (e.g., nutrients, metal ions) may be

viewed as renewable resources that can be recovered. Ultimately, the successful

design of these systems will require addressing fundamental questions from the

molecular to systems scales related to the development, adoption, and integra-

tion of treatment technologies into sustainable networks that ensure robust and25

resilient infrastructure that can quickly recover from damage or disruption (e.g.,

natural disasters, equipment failures) [1].

Concurrent with efforts to re-envision the design of the water supply and

management infrastructure, advances in chemistry, materials science, and molec-

ular engineering are providing unprecedented abilities to design, characterize,30

and manipulate materials at the molecular through nanoscales [3]. As such,

significant opportunities exist to empower the rational design of materials to

positively impact water security by coupling this control to the rigorous design

of treatment networks through the development of detailed structure-property

relationships. For instance, zirconium metal organic frameworks (MOFs) are35

excellent candidates for the design of selective sorbents that target the removal

of harmful organic contaminants from water treated for direct potable reuse

[4, 5]. Moreover, thermoresponsive solvents enable water extraction from high

salinity brines using low-cost waste heat as the primary energy input [6, 7]. Due

to their ease of operation, modular design, and low energy demands, membrane-40
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based technologies are exciting prospects for clean water technology [8, 9, 10, 11].

Self-assembled block polymer materials allow for the creation of membranes with

pore wall chemistries that are readily tailored to enable solute-specific separa-

tions and detection. For example, membranes with pore walls tailored to detect

and capture metal ions, if appropriately designed, could be used for resource45

recovery or remediation efforts [12, 13, 14]. Nanocomposite membranes, which

are fabricated by incorporating nanomaterials into the matrix of conventional

membrane structures, can be designed to promote the inactivation of microor-

ganisms that lead to disease and biofouling [15]. Alternatively, nanocomposite

membranes can be designed to enable localized solar-thermal heating that en-50

hances membrane distillation processes [16]. While the promise of these mate-

rials is exciting, transformative advances for sustainable water have been slow

to manifest in practice. Due to their time- and resource-intensive natures, the

empirically-driven, heuristic methods that guide most efforts to enhance ma-

terial properties and device performance are one impediment to realizing this55

potential. Typical workflow are often narrowly focused on a single, fixed sys-

tem design and do not incorporate feedback from rigorous systems analyses and

process synthesis optimization.

Accelerating materials discovery necessitates a move away from classical

Edisonian methods to principled and data-driven frameworks that can guide60

material design and process synthesis to overcome the gaps in knowledge that

inhibit the translation of new materials and devices from the laboratory scale to

sustainable water treatment technologies. While there is consensus that materi-

als enabled solutions will play an important role, realizing the goal of developing

sustainable water technologies and resilient water management infrastructure65

requires inputs from several fields of study. This critical review offers the per-

spective that data-science enabled paradigms can precipitate the development

of materials and technologies for sustainable water by accelerating research at

intersection of materials science, computer science, civil and environmental en-

gineering, mechanical engineering, and chemical engineering. In Figure 1, we70

elaborate the multiple length scales of molecules-to-systems design along with

4



four data-driven tools, namely, materials informatics and inverse design, design

of experiments, superstructure optimization and uncertainty quantification, that

can be applied at these various scales.

Figure 1: In the bottom-up approach to sustainable water engineering, new (macro)molecular

structures enable novel materials with desired properties that are incorporated into devices

for target applications. These devices are then integrated into process networks wherein the

system topology enables non-traditional applications such as nutrient recovery and wastewater

treatment which form an essential part of the water distribution infrastructure in the fit-for-

use paradigm. Computational and data science tools can accelerate this process to facilitate

top-down analysis and discovery of materials. In the top-down approach, superstructure opti-

mization is used to design resilient infrastructures and novel system configuration for specific

water purification and solute recovery applications. These designs dictate targets for material

properties that guide the inverse design of materials. Likewise, bottom-up materials informat-

ics facilitates rapid screening in the context of fully optimized systems and infrastructure. De-

sign of experiments helps systematically test scientific hypothesizes and accelerate technology

scale-up. Multiscale uncertainty quantification and propagation unite all the computational

and data science tools into a holistic molecules-to-infrastructures framework.
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Figure 2: The proposed paradigm integrates the classical workflow with four data-science

enabled capabilities to optimize the materials discovery process by maximizing the amount of

useful information gained from each iteration and enabling simultaneous multiscale analysis.

Opportunity 1: Materials informatics and inverse design75

We foresee the convergence of materials informatics, Bayesian optimiza-

tion, and inverse design enabling two to three orders of magnitude acceler-

ation in identification of promising membrane materials tailored for sustain-

able water technology. The goal of inverse design is to computationally predict

(macro)molecular and/or self-assembled structures that achieve target material80

properties. Although empirical structure-property relationships exist for some

polymer structures [14], the fundamental understanding of molecular interac-

tions and transport mechanisms that govern solute-specific separations are still

rudimentary [17]. Materials informatics leverages massive online datasets to

automatically learn structure-property relationships that are vital to solve the85

6



inverse problem of materials discovery [18]. We anticipate the imminent con-

fluence of materials informatics with physical and synthetic chemistry will lead

to new insights and more accurate structure-property relationships enabling au-

tomated frameworks that expedite the engineering of polymer nanomaterials.

In Figure 2, we show the sequential and heuristic nature of the conventional90

materials discovery workflow and contrast it with the integrated nature of data-

science tools highlighting the benefits that each paradigm can gain from the

other.

The nearly limitless design space of candidate materials cannot be enu-

merated with conventional high throughput computational screening methods95

[19, 20]. Instead, in materials informatics, a surrogate or machine learning model

is constructed to predict material properties (e.g., solubility) from input design

variables (e.g., molecular structure). Adaptive design techniques refine the sur-

rogate model through continuous (re)learning and postulate new materials to

synthesize or simulate using the surrogate model. A popular technique is to use100

Bayesian optimization methods, in which domain specific knowledge (e.g., exist-

ing structure property relationships) and observed data are incorporated into the

prior distribution of the surrogate model [21]. The computationally inexpensive

surrogate model enables optimization of experimental conditions that balance

exploration (sampling regions of high uncertainty) and exploitation (sampling105

regions with best predicted material performance) when selecting future exper-

iments. New observations are leveraged to improve the surrogate model using

Bayes rule, making the procedure adaptive (self-learning). Adaptive designs

have been shown to outperform pure exploitation approaches in several studies

[22] with successful applications including the study of self-assembled nanopar-110

ticles [23, 24], therapeutic drugs [25], and high strength alloys [22].

Despite their potential to accelerate technology development, data-driven

inverse design techniques pose several challenges and opportunities. Thus far,

many successful implementations of adaptive designs are with either limited

design spaces (e.g., ternary alloys) or crystalline materials with well-defined,115

equilibrium structures. In contrast, structure-property relationships for amor-
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phous soft materials such as polymeric and nanocomposite membranes are not

as readily available or as easily defined. Polymer membranes, in particular, have

extremely large design spaces because they are processed far from equilibrium

and therefore, possess non-equilibrium structures. New mathematical descrip-120

tions grounded in physical and chemical understanding are needed to encode

all of the design choices for soft, polymeric materials. In some cases, detailed

molecular simulation may be needed to elucidate the self assembly process and

ultimately predict structure and properties of soft materials [26]. This trade-off

between computational expense and molecular-scale detail invites novel mut-125

lifidelity adaptive design methods to guide inverse materials design. Finally,

the water treatment technologies in which these materials are deployed are of-

ten multifaceted and utilize a combination of phenomena to achieve their goal.

This broad design space necessities advances in multiobjective optimization to

navigate competing design goals (material targets) and assimilate heterogenous130

data from many sources.

Opportunity 2: Model based design of experiments accelerates hy-

pothesis driven discovery

A fundamental challenge in scientific discovery is designing experimental

campaigns that maximize useful information gained to examine governing hy-135

potheses [27]. We foresee model based design of experiments (MBDOE) facil-

itating greater insight into the thermodynamic and transport phenomena gov-

erning membrane-based processes. MBDOE is a statistical technique to achieve

a user-defined goal such as discriminating between rival models or improving es-

timated parameter accuracy with the fewest number of experiments [28]. Classi-140

cal design of experiments techniques (e.g., multi-level factorial, partial factorial

designs) help establish empirical models (e.g., polynomial response surfaces),

which although predictive, rarely offer insights into fundamental scientific phe-

nomena. In contrast, MBDOE frameworks directly consider differential and/or

algebraic equations grounded in scientific and engineering fundamentals (e.g.,145
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conservation laws, thermodynamics) in their formulation. MBDOE techniques

are popular in biology, pharmacology, and reaction engineering, as these exper-

iments are often time- and resource-intensive. For example, Láınez-Aguirre et

al. use a fully Bayesian MBDOE framework to estimate nonlinear differential

algebraic pharmacokinetics models which enable dosing regimens optimized to150

individual patients [29]. In another recent example, Han et al. [30] use MB-

DOE to distinguish between competing kinetics models for chemical-looping

combustion. Despite the fact that similar challenges exist in sustainable water

treatment (e.g., discerning fouling mechanisms, identifying degradation path-

ways of contaminants), MBDOE techniques have seldom been leveraged in this155

arena.

As highlighted in Opportunity 1, the transport, thermodynamics, and re-

action mechanisms that enable water treatment technologies are often not suf-

ficiently understood. We believe it is possible to postulate model collections

where each model corresponds to specific scientific hypotheses about the dom-160

inant physical and chemical phenomena. MBDOE then facilitates design of

multifaceted experimental campaigns to discern the most probable subset of

models (hypotheses). This proposed paradigm is especially powerful in the elu-

cidation of regimes where a single mechanism dominates and the identification

of conditions where transitions between mechanisms occur. For example, it165

could potentially be utilized to elucidate where transport through membranes

transitions from being governed by a solution-diffusion mechanism to a pore

flow dominated regime. Moreover, MBDOE can enable the design and analysis

of high throughput transient experiments, thereby eliminating the time required

for a test system to reach equilibrium.[31] This capability may be particularly170

useful when testing new technologies against realistic feed solutions. Often

materials characterization is executed using idealized solutions that contain a

single dissolved component. In practice, however, water treatment technologies

are challenged by complex, multi-component solutions whose composition varies

with time. As such, there is a critical need to assess material and device per-175

formance in a broader spectrum of feed solution conditions. In this regard, the
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proposed capabilities of MBDOE would accelerate development of sustainable

water technologies that can robustly operate over wide ranges of conditions.

Opportunity 3: Superstructure optimization enables rapid bottom-up

and top-down analysis180

We envision that superstructure optimization can provide a mathematical

framework to leverage structure-property relationships (Opportunity 1) and

validated transport and thermodynamic models (Opportunity 2) for holistic

molecular-to-systems design that encompass all aspects of sustainable water.

Superstructure optimization is a classical paradigm in process systems engineer-185

ing with ubiquitous applications including water distribution networks [32, 33],

water supply chains [34], and sensor placement [35]. First, the modeler pos-

tulates a superstructure at the desired length scale that encodes all possible

system configurations. Next, an optimization problem is formulated over the

superstructure. For example, minimize water production cost by searching over190

all feasible combinations of design choices (e.g., selection and size of equipment,

flow rates). Finally, the optimization problem is solved numerically, resulting in

one (or more) designs with optimal topology (discrete decisions) and operating

conditions (continuous decisions) identified. Often, superstructure optimiza-

tion elucidates novel system topologies. For example, Du et al. [36] discovered195

permeate split designs for a single-feed, multi-product seawater reverse osmo-

sis desalination network using superstructure optimization, thus demonstrating

how commercially-available materials, if optimally integrated into devices and

systems, can overcome operational challenges such as boron removal. Yenkie et

al. [37] use superstructure optimization to calculate quantitative performance200

thresholds that define when various separation pathways minimize production

costs.

Extending established top-down superstructure optimization methods to

encompass emerging fit-for-purpose paradigms and the additional constraints

needed to address resource recovery and water reuse can help to focus research205
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efforts into these highly-integrated, complex systems on the most impactful

areas[38]. In this domain, there is a great need to understand the basic cost

and performance drivers [39] for new sustainable water technologies in the con-

text of existing or future infrastructure, regulations, and public opinion with

many stakeholders [40]. Superstructure optimization is often overlooked during210

materials development. However, as shown in Figure 3a, emerging efforts in

this arena are focused on establishing top-down guidance at the device level by

identifying material property targets needed to enable novel process configura-

tions [36, 41, 42]. Moreover, top-down approaches are beginning to span the

divide between the materials and systems scale by embedding empirical corre-215

lations that guide materials selection within the optimization framework. For

example, the Robeson plot, which quantifies the trade-off between permeabil-

ity and selectivity for membranes was considered when optimizing the design

of binary gas separation systems [43, 44, 45]. Incorporating these structure-

property relationships into the optimization framework can both quantify the220

relative importance of competing material properties, as seen in Figure 3b, and

elucidate the potential for performance gains at the systems level from techno-

logical breakthroughs, i.e., shifting the Robeson plot. As such, superstructure

optimization frameworks of the future could inform both how to design nanos-

tructured materials and how to integrate them into resilient infrastructures with225

many competing objectives.
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Figure 3: (a) Superstructure Optimization: In superstructure optimization, a compre-

hensive superstructure encoding all possible network configurations is decomposed into a net-

work with optimum topology. For example, a full superstructure encoding multiple recycle

strategies for a membrane separation cascade is shown at the top. A solution showing opti-

mum strategies for feed injection, product withdrawal and recycle is obtained by eliminating

streams whose flow rates are zero and is shown in the bottom of the figure. The optimum

configuration is found by performing a sensitivity analysis to identify membrane properties

needed to outperform existing technology. (b) Material Property Targets: Targets for

competing material properties are defined by operational (process) and consumer needs. Ma-

terials of the future are tailored for target applications such as heavy metal removal, and

can be designed by significantly improving any one of the two competing material properties

(vertical or horizontal movement into the target design space), or by modest improvements

in both material properties (diagonal movement into target design space) which leads to the

overall improvement of system performance.
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Superstructure optimization is also well-positioned to guide molecular engi-

neering via bottom-up analysis or inverse design. For already characterized ma-

terials, rigorous superstructure optimization enables rapid comparison against

competing technologies in the context of fully optimized systems and can identify230

potential applications for materials. Recent efforts propose superstructure opti-

mization formulations to design crystalline material structures, such as MOFs,

based on the constraints imposed by process separations [46, 47]. Extending this

bottom-up analysis to soft materials, such as polymeric membranes, remains a

challenge since phenomena governing solute-specific separations is not well un-235

derstood. Nevertheless, we anticipate materials informatics (Opportunity 1) and

MBDOE (Opportunity 2) will lead to new insights and more accurate structure-

property relationships needed for direct molecules-to-infrastructure optimiza-

tion. Furthermore, we foresee opportunities to combine molecular simulations

and superstructure optimization to enable high-throughout screening of emerg-240

ing materials using systems-scale metrics (e.g., separation selectivity, energy

usage, product cost) as benchmarks for performance.

Opportunity 4: Multiscale uncertainty quantification derisks technol-

ogy development

Fully realizing the promise of molecular-to-systems engineering to design245

efficient, reliable, sustainable, and resilient water infrastructures necessitates

managing uncertainty across vast length and timescales. Optimization under

uncertainty is a well-established paradigm to design water networks that are re-

silient to supply-demand variations, equipment failures, rare events, and other

sources of infrastructure-level uncertainty.[48] Although recent work emphasizes250

data-driven statistical techniques to define uncertainty sets (e.g., probability dis-

tributions) [49, 50], data for water infrastructures are often difficult to obtain or

incomplete and erroneous. At the materials scale, all encompassing databases

of properties along with quantified reliabilities are difficult to develop due to the

resource intensive nature of data accumulation and validation [19]. Experimen-255

13



tal inaccuracies and incomplete models further obscure data collected. These

challenges induces uncertainty in the device and systems models that directly

inform infrastructure design. We see a great need and opportunity to extend

optimization of resilient water networks to address these challenges and encom-

pass all aspects of sustainable water. Recently, Bhat et al. demonstrated how260

Bayesian uncertainty upscaling, which encompasses modeling fundamental ther-

modynamic and transport phenomena, bench-scale demonstrations, and super-

structure optimization under uncertainty, can derisk CO2 capture technologies.

[51] Similarly, establishing molecules-to-infrastructure uncertainty quantifica-

tion (UQ) frameworks can realize new synergies between Opportunities 1 - 3.265

For bottom-up analysis, UQ offers the ability elucidate how a new material can

impact the performance of water networks while directly considering uncertainty

at all technology development levels. From a materials screening perspective,

UQ can determine when a new materials is conclusively superior or inferior to

alternatives. Moreover, UQ can illuminate where to focus scientific and engi-270

neering efforts to reduce uncertainty to improve overall systems performance.

We envision suistainable water applications driving new methodological ad-

vances in multiscale UQ. In Figure 4, we sketch an integrated UQ workflow

and specifically highlight connections with Opportunities 1 - 3. For example,

iterations between molecular simulations and experiments are at the core of275

the existing materials discovery paradigm (Figure 2). Emerging UQ frame-

works enable rigorous calibration of force field parameters and assessment of

predictions from molecular simulations [52]. We see opportunities to develop

new multi-fidelity design of experiments algorithms to co-optimize allocation

of computational and physical resources in order to establish systematic feed-280

back loops between molecular simulations and physical experiments. Supported

by rigorous statistical analysis, molecular simulations and physical experiments

provide rich heterogeneous datasets with uncertainty estimates to derive (differ-

ential) algebraic surrogate (i.e., reduced order, timescale bridging) models that

enable computationally tractable optimization under uncertainty [53, 54]. Here,285

there are significant opportunities to extend the surrogate modeling paradigm
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Figure 4: Uncertainty quantification (UQ) unifies all aspects of sustainable water engineering

into comprehensive molecular-to-infrastructure design framework. Together, molecular simu-

lations and UQ enables accurate force-field selection and calibration. This provides molecular

structure and material property predictions with quantified uncertainties 1© to inform lab-

oratory experiments and DOE. Likewise, multifaceted laboratory experiments provide data

2© for molecular simulation validation, creating a feedback loop. Multifideltiy design of both

laboratory and computational experiments provides rich heterogeneous data with uncertainty

estimations 3© for multiscale model reduction. This then provides tractable surrogate (low fi-

delity) models with quantified uncertainty descriptions 4©, which are inputs for superstructure

optimization under uncertainty. These optimization problems elucidate possible applications

for new materials, material property targets, and device, system and infrastructure designs

that are robust to uncertainties (variable feed compositions, rare event, etc.). These results,

especially property targets, 5© are inputs for inverse design of materials. Adaptive design

of experiments (e.g., Bayesian optimization) then proposes tailored materials, 6© and 7©, for

synthesis, laboratory characterization, and computational exploration.
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to hybrid models, which combine physics-informed equations with a data-driven

component that quantifies model form uncertainty [51, 55]. Using these uncer-

tainties, superstructure optimization can provide quantitative material property

and cost targets that serve as input for inverse materials design. Critically, this290

vision necessitates integrating innovations in data science and UQ with fun-

damental scientific and engineering principles to accelerate sustainable water

technologies faster than both fields working separately.

Conclusions

In this review, we highlight four opportunities for emerging data-science295

frameworks to establish new paradigms for sustainable water technologies: ma-

terials informatics and inverse design, model based design of experiments, su-

perstructure optimization, and uncertainty quantification. Many engineering

challenges in the sustainable water domain are likely intractable for existing

computational paradigms, but provide timely and impactful applications to mo-300

tivate methodological advances in data and computer science. Data-driven tools

cannot alone revolutionize the field. Instead, we foresee collaborative efforts that

combine domain specific knowledge with data science paradigms to realize holis-

tic molecules-to-infrastructures engineering frameworks that usher in the next

era of materials for sustainable water enterprises and beyond.305
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