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Abstract: The pharmaceutical industry is one of the most research and development (R&D)-intensive
industries. This industry has tried many strategies to overcome the limitations of a business model
that had a high return and high risk. In recent years, the fourth industrial revolution has affected
many industries, causing them to update their traditional production and business strategies to a
“data science-based” approach. This data science methodology, based on the largely increased size
of the data environment, has actively changed the pharmaceutical industry. Therefore, this study
aimed to identify specific characteristics of data science innovation in the pharmaceutical industry
through the analysis of patent data from the triadic patent databases from the United States, Japan,
and Europe.
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1. Introduction

The pharmaceutical industry is a highly research and development (R&D)-intensive sector.
Since the 1970s, R&D activity in the pharmaceutical industry has increased rapidly. In addition to
the intensive use of R&D, the challenges faced in pharmaceutical R&D have increased considerably.
Consequently, developments in the pharmaceutical industry have taken place as a result of the increased
difficulties encountered in the pharmaceutical R&D [1,2].

Pharmaceutical companies have attempted to find novel materials that are different from incumbent
and traditional materials, such as small molecules and the so-called new molecular entities (NMEs),
through the use of biologics and biological entities. Changes in the type of pharmaceutical R&D
companies have also taken place; more recently, small companies have increased and, from 2004,
these exceeded the productivity of the R&D departments of bigger companies [2].

In the early 2000s, pharmaceutical innovation was science-based, i.e., the innovation was highly
dependent on scientific researchers, their network, and the collaborations among scientists and scientific
institutes [3–5].

In the last 10 years, rapid changes in innovation have occurred as a result of improvements in data
availability and computational ability. This innovation is a part of the “fourth industrial revolution,”
which combines technologies and blends advanced services based on data science [6–14]. In detail,
data science shows many possibilities of improving productivity and adopting new business models
with promising technologies, such as wireless sensor networking, big data, artificial intelligence,
cloud-based services, and so forth. Data science plays a role in enabling automation, optimization
of production, data-driven innovation, variety of personalized services, and so forth in various
industries [12,13].

The pharmaceutical industry has also used data sciences for innovation and attempted to overcome
the drawbacks of business models that require tremendous amounts of budget for innovation. Hence,
pharmaceutical innovators or companies have tried to find ways to reduce R&D cost and initiate
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less risky business models. Pharmaceutical innovation players have attempted to apply data-driven
models to assist innovation in the pharmaceutical industry and achieve a lower failure rate in the drug
approval process [9]. The pharmaceutical industry could attempt to develop a new business model
supplying personalized services that are less risky and less profitable by applying data science with
medical health information [6,7,12,14].

The pharmaceutical industry has been adopting data science-based innovation. These changes in
pharmaceutical innovation can be identified through the examination of patent activities. The authors
hypothesized that the technological innovation regime differed according to period, and the patent
data could reflect the changes in the technological innovation regime. Thus, this study aimed to
find innovation trends in the patent information that could provide a deeper and more specific
understanding of data-science-based pharmaceutical innovation.

Section 2 of this paper highlights previous studies discussing trends in innovation in the
pharmaceutical industries that have moved from science-based to a data science-based innovation.
Section 3 of this paper explains the empirical methodology, showing the relationship between technology
classification codes and the data retrieval process. Section 4 of this paper includes the descriptive
statistics of data, empirical results, and a discussion on the implications of the empirical results.
In Section 5 of the paper, the authors suggest conclusive results and offer an in-depth discussion on
pharmaceutical innovation trends from the patent analysis.

2. Literature Review

Innovation is the process that refers to the development and application of a new product, process,
or service, as assessed by the United States (US) Office of Technology [15]. Innovation is driven by
social situations, and the trends can be monitored.

The pharmaceutical industry is under immense pressure to innovate. This pressure has increased
exponentially owing to the vast increase in R&D assets and scientific and engineering personnel.
The pharmaceutical industry has spent enormous amounts of money on R&D since the early 1960s.
The extent of R&D expenditure was approximately twice that of all other industries in the 1980s, and it
had increased by approximately three times that of all other industries by the late of 1990s, despite the
decrease in the approval of new drug applications (NDAs) for new molecular entities (NMEs) and
non-new molecular entities (non-NME) since 1996 [1].

Given the increasing complexity in pharmaceutical innovation, companies have attempted to find
new ways to survive. The production of biopharmaceuticals compounds began in 1982. Between 1980
and 2004, the number of discovery projects in small companies slightly exceeded those in large
companies. This resulted in a few small companies succeeding in their discovery projects, which,
in turn, led to an increase in the mergers and acquisitions (M&A) of small companies [2].

In view of the increased computing ability and genomic knowledge, pharmaceutical innovation
adopted science-based innovation in the early 2000s. The changes in innovation in the pharmaceutical
industry have resulted in changes in the process of innovation and, subsequently, presented new
possibilities. The key requirements for the successful management of science-based innovation in
the pharmaceutical industry are a new international market strategy and internationalization and
collaboration strategies in the R&D management [3]. The collaboration strategy should be used at the
level of the national innovation system. Korea has a national innovation system using horizontal and
vertical collaboration among government-sponsored research institutes to promote innovation within
the pharmaceutical industry [4,5].

Since the late 2000s, most science has been impacted by the rapid increase in availability of
information. As a result of this impact, traditional methodologies are re-adopted and re-applied with
the largely increased size of available data. This phenomenon is known as data science, which has
rebuilt traditional science based on this largely increased size of data. Data science has induced changes
in many industries, as well as in science and academia. The healthcare industry has adopted data
science to provide developed, qualified, and personalized services [6,7,12]. The strength of data science
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is that it merges various technologies; in particular, it combines pharmaceutical technology with digital
and physical technologies [8,12].

Before the emergence of data science, science-based innovation was limited by productivity and
dependent on previous research [16–19]. For example, in other R&D intensive industries, such as the
energy industry, upstream companies insisted on the continued production of shale gas and oil from
the early to the middle 2010s [20]. However, these companies needed to develop new production
technologies by using data science [21,22]. Moreover, they attempted to change their business routine
by horizontally and vertically expanding their business area [23].

In case of the pharmaceutical industry, some incumbent pharmaceutical innovators have applied
modeling and simulating to reduce development costs. In addition, some companies have used data
to perform a qualitative risk assessment [9].

However, recently, data-driven methods have emerged to reduce the high cost of extensive
experimentation through the replacement of traditional simulation-based analysis with a quality by
design (QbD) system [10]. The manufacturing system can be made more productive and efficient
through the adoption of data science analysis methods. In the recent years, the continuous tablet
manufacturing system is one of the most notable applications of data science-driven innovation [11].
The genomic data analysis-based development of drugs is used in clinical practice to reduce the cost of
gathering the three billion human DNA [24].

A data science-based approach to the medical or pharmaceutical industry starts with the generation
of data (electronic medical records (EMR) and electronic health records (HER)) related to medical,
health, or clinical use and the transmission and storage of the data in the medical information system.
The stored data are integrated and analyzed by a comprehensive clinical research approach dealing
with data regarding genes, transcripts, proteins, and metabolites, known as omics. Interestingly,
the omics-based services are also provided by traditional information technology companies as well as
traditional medical care company [25].

The data science-based innovation or R&D begins with the measurement of highly utilizable
data suitable for data science. Recent data science environments require high-performance hardware
and time, to develop data science-based analytical models. However, for analysis and measurement,
it is possible to operate even if the hardware is small and has a low performance capability. With the
universalization of the wireless internet and the use of cloud-based services, small devices are
now able to measure, analyze, store, and manage data and results for users, through network
communications without the necessity for separate storage. In addition, with the popularization
of the smartphone, most people have access to high-performance computing and wireless network
equipment. Thus, the development of measuring equipment in such a technological environment,
can be used as a means to secure competitiveness by lowering users’ entry barriers in healthcare
services. Additionally, the development of multi-purpose health care measurement equipment has the
advantage of applicability across various methods of service [13,14].

Personalized pharmaceutical services have also been developed by the application of 3-dimensional
printing tools. The first approval of a 3D printed drug was announced in August 2015. As 3D-printed
drugs are in the early stages of innovation, additional time will be required before they are suitable for
clinical and general use by the customer. However, the 3D-printed drug technology has an enormous
potential for innovation [26,27].

A role for data science in the pharmaceutical industry has been suggested in various forms within
the integrated value chain. It begins with the generation of patient data, followed by the application of
the generated and measured patient data in the conduction of large-scale clinical trials, and, finally,
the production and distribution of personally optimized drugs based on the results of clinical research.
The administration of an optimized drug generates clinical trial data, and the data subsequently
obtained from the dose can be further utilized as clinical research, resulting in a virtuous cycle that
improves the accuracy of the optimized drug [13,14].
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3. Methodology

Many previous studies have provided micro evidence for the success of data science-driven
pharmaceutical innovation; however, empirical and macro evidence is lacking. Therefore, to identify
the empirical evidence of multidisciplinary innovation in the pharmaceutical industry, this study
applied association rules and generated a map identifying the relationship between various fields
of technology [28,29]. This study used the R project (version 3.4.3) with the packages ‘arules’ and
‘arulesViz’ to calculate association rules and visualize association maps [30–32].

3.1. Calculation of Association Criteria

Association rules show a meaningful and associated relationship through the calculation of the
conditional probability among the items [33]. In this study, an item represents an International Patent
Classification (IPC) code of some patent, and a transaction represents a patent of some transaction set.
A transaction set is a set of granted patents for a particular analysis period. The authors divided the
analysis period into several parts by taking into consideration the features of data set and results from
previous studies. Details of the criteria for division of the analysis period are described in Section 3.3.

To obtain meaningful association rules and a relationship between technologies, it is necessary
to select the correct evaluation criteria. There are three well-known criteria: support, confidence,
and lift [28,29,33,34].

The concept of support is based on conditional probability. Support is defined as shown in
Equation (1). The ix and iy of under every equation represents an item (an IPC code).

support
(
ix → iy

)
=

number of transactions including both ix and iy

total number o f transactions
= P

(
ix

⋂
iy
)
. (1)

As the value of support of a certain transaction approaches 1, they (the items of the transaction)
are considered to be more related. In other words, the greater the relative frequency is within the total
transactions in a set, the closer the value is to 1.

The confidence of ix and iy can be calculated from Equation (2).

con f idence
(
ix → iy

)
=

number of transactions including both ix and iy

total number o f transactions including ix
= P

(
iy
∣∣∣ix) (2)

This simple Equation (2) is a conditional probability. This simple equation is useful to understand
the direction of the relationship between ix and iy. The value of support, support

(
ix → iy

)
is the same as

support
(
iy → ix

)
. The difference in a pair of supports is understood as the size and direction of causal

relationship [29].
The third criterion is lift. The lift can be calculated from the Equation (3).

li f t
(
ix → iy

)
=

con f idence
(
ix → iy

)
support

(
iy
) =

P
(
iy
∣∣∣ix)

P
(
iy
) =

P
(
ix

⋂
iy
)

P(ix)P
(
iy
) (3)

As shown in Equation (3), the lift is calculated by applying confidence and support. The lift is not
a type of probability. Therefore, it can converge to infinity. The value of lift represents the relationship
of a transaction. If li f t

(
ix → iy

)
is 1, ix and iy are independent of each other. If li f t

(
ix → iy

)
is bigger

than 1, ix and iy have a complementary relationship to each other. If li f t
(
ix → iy

)
is smaller than 1,

ix and iy have a substitutional relationship with each other [29].

3.2. Data

This study has retrieved a set of patent data from the KIPRIS (Korea Intellectual Property Rights
Information Service) website [35]. The dataset was retrieved by search queries, including a combination
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of key words for three fields (title, abstract, and claim) and the technology classification codes for the
IPC (International Patent Classification) field [21,36]. The search queries are summarized in Table 1.

Table 1. Search queries.

Field Contents
Operator

Intra Field Inter Field

IPC
(International

Patent
Classification)

IPC =
(A61B5/00+A61B6/50+A61B6/52+A61B8/52+G01S+G01S
5/0278+G01V+G06F11/00+G06F16+G06F17/00+G06F17/2
0+G06F17/21+G06F17/2264+G06F17/27+G06F17/28+G06
F17/30+G06F17/30002+G06F17/30047+G06F17/30067+G0
6F17/30076+G06F17/30153+G06F17/30194+G06F17/3026
8+G06F17/30289+G06F17/30312+G06F17/30318+G06F17
/30386+G06F17/3061+G06F17/30734+G06F17/30861+G06
F19/00+G06F19/18+G06F19/28+G06F19/30+G06F21/31+
G06F21/50+G06F21/60+G06F21/6245+G06F3/01+G06F3
/048+G06F9/00+G06K7/00+G06K7/1413+G06K9/00+G06Q
+G08B21/00+G08B21/0205+G16B20+G16B50+G16C+G16
H+G16Z99/00+H04L43/16+H04L9/32+H04M1/00+H04M
1/725+H04N1/00+H04N21/00+H04N21/4135+H04N21/4

5+H04N5/232+H04Q9/00)

Or(+)

And(*)

Title TL = [(Pharmaceutical+pharmacy+pharmacies)] Or(+)
Or(+)Abstract AB = [(Pharmaceutical+pharmacy+pharmacies)] Or(+)

Claim CL = [(Pharmaceutical+pharmacy+pharmacies)] Or(+)

As shown in Table 1, the queries have focused on pharmaceutical technology, including techniques
related to data science. The combination of IPC codes refers to reports from KIPO (Korea Intellectual
Property Office) that identify data technology IPC codes [37,38]. The retrieved data is summarized in
Table 2.

Table 2. Search results.

China
(CN)

Europe
(EP)

Japan
(JP)

United
States (US)

Other
Countries Total

Applied patent count 460 486 300 4375 540 6161
(weight) (7.5%) (7.9%) (4.9%) (71.0%) (8.8%) (100.0%)
Rank of application 3 2 4 1
Granted patent count 16 131 118 1856 100 2221
(weight) (0.7%) (5.9%) (5.3%) (83.6%) (4.5%) (100.0%)
Rate of granted 3.5% 27.0% 39.3% 42.4% 18.5% 36.0%
Rank of granted 4 3 2 1

3.3. Descriptive Statistics

As shown in Table 2, the total number of applications between 1975 and 2018 was 6161. The country
with the highest number of applications was the United States (US), with 4375 applications; the US
was also the most successful country with a 42.4% of granted ratio. The US holds the largest number of
granted patents in the dataset. China made the second-highest number of applications. In contrast to
the, U.S.; China has a very low granted ratio (3.5%) and applied patent count (460).

In this study, the authors used patents from the popular triadic patent family of the United
States, Europe, and Japan as the analysis sample [39]. Even for this popular triadic patent family,
pharmaceutical-granted patent rate was low. The granted patent rate was 27.0%; thus, even the granted
patent rate for the US did not exceed 50%. To avoid presenting results that contained insignificant
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information, disqualified patents were excluded. Thus, this study used only granted patent data.
Finally, to reflect the characteristics of recent technology, the author restricted the sampling period.

As shown in Table 3, retrieved patent data counts rapidly increased in the year 2000. In the, U.S.;
14 patents were granted in 1999 and 53 patents were granted in 2000. Japan had zero granted patents
in 1999 but a granted patent count in 2000. Europe slowly started to increase the patent count as
compared with the US and Japan.

Table 3. Yearly granted patent counts by country [35].

China (CN) Europe (EP) Japan (JP) United States (US) Other Countries Total

1975 0 0 0 0 0 0
1976 0 0 0 0 0 0
1977 0 0 0 1 0 1

...
...

1997 0 1 1 12 2 16
1998 0 2 0 9 1 12
1999 0 6 0 14 4 24
2000 0 3 4 53 3 63
2001 1 12 3 66 6 88
2002 3 6 8 59 7 83
2003 3 13 5 87 8 116
2004 1 6 2 79 5 93
2005 3 7 7 91 8 116
2006 1 9 5 108 7 130
2007 1 6 7 137 2 153
2008 1 8 6 107 11 132
2009 1 4 12 118 7 142
2010 1 9 4 148 8 170
2011 0 6 8 114 5 133
2012 0 10 8 138 1 157
2013 0 3 10 136 2 151
2014 0 6 12 131 2 151
2015 0 6 5 105 0 116
2016 0 2 4 59 5 70
2017 0 0 3 42 0 45
2018 0 0 1 14 0 15

Total 16 131 118 1856 100 2221

As shown in Figure 1, the rapid growth of yearly granted patent counts stopped after 2007,
and has fluctuated until 2015. From 2016 to 2018, granted patent counts were dramatically decreased
as the patent database system did not include and reflect the patent information for the previous three
years. Thus, this study uses patent data from 2000 to 2015 for empirical analysis. The total number
of granted patents from 2000 to 2015 was 1994, and the number of granted patents of the triadic
countries, for the same period, was 1897. From 2000 to 2007, the total number of granted patents was
842, and the number of granted patents of the triadic countries was 783. From 2008 to 2015, the total
number of granted patents was 1152, and the number of granted patents of triadic countries was 1142.
The number of granted patents means the number of transactions of some set.

To provide a greater confidence on the breaking point of the innovation regime change, the authors
checked the granted patent ratio for the dataset.
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As shown in Figure 2, dramatic changes in the cumulative granted patent ratio can be easily
identified by country. Since 2000, each country has shown different behaviors in cumulative granted
patent ratio. The cumulative granted patent ratio in the US has decreased significantly. This may
have resulted due to the rapidly increased activities in patent application. From 1975 to 1999, the
cumulative granted patent count was 30. Subsequently, the US granted 31 patents in the following
years. This could signal the change in the technological regime, from the active implementation of
the innovation model, to a science-based pharmaceutical innovation. Thus, the focus of innovation
activities progressed to the still developing science-based pharmaceutical innovations.
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4. Results and Discussion

In this section, this study will present the association rules and maps representing the relationship
of technologies for a specific innovation regime. The period between 2000 and 2007 was assumed to
represent science-based innovation in the pharmaceutical industry. Data science-based innovation in
the pharmaceutical industry has been represented by the period between 2008 and 2015. Moreover,
this study has provided an in-depth discussion of the results from the perspective of the technological
innovation theory.

This study set the minimum value of 0.01 for confidence and support. Therefore, the results
showed only the association rules when the confidence and support exceed the minimum value.

4.1. Association Rule and Map of Science Based Pharmaceutical Technology

This section shows the association rules and map of the pharmaceutical patent data from 2000
to 2007. As shown in Figure 3, we found three big clusters with certain IPC codes as the centroid.
The IPC codes located as the centroid were A61B5, G06Q50, and G06F19. First, Figure 3 showed
some IPC codes surrounding A61B5 and the codes A61B8, A61B10, A61K49, A61K52, and G06Q50,
which have a relationship with A61B5. Second, the IPC codes surrounding G06Q50, that is A61B5,
G06Q10, Q06Q30, and G06Q40, which have a relationship with G06Q50, are shown in Figure 3. Third,
the IPC codes surrounding G06F19, that is A61M5, C12Q1, G01N33, G06G7, G06Q30, and G06Q40,
which have a relationship with G06F19, are shown in Figure 3. Detailed information of Figure 3 is
shown in Tables A1–A3 of Appendix A.
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The IPC code located as the centroid has a relationship from some surrounding codes and a
relationship towards some other surrounding codes. The feature of the centroid IPC code is that
the relationship from surrounding IPC code to centroid IPC code has a higher confidence than the
confidence of relationship from the centroid to the surrounding IPC code. This characteristic means
that the technology corresponding to the centroid IPC code dispreads and is more commonly used
when new patents or technology are invented. Furthermore, it would imply that the technology
corresponding to the centroid IPC code is adopted, together with technologies corresponding to
surrounding IPC code, but that the precedence of technology corresponding to the centroid IPC code
would be an efficient way to invent technology and receive patents.

As another characteristic of the centroid IPC code, the centroid IPC code has a relationship with
other centroid IPC codes. For example, the IPC code G06Q50 has a relationship with A61B5, and also
the G06Q50 has a relationship with G06F19 through intermediate IPC codes, as shown in Figure 3.
The code A61B5 has a relationship with G06Q50 and no relationship with G06F19. Actually, there is
a direct relationship between the centroid IPC codes, but it is not weighty enough to be shown in
Figure 3. The less weighty and directly connected relationships between the centroid IPC codes are
presented in Table 4.

Table 4. Various relationships of centroids of clusters in the science-based pharmaceutical innovation
period (2000–2007).

Centroid Support Confidence Lift Relationship Count
From To

Panel A: Single component and directly connected relationship between centroids of cluster

G06Q50 G06F19 0.059 0.177 0.693 Substitutive 46
G06F19 G06Q50 0.059 0.170 0.693 Substitutive 46

A61B5 G06F19 0.054 0.231 0.903 Substitutive 42
G06F19 A61B5 0.054 0.210 0.903 Substitutive 42

A61B5 G06Q50 0.042 0.181 0.739 Substitutive 42
G06Q50 A61B5 0.042 0.172 0.739 Substitutive 42

Panel B: Relationship from multi-components involving centroids of cluster to centroid of cluster

G06F19, G06Q10

A61B5

0.037 0.630 2.712 Complementary 29
G06Q10, G06Q50 0.034 0.290 1.249 Complementary 27
G06F19, G06Q50 0.033 0.765 3.290 Complementary 26
G06F19, G06Q10, G06Q50 0.032 0.926 3.984 Complementary 25

A61B5, G06Q10

G06F19

0.037 0.853 3.339 Complementary 29
G06Q10, G06Q50 0.034 0.290 1.137 Complementary 27
A61B5, G06Q50 0.033 0.788 3.085 Complementary 26
A61B5, G06Q10, G06Q50 0.032 0.926 3.625 Complementary 25

A61B5, G06Q10

G06Q50

0.034 0.794 3.239 Complementary 27
G06F19, G06Q10 0.034 0.587 2.394 Complementary 27
A61B5, G06F19 0.033 0.619 2.525 Complementary 26
A61B5, G06F19, G06Q10 0.032 0.862 3.516 Complementary 25

783 granted patents were used for analysis

Table 4 shows the relationships of G06Q10 with G06F19, A61B5 with G06F19, and A61B5 with
G06Q50. The feature of panel A in Table 4 is that all relationships are substitutive, because every value
of lift is less than one. However, the substitutive extent was different. The relationship between A61B5
and G06Q10 was 0.903. As that was close to one, most of the last substitutive relationships were in
panel A of Table 4. G06Q50 has a relationship with G06F19 and A61B5. The relationships involving
G06Q50 show a lower lift value than the relationship between A61B5 and G06F19. The lift value of
the relationship between G06Q50 and G06F19 is 0.693, which is the most substitutive and lowest lift



Processes 2019, 7, 492 10 of 18

value in panel A of Table 4. The lift value of the relationship between A61B5 and G06Q50 was 0.739.
Interestingly, the multi-component, which is the combination of centroid IPC codes and other IPC
codes, always showed a complementary relationship toward the centroid IPC codes, as shown in
panel B of Table 4. This had two implications. The first is that there was a need to develop combined
technology in addition to single and independent technologies. The second is that the technologies
of each cluster were developed simultaneously and were then developed independently by cluster.
Moreover, the relationship from the triple component to the centroid of clusters showed the highest lift
value, other than the relationship of multi-component cases, as shown in panel B of Table 4.

4.2. Association Rule and Map of Data-Science Based Pharmaceutical Technology

This section shows the association rules and map of pharmaceutical patent data from 2008 to
2015. There were two clusters encircled by different IPC codes, as shown in Figure 4. The IPC codes
located as the centroid are A61B5 and G06F19. First, A61B5 is surrounded by A61K9, A61J3, A61N1,
A61B6, A61M5, A61K38, and A61K51. Secondly, G06F19 is surrounded by C12Q1, A61J1, B65G1,
B65B5, C07K14, G07F11, G06F7, A61K38, and A61M5. Detailed information of Figure 4 is shown in
Tables A4 and A5 of Appendix A.
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Broadly, the IPC codes are divided into two group in Figure 4. The majority of IPC codes starting
with A61 are linked with the A61B5 cluster and the majority of IPC codes starting with G06 are linked
with the G06F19 cluster. In particular, there are intermediate IPC codes between A61B5 and G06F19,
that is, A61K38 and A61M5.



Processes 2019, 7, 492 11 of 18

The relationship between A61B5 and G06F19 is shown in Table 5. The relationship between
centroid cluster A61B5 and G06F19 was substitutive and the lift value of the relationship was 0.549.
The interesting point was that the multi-component’s relationship was different according to object IPC
code. The relationship toward G06F19 was complementary, but the relationship toward A61B5 was
substitutive in panel B of Table 5. Every relationship from multi-component to centroid IPC code (A61B5)
was complementary except the case involving G06F19, as shown in Table A4 of Appendix A. Moreover,
every relationship from the multi-component to centroid IPC code (G06F19) was complementary,
as shown in Table A5 of Appendix A. This implied that there was a need to develop combined
technology compared with single and independent technologies when the purpose of developing the
technology was represented by G06F19. Further, it implied that technology represented by A61B5 was
developed as a precedent technology for the technology represented by G06F19.

Table 5. Directly connected relationship between centroids of cluster for data science-based
pharmaceutical innovation period (2008–2015) [35].

Centroid Support Confidence Lift Relationship Count
From To

Panel A: Single component and directly connected relationship between centroids of cluster

A61B5 G06F19 0.036 0.187 0.549 Substitutive 40
G06F19 A61B5 0.036 0.106 0.549 Substitutive 40

Panel B: Relationship from multi component involving centroids of cluster to centroid of cluster

G06F19, G06Q50
A61B5

0.013 0.138 0.716 Substitutive 15
G06F19, G06Q10 0.011 0.143 0.744 Substitutive 12

A61B5, G06Q50
G06F19

0.013 0.789 2.321 Complementary 15
A61B5, G06Q10 0.011 0.857 2.519 Complementary 12

1114 granted patents were used for analysis

Table 6 shows the relationships between intermediate IPC codes (A61M5 and A61K38), and between
A61B5 and G06F19. The lift value from A61M5 to A61B5 was 2.740, and the lift value from A61M5
to G06F19 was 1.470. The relationship from A61M5 to A61B5 was more complementary, higher than
1.270, than the relationship from A61M5 to G06F19. The lift value from A61K38 to A61B5 was
2.314, and the lift value from A61K38 to G06F19 was 1.524. The relationship from A61K38 to A61B5
was more complementary, higher than 0.79, compared to the relationship from A61K38 to G06F19.
This implied that there was a need for the precedent development of technologies represented by
A61M5 and A61K38.

Table 6. Relationships of centroids located between clusters A61B5 and G06F19 in the data science-based
pharmaceutical innovation period (2008–2015) [35].

Centroid Support Confidence Lift Relationship Count
From To

A61M5
A61B5 0.018 0.526 2.740 Complementary 20
G06F19 0.017 0.500 1.470 Complementary 19

A61K38
G06F19 0.013 0.519 1.524 Complementary 14
A61B5 0.011 0.444 2.314 Complementary 12

1114 granted patents were used for analysis
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4.3. Discussion

In this section, we will focus on the differences between the science-based period and the data
science-based period to illuminate data-driven technological innovation in the pharmaceutical industry.
The differences are summarized in Table 7.

Table 7. Summary of differences between science-based innovation and data science-based innovation.

Technological Innovation Regime

Science-Based Innovation Data science-Based Innovation

Panel A: Technological innovation characteristics

Purpose Inventing new pharmaceutical
entity

Inventing service or personalized,
and qualified pharmaceutical

entity
Strategy Reducing failure in invention Serviceable invention

Advantage High return Low risk
Disadvantage High risk Medium return

Panel B: Association rule and map

Centroid IPC code A61B5, G06F19, G06Q50 A61B5, G06F19
Relationship among IPC code

Among centroid Substitutive Substitutive
From multi component to centroid Complementary Different according to centroid

Intermediate IPC code
Between A61B5 & G06F19 G06Q50 A61M5, A61K38

Between G06F19 & G06Q50 G06Q40, G06Q30
IPC code surrounding centroid

A61B5
Co-existing A61K51 A61K51

Different G06Q50, A61B8, A61B10, A61K49 A61M5, A61K38, A61K9, A61J3,
A61N1, A61B6

G06F19
Co-existing A61M5, C12Q1 A61M5, C12Q1

Different G06G7, G06Q30, G06Q40, G01N33 A61K38, G06F7, G07F11, C07K14,
B65B5, B65G1, A61J1

G06Q50 A61B5, G06Q10, G06Q40, G06Q30

First, the most remarkable difference existed in the intermediate IPC code between two periods.
In the science-based innovation period, the centroid IPC codes were A61B5, G06Q50, and G06F19,
and the intermediate IPC code between A61B5 and G06F19 was G06Q50. In the data science-based
innovation period, the centroid IPC codes were A61B5 and G06F19, and the intermediate IPC code
between A61B5 and G06F19 was A61M5 and A61K38. The most remarkable difference was that the
intermediate technology changed from G06Q50 to A61K38 and A61M5.

A61M5 has no relationship with A61B5; it only has a relationship with G06F19 from 2000 to 2007.
However, A61M5 has a complementary relationship with both A61B5 and G06F19. A61M5 represents
“devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way,”
as shown in Table A6 of Appendix A. This implied that the technology represented by A61M5 was
more necessary and was invented during the development of clinical testing in the data science-based
innovation period.

A61K38 represents “medical preparations containing peptides,” as shown in Table A7 of
Appendix A. The appearance of technology that used peptides in the data science-based innovation
period may reflect the increase in the use of omics-based technologies [25]. In addition, we found
similar cases showing directly connected and complementary relationships for digital computing
(G06F19) and chemical materials (C07K14).
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The direct relationship of A61B5 and G06F19 has changed. The lift value of A61B5 and G06F19
has decreased, and the difference was 0.354. This implied that the independent development of
technology A61B5 and G06F19 occurred less frequently in the science-based innovation period than in
the data science-based innovation period. Moreover, as described in Section 4.2, the precedence for
development has been established. Thus, it may be implied that the relationship of technology has
become more strict and concrete owing to the accumulation of technological development.

Differences also existed in surrounding IPC codes. A61J3 represented “devices or methods
specially adapted for bringing pharmaceutical products into particular physical or administering
forms.” The appearance of A61J3 may have indicated the invention for personalized drug forms, such as
tablets printed by 3D printers [27]. The appearance of B65B5, representing “packaging individual
articles in containers or receptacles,” and B65G1, representing “storing articles, individually or in orderly
arrangement, in warehouses or magazines,” implied the occurrence of inventions for data processing
technology dealing with personalized information [6,7,25] as shown in Table A7 of Appendix A.

Overall, the empirical results showed some agreement with the literature reviews. Specifically,
some results indicated the invention of personalized and qualified services, and some results
indicated the features of data science-based pharmaceutical characteristics in the discipline (omics).
As summarized in Table 7, the suggested results and implications of data science-based pharmaceutical
innovations are expected to bring about changes in the pharmaceutical industry to reduce risk and
obtain medium return compared with the science-based innovation period.

We proposed an in-depth discussion about the most noteworthy IPC code ‘A61B5′ that refers
to “measuring for diagnostic purposes.” The following interpretation of the observations of ‘A61B5′

were presented. Development of a measuring device may be relatively easier than the development of
an analytical algorithm. Pharmaceutical companies have been competing through the development
of measuring instruments. Traditional measuring equipment lacked sufficient potential to provide
numerous and frequent measurements suitable for data science-based research. In addition, A61B5 may
be included in patents to reflect the corresponding technical features as secondary or incidental technical
components, rather than as a major component of the patent. Nevertheless, A61B5 has been included
in many patents owing to the pharmacological industry’s data science-based innovation or business
model generally including measurement and diagnostic technology as one of the technical features.

5. Conclusions

This paper presents an analysis of patent data distinguished by the period according to the
technological innovation regime. The first period, that is science-based innovation, in which
pharmaceutical innovation activity was based on simulation, focused on ways to find new NMEs,
which involved high return but also high risk. During the second period, that is data science-based
innovation, pharmaceutical innovation activity attempted to apply new ways to use data involving
personal characteristics and information to identify services and products.

This study attempted to find macro evidence and trends in pharmaceutical innovation activity by
using patent data. The empirical results characterized data science-based innovation technology and
the points of accordance with the literature review. Despite these efforts to find macro trends, this
study has limitations; thus, the accordance of empirical results with the literature review should be
developed further to identify a more direct association.
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Appendix A

Table A1. Relationships of clusters in the science-based pharmaceutical innovation period (2000–2007).

Centroid Support Confidence Lift Relationship Count
From To

G06F19

A61B5

0.054 0.210 0.903 Substitutive 42
G06Q10 0.043 0.187 0.804 Substitutive 34
G06Q50 0.042 0.172 0.739 Substitutive 33
A61B8 0.041 1.000 4.302 Complementary 32
A61B10 0.040 1.000 4.302 Complementary 31
A61B10, A61B8 0.038 1.000 4.302 Complementary 30
G06F19, G06Q10 0.037 0.630 2.712 Complementary 29
G06Q10, G06Q50 0.034 0.290 1.249 Complementary 27
G06F19, G06Q50 0.033 0.765 3.290 Complementary 26
G06F19, G06Q10, G06Q50 0.032 0.926 3.984 Complementary 25
A61K49 0.015 0.923 3.971 Complementary 12
A61K51 0.010 0.800 3.442 Complementary 8

A61B5

G06F19 0.054 0.231 0.903 Substitutive 42
G06Q50 0.042 0.181 0.739 Substitutive 33
G06Q10 0.043 0.187 0.804 Substitutive 34
A61B8 0.041 0.176 4.302 Complementary 32

A61B10 0.040 0.170 4.302 Complementary 31

Table A2. Relationships of clusters in the science-based pharmaceutical innovation period (2000–2007).

Centroid Support Confidence Lift Relationship Count
From To

G06Q10

G06F19

0.059 0.253 0.990 Substitutive 46
A61B5 0.054 0.231 0.903 Substitutive 42
G06Q50 0.043 0.177 0.693 Substitutive 34
A61B5, G06Q10 0.037 0.853 3.339 Complementary 29
G06Q10, G06Q50 0.034 0.290 1.137 Complementary 27
A61B5, G06Q50 0.033 0.788 3.085 Complementary 26
A61B5, G06Q10, G06Q50 0.032 0.926 3.625 Complementary 25
G01N33 0.023 0.692 2.710 Complementary 18
G06Q30 0.015 0.324 1.270 Complementary 12
A61M5 0.014 0.846 3.313 Complementary 11
G06Q40 0.013 0.192 0.753 Substitutive 10
G06G7 0.011 0.900 3.524 Complementary 9
C12Q1 0.010 0.615 2.409 Complementary 8

G06F19
G06Q10 0.059 0.230 0.990 Substitutive 46
A61B5 0.054 0.210 0.903 Substitutive 42

G06Q50 0.043 0.170 0.693 Substitutive 34
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Table A3. Relationships of clusters in the science-based pharmaceutical innovation period (2000–2007).

Centroid Support Confidence Lift Relationship Count
From To

G06Q10

G06Q50

0.119 0.511 2.084 Complementary 93
G06F19 0.043 0.170 0.693 Substitutive 34
A61B5 0.042 0.181 0.739 Substitutive 33
A61B5, G06Q10 0.034 0.794 3.239 Complementary 27
G06F19, G06Q10 0.034 0.587 2.394 Complementary 27
A61B5, G06F19 0.033 0.619 2.525 Complementary 26
A61B5, G06F19, G06Q10 0.032 0.862 3.516 Complementary 25
G06Q40 0.028 0.423 1.725 Complementary 22
G06Q30 0.014 0.297 1.212 Complementary 11
G06Q10, G06Q40 0.013 0.667 2.719 Complementary 10

G06Q50

G06Q10 0.119 0.484 2.084 Complementary 93
G06F19 0.043 0.177 0.693 Substitutive 34
A61B5 0.042 0.172 0.739 Substitutive 33

G06Q40 0.028 0.115 1.725 Complementary 22

Table A4. Relationships of clusters in the data science-based pharmaceutical innovation period
(2008–2015).

Centroid Support Confidence Lift Relationship Count
From To

A61K49

A61B5

0.050 0.966 5.026 Complementary 56
G06F19 0.036 0.106 0.549 Substitutive 40
A61B8 0.034 0.927 4.825 Complementary 38
A61B10 0.031 1.000 5.206 Complementary 35
A61B10, A61B8 0.029 1.000 5.206 Complementary 32
A61B8, A61K49 0.028 0.969 5.043 Complementary 31
A61B10, A61K49 0.027 1.000 5.206 Complementary 30
A61B10, A61B8, A61K49 0.027 1.000 5.206 Complementary 30
G01N33 0.027 0.462 2.403 Complementary 30
A61K31 0.025 0.500 2.603 Complementary 28
A61K51 0.019 0.955 4.969 Complementary 21
A61K9 0.019 0.656 3.416 Complementary 21
A61M5 0.018 0.526 2.740 Complementary 20
A61K49, G01N33 0.017 1.000 5.206 Complementary 19
A61N1 0.015 0.944 4.916 Complementary 17
A61K49, A61K51 0.014 1.000 5.206 Complementary 16
A61B6 0.013 0.833 4.338 Complementary 15
G06F19, G06Q50 0.013 0.138 0.716 Substitutive 15
A61B8, G01N33 0.013 1.000 5.206 Complementary 14
A61B8, A61K49, G01N33 0.013 1.000 5.206 Complementary 14
A61J3 0.013 0.452 2.351 Complementary 14
A61B10, G01N33 0.012 1.000 5.206 Complementary 13
A61B10, A61B8, G01N33 0.012 1.000 5.206 Complementary 13
A61B10, A61K49, G01N33 0.012 1.000 5.206 Complementary 13
A61B10, A61B8, A61K49,
G01N33 0.012 1.000 5.206 Complementary 13

A61K38 0.011 0.444 2.314 Complementary 12
G06F19, G06Q10 0.011 0.143 0.744 Substitutive 12

A61B5

A61K49 0.050 0.262 5.026 Complementary 56
G06F19 0.036 0.187 0.549 Substitutive 40
A61B8 0.034 0.178 4.825 Complementary 38

A61B10 0.031 0.164 5.206 Complementary 35
G01N33 0.027 0.140 2.403 Complementary 30
A61K31 0.025 0.131 2.603 Complementary 28
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Table A5. Relationships of clusters in the data science-based pharmaceutical innovation period
(2008–2015).

Centroid Support Confidence Lift Relationship Count
From To

G06Q50

G06F19

0.098 0.308 0.905 Substitutive 109
G06Q10 0.075 0.327 0.961 Substitutive 84
G06F17 0.056 0.348 1.024 Complementary 62
G06Q10, G06Q50 0.054 0.397 1.168 Complementary 60
G07F17 0.048 0.885 2.602 Complementary 54
A61B5 0.036 0.187 0.549 Substitutive 40
A61J7 0.033 0.841 2.472 Complementary 37
G01N33 0.031 0.523 1.537 Complementary 34
G07F11 0.024 0.844 2.480 Complementary 27
G07F11, G07F17 0.023 0.867 2.547 Complementary 26
G06Q30 0.022 0.263 0.774 Substitutive 25
A61K31 0.021 0.411 1.207 Complementary 23
A61J1 0.020 0.786 2.309 Complementary 22
G06F7 0.019 0.525 1.543 Complementary 21
A61M5 0.017 0.500 1.470 Complementary 19
G06Q30, G06Q50 0.016 0.409 1.202 Complementary 18
G06F17, G07F17 0.015 0.895 2.630 Complementary 17
G06F17, G06Q50 0.015 0.586 1.723 Complementary 17
A61J7, G07F17 0.014 1.000 2.939 Complementary 16
G06Q50, G07F17 0.014 0.762 2.239 Complementary 16
B65B5 0.013 0.833 2.449 Complementary 15
A61B5, G06Q50 0.013 0.789 2.321 Complementary 15
G06F17, G06Q10 0.013 0.600 1.764 Complementary 15
G06Q10, G07F17 0.013 0.875 2.572 Complementary 14
A61K38 0.013 0.519 1.524 Complementary 14
B65G1 0.011 0.923 2.713 Complementary 12
A61B5, G06Q10 0.011 0.857 2.519 Complementary 12
C12Q1 0.011 0.750 2.204 Complementary 12
G06F17, G06Q10, G06Q50 0.011 0.667 1.960 Complementary 12
C07K14 0.011 0.632 1.856 Complementary 12
G06Q10, G06Q30 0.011 0.375 1.102 Complementary 12

G06F19

G06Q50 0.098 0.288 0.905 Substitutive 109
G06Q10 0.075 0.222 0.961 Substitutive 84
G06F17 0.056 0.164 1.024 Complementary 62
G07F17 0.048 0.142 2.602 Complementary 54
A61B5 0.036 0.106 0.549 Substitutive 40

Table A6. Description of IPC codes for the science-based innovation period (2000–2007).

IPC Code Description

A61B5 Measuring for diagnostic purposes
A61B8 Diagnosis using ultrasonic, sonic or infrasonic waves

A61B10 Other methods or instruments for diagnosis
A61K49 Preparations for testing in vivo
A61K51 Preparations containing radioactive substances for use in therapy or testing in vivo

G06F19 Digital computing or data processing equipment or methods, specially adapted for
specific applications

A61M5 Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way

C12Q1 Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions
therefor; Processes of preparing such compositions

G01N33 Investigating or analyzing materials by specific methods
G06G7 Devices in which the computing operation is performed by varying electric or magnetic quantities

G06Q50 Systems or methods specially adapted for specific business sectors
G06Q10 Administration, Management

(Between G06F19 and G06Q50)
G06Q30 Commerce, e.g., shopping or e-commerce
G06Q40 Finance; Insurance; Tax strategies; Processing of corporate or income taxes
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Table A7. Description of IPC codes for the data science-based innovation period (2008–2015).

IPC Code Description

A61B5 Measuring for diagnostic purposes
A61B6 Apparatus for radiation diagnosis

A61J3 Devices or methods specially adapted for bringing pharmaceutical products into particular
physical or administering forms

A61K9 Medicinal preparations characterized by special physical form
A61K51 Preparations containing radioactive substances for use in therapy or testing in vivo
A61N1 Electrotherapy; Magnetotherapy; Radiation therapy; Ultrasound therapy

G06F19 Digital computing or data processing equipment or methods, specially adapted for
specific applications

A61J1 Containers specially adapted for medical or pharmaceutical purposes
B65B5 Packaging individual articles in containers or receptacles
B65G1 Storing articles, individually or in orderly arrangements, in warehouses or magazines

C07K14 Peptides having more than 20 amino acids; Gastrin; Somatostatins; Melanotropins;
Derivatives thereof

C12Q1 Measuring or testing processes involving enzymes, nucleic acids or microorganisms;
Compositions thereof; Processes for preparing such compositions

G06F7 Methods or arrangements for processing data by operating upon the order or content of
the data handled

G07F11 Coin-freed apparatus for dispensing, or the like, discrete articles

Intermediate
A61K38 Medicinal preparations containing peptides

A61M5 Devices for bringing media into the body in a subcutaneous, intra-vascular or
intramuscular way
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