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Abstract: Studying the influence of the demand response and dynamic characteristics of the battery
energy storage on the configuration and optimal operation of battery energy storage system (BESS)
in the Wind-Photovoltaic (PV)-Energy Storage (ES) hybrid microgrid. A demand response model
that is based on electricity price elasticity is established based on the time-of-use price. Take the
capital-operating cost and direct economic benefit of the BESS and the loss of abandoned photovoltaic
and wind power as the optimization objective, an optimal configuration method that considers the
dynamic characteristics of the BESS and the maximum absorption of photovoltaic and wind power is
proposed while using particle swarm optimization to solve. The results show that the configuration
results considering the demand side response of the microgrid BESS can obtain better economy and
reduce the storage capacity requirement, and the result shows that the efficiency of BESS relates to the
load of the system, the distributed generation (DG) characteristics, and the dynamic characteristics of
BESS. Meanwhile, the capacity and power of the energy storage configuration increase as the DG
permeability increases due to the reverse load characteristic of the wind power.

Keywords: demand response; dynamic characteristics of batteries; optimal allocation; improved
particle swarm optimization

1. Introduction

At present, it is difficult to integrate and dissipate large-scale distributed new energy. How to
deal with the relationship between the output of distributed generation, energy storage system,
and demand-side load [1–3] has become a research focus. The energy storage system plays an
important role in coordinating the relationship of distributed power supply and the demand-side
load with its reliable characteristics of peak shaving and frequency modulation since the distributed
power supply and the demand side response load in the microgrid have great uncertainty. Reasonable
allocation of energy storage in distribution network planning is an effective way to improve consumption
of clean energy and efficiency of the system operation.

At present, some work has been done on the rational allocation of microgrid energy storage
capacity optimization. In [4], the discrete Fourier transform is used to decompose the unbalanced power
in the island-type microgrid into daily and hour components, which compressed air energy storage and
sodium-sulfur battery balance, respectively, and it builds an optimal configuration model for energy
storage capacity with a target for operating costs, etc. In [5], the selection of energy storage site and
volume optimization model is established with the system node voltage fluctuation, load fluctuation,
and total energy storage capacity as the target. The improved particle swarm optimization algorithm
is used to obtain the Pareto solution set and select the optimal access scheme for energy storage.
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In [6], an island microgrid optimal configuration model with wind/light/pumped energy storage that
considers load response is proposed, and the particle swarm algorithm is used to optimize the quantity
or capacity of the main equipment in the microgrid. In [7], an optimization p model, which includes
distributed generation sources, is proposed, in which the coordination of the energy storage system of
the distribution network and the interruptible load response on the demand side is achieved. In [8],
a robust optimization model for distribution network loss that is based on uncertainty of electricity
price is constructed, and the optimal operation strategy under different influencing factors is analyzed.
There are many researches on the optimized configuration of energy storage or demand side response
of distribution network. However, there are not many planning studies that consider energy storage
and demand side response at the same time. Existing studies have considered the impact of price-based
demand response on optimal configuration of distribution energy storage with distributed power
supplies less, and have seldom considered the dynamic model of the battery. The dynamic efficiency
and dynamic absorption characteristics of the energy storage system will inevitably have great impact
on the operation of the energy storage system, and the absence of these constraints in the model will
weaken the validity of the model. As all-vanadium redox flow battery (VRB) has the advantages of high
energy efficiency, fast response, many cycles, long life, and it has extremely good application prospects
in the fields of distributed generation, peak load shaving, and so on. Among many battery energy
storage systems, the all-vanadium flow battery energy storage system has gained wide attention due to
its comprehensive performance and large-scale application [9]. Accordingly, the application of VRB in
energy storage optimization configuration is a worthwhile research direction. Therefore, the optimal
allocation of energy storage in the microgrid network while considering the demand response and the
dynamic characteristics of the all-vanadium redox flow battery is a direction worthy of further study.

A demand response model based on electricity price elasticity is established on the basis of
peak-valley and time-of-use price to meet the needs of energy storage system with distributed
generation and its operation program. An energy storage operation strategy that is based on maximum
wind absorption is proposed while considering the dynamic characteristics of all-vanadium redox flow
battery. The influence of demand side response on the operation of the microgrid energy storage system
is studied taking the cost of BESS, direct economic benefit, and abandoned wind-photovoltaic loss of
the all-vanadium redox flow battery energy storage system as the optimization goal. The dynamic
programming algorithm was used to study the capacity optimization configuration and the dynamic
characteristics of the optimal BESS.

2. User Response Model Based on Demand Price Elasticity

There are two main ways in which the users respond to prices [10,11]: user’s single-time response
and multi-period user respond. The optimization configuration of energy storage system has low
requirements on the real-time price of electricity, and the user’s multi-period response mode is more in
line with the user’s common consumption behavior. Therefore, this paper will establish a multi-period
response model of electricity price to deal with the planning of energy storage system, with access to
distribution network. The elasticity of demand price reflects the ability of users to participate in market
regulation. The electricity-price elasticity index can express the correlation between user’s electricity
consumption and price. Article [12] pointed out that, based on the equilibrium relationship between
market supply and elastic demand, in the vicinity of the equilibrium point of the electricity market,
the electricity E and the electricity price e are approximately linear, and the expression is as follows:

E = −ae + b (1)

where a and b are the coefficients of the electricity price curve.
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Electricity-price elasticity indicates the change in electricity consumption that is caused by the
change in electricity price within a certain period of time, that is, the ratio of the rate of change of
electricity to the rate of change of electricity consumption. The expression is:

m =
∆E
E

(
∆e
e
)
−1

(2)

where m represents the electricity-price elasticity index, E and ∆E respectively represent the amount of
electricity and change in electricity, and e and ∆e respectively represent the amount of electricity price
and change in electricity price. In the time-sharing electricity price, the daily load is divided into three
periods: peak, flat, and valley. It is assumed that power companies implement single price before the
implementation of time-of-use prices, that is:

e f 0 = ep0 = eg0 = e0 (3)

Electricity price elasticity matrix M based on peak-to-valley and time-sharing electricity:

M =


m f f m f p m f g
mp f mpp mpg

mg f mgp mgg

 (4)

According to the Formulas (1)–(4), the self-elastic coefficient and the cross-elastic coefficient of the
peak, flat, and valley periods can be derived:

m f f =
−a f · ep f

−a f · ep f + b f
(5)

m f p =
a f · epp

−a f · ep f + b f
(6)

Similarly, the elastic coefficients of other time periods can be obtained. According to Formula (2),
the change in the amount of electricity after the change in the price of electricity is obtained, which is:

∆E = m · E · (∆ep/ep) (7)

Combined with the Formulas (4) and (6), the expression of the electricity consumption in the three
periods after the time-of-use price can be derived as

ETOU = E0 +


E f ,0 0 0

0 Ep,0 0
0 0 Eg,0

 ·M ·


∆ep f /e0

∆epp/e0

∆epg/e0

 (8)

In the formula, E0, ETOU, respectively, indicate the amount of electricity before and after the
implementation of electricity price; ETOU = [E f , Ep, Eg], E0 = [E f ,0, Ep,0, Eg,0], e0, and ∆ep f , ∆epp, ∆epg,
respectively, indicate the electricity price before the implementation of the time-of-use electricity price
and the electricity price difference between the time periods after implementation.

3. Battery Charging and Discharging Dynamic Model

The overall performance of VRB is optimal among the kinds of batteries. VRB has large capacity
and power, and its rated capacity and power can be independently designed. It has extremely good
application prospects in the fields of wind power and photovoltaic power generation for the advantages.
So we will apply it to the energy storage optimization configuration. The state of charge (SOC) is the
most important parameter for battery operation and represents the amount of electricity stored in the
battery [13]. The need to consider the dynamic characteristics of the VRB in order to carry out detailed
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model of the charging and discharging of the energy storage system is prominent. In general, the SOC
of VRB in the BESS can be calculated by Equation (9).

SOCt =


SOCt−1 −

PVRB,tT
ηd

VRBErated
VRB

SOCt−1 −
PVRB,tη

c
VRBT

Erated
VRB

(9)

where SOCt is the SOC value in time period t, T is the duration of each time period t, and Erated
VRB is the

rated capacity of the battery. The symbol d stands for discharging, which means that the battery is
discharging in this state, symbol c stands for charging, which means that the battery is charging in this
state. ηd

VRB and ηc
VRB are, respectively, the efficiency values of charging and discharging, as calculated

by Equations (10) and (11). PVRB,t is the output power of the energy storage system in time period t.
In the charging and discharging state of battery, the efficiency of VRB increases with the increase

of charging and discharging power PVRB. The variation range is large, and the relationship between
the charging and discharging efficiency of VRB and the state of charge SOC is also complicated.
In [14–17], based on the relationship between VRB, SOC, charge, and discharge power, the charging
and discharging efficiency of VRB is dynamically fitted. The fitting formulas are shown in (10) and
(11). Table A1 of Appendix A shows the fitting results.

ηc =
(acSOC + bc)PVRB(p.u.) + ccSOC + dc

PVRB(p.u.)
(10)

ηd =
PVRB(p.u.)

adPVRB(p.u.) + bdSOC(SOC− 1) + cd
(11)

where ηc, ηd are the charge and discharge efficiency values of VRB, respectively. ac, bc, cc, and dc are the
coefficients of VRB charging efficiency, and ad, bd, and cd are the coefficients of VRB discharge efficiency.

The maximum absorbed power Pab of VRB is limited by parameters, such as SOC. Article [14] fits
the relationship between the maximum absorbed power Pab and SOC, as shown in Equation (12).

Pab(p.u.) =
{

ac
abSOC2 + bc

abSOC + cc
ab

ad
abSOC2 + bd

abSOC + cd
ab

(12)

where ac
ab, bc

ab, cc
ab, ad

ab, bd
ab, cd

ab are the fitting coefficients, the fitting results are shown in Table A2 of
Appendix A. The symbol c stands for charging, and symbol d stands for discharging.

4. Energy Storage Optimization Configuration Taking Account of Battery Dynamics

4.1. Energy Storage Operation Strategy

Comprehensive analysis of wind output characteristics, BESS characteristics, and time-sharing
electricity price mechanism can be formulated with the largest wind and light consumption as the goal
of the battery charging and discharging strategy, as shown in Figure 1.

(1) According to the demand response situation, the time-of-use electricity price period is divided.
When the sum of photovoltaic, wind power output, and microgrid power supply to the upper-level
power grid is greater than the load demand, the BESS is charged, and it needs to meet:

PVRB < 0,
m1∑
i=1

Pwind,i +

m2∑
j=1

PPV, j + Pgrid,t > Pload (13)

where Pwind,I, Ppv,j are the wind power capacity of node i, the photovoltaic capacity of node j, and Pload,t
is the load of t period, Pgrid,t is the power consumption of the upper-level grid, which depends on the
planned output in t-time.
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(2) The battery energy storage system preferentially discharges when compared to conventional
energy sources when the sum of photovoltaic, wind power output, and microgrid network power
supply to the upper power grid is less than the load demand, and it needs to meet:

PVRB > 0,
m1∑
i=1

Pwind,i +

m2∑
j=1

PPV, j + Pgrid,t < Pload (14)

PVRB(t) =
{
ηVRBPab(p.u.)Prated

VRB
, |Pcx| > ηVRBPab(p.u.)Prated

VRB

Pcx, |Pcx| ≤ ηVRBPab(p.u.)Prated
VRB

(15)

where Pab(p.u.) is the maximum absorbed power of VRB and Pcx is the power deviation between the
system and the stored energy, which can theoretically charge or discharge to the BESS. ηVRB is the
battery charging and discharging efficiency that is determined by the Formulas (10) and (11). Prated

VRB is
the rated installation power of the BESS.

(3) The BESS of VRB must have a certain margin to ensure the supply of emergency load,
which must meet:

SOCVRB · Erated
VRB
≥ Eresv (16)

where, Eresv is the energy that is required to ensure the emergency load power supply. SOCVRB is the
state of charge of the all-vanadium redox flow battery, which can be calculated by Formula (9). Erated

VRB
is

the rated capacity of VRB energy storage system.
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Figure 1. Energy storage of vanadium redox flow battery battery system operation strategy. 
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fixed investment cost and operating cost Ctol of the VRB energy storage system, the other is the direct 
economic benefit of the energy storage system Bdir, and the third Cpv is the abandoned wind and pho-
tovoltaic power of the VRB energy storage system. 

Figure 1. Energy storage of vanadium redox flow battery battery system operation strategy.

4.2. Target Optimization Function

The objective function F of the optimal configuration of the battery energy storage system can be
constructed according to the economic indicators of the battery energy storage system.

The objective function F that was constructed in this chapter consists of three parts: one is the
fixed investment cost and operating cost Ctol of the VRB energy storage system, the other is the direct
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economic benefit of the energy storage system Bdir, and the third Cpv is the abandoned wind and
photovoltaic power of the VRB energy storage system.

F(Prated
VRB, Erated

VRB) = Ctol − Bdir + Cpv (17)

where Prated
VRB and Erated

VRB are the decision vectors for the installation power and installation capacity of
the VRB energy storage system. The calculation formulas of Ctol, Bdir and Cpv must be separately
constructed in order to calculate the objective function F.

(1) Calculation of the cost of total VRB energy storage system Ctol

The cost of the BESS Ctol consists of two parts, namely, one-time investment cost (Cfix) and
operation and maintenance cost (Com). A large number of studies have shown that Cfix increases
linearly with the increase of the capacity of the BESS during the day [18,19], and Com is mainly related
to the rated power of the energy storage battery.

Ctol = C f ix + Com

C f ix = k1Prated
VRB + k2Erated

VRB
Com = k1Prated

VRBβ
(18)

Among them, k1 and k2 are the coefficients of the cost of the battery energy storage system, which
is related to the electrical material technology, and β is the conversion coefficient of the operation and
maintenance cost, converted into the initial power cost.

(2) Calculation of economic benefits of the battery energy storage system Bdir

Bdir =
n∑

i=1

t2∫
t=t1

PVRB,iηpe(t)dt (19)

where n is the number of discharge periods of the energy storage system, i is the section of the battery
energy storage system in the [t1, t2] interval, and PVRB is the output of the battery energy storage
system. The dynamic efficiency characteristics of the flow battery. η is the efficiency of the converter,
which is considered to be a fixed value of 95%. pe(t) is the price of real-time user electricity that was
sold during the day.

(3) Calculation of abandoned wind and light loss Cpv in the battery energy storage system

Cpv =

24∫
t=0

(
Pwind + PPV + Pgrid,t + PVRB − Pload

)
dt (20)

4.3. Energy Storage Operation Constraint

In this paper, the following constraints are established for the operation of the energy storage
model while constructing the optimal configuration model of the BESS.

(1) Equation (21) shows the upper and lower limits of the rated capacity of the battery energy storage
system.  Prated,min

VRB ≤ Prated
VRB ≤ Prated,max

VRB
Erated,min

VRB ≤ Erated
VRB ≤ Erated,max

VRB
(21)

The rated power and capacity constraints of the decision vector energy storage system are
effectively reduced to solve the problem, and it is convenient to solve it.
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(2) The dynamic absorption power constraint of the BESS is that the charge and discharge power
value is less than or equal to the maximum absorbed power value of the VRB;

(3) The node voltage constraint is as shown in Equation (22).

Umin ≤ Ui ≤ Umax (22)

(4) The battery energy storage system must have a certain margin to ensure the supply of emergency
load, and Formula (23) must be satisfied.

SOCmin ≤ SOCVRB ≤ SOCmax (23)

5. Optimization Configuration Method of Energy Storage Based on Improved Particle
Swarm Optimization

There are many variables and many constraints, according to the optimal allocation model of
battery energy storage system constructed in Section 3. This chapter intends to use the particle swarm
optimization algorithm to optimize the model, instead of dynamic programming algorithm, for it can
speed up the convergence of results with strong adaptability. In order to overcome the situation that the
particle swarm optimization (PSO) algorithm is easy to fall into the local optimum, it is improved by
being combined with the dynamic inertia weight and adaptive particle mutation method. The optimal
configuration model of the microgrid energy storage system constructed in this paper is solved [17].

5.1. Dynamic Inertia Weight

The inertia weight w can adjust the ability of particle algorithm in local search and global search,
which has great influence on the convergence of the algorithm. The difference between the particle
position and the optimal solution of the population has a great relationship with the value of the inertia
weight. The global search ability of the algorithm should be allowed to take a larger value when
the difference between the particle position and the population optimal solution is large. When the
difference between the particle position and the population optimal solution is small, the local search
ability of the algorithm should be made to take a smaller value. It can be adjusted while using the
dynamic inertia weighting method, namely:

w(k) = wmin +
wmax −wmin

Tmax
(Tmax − k) (24)

5.2. Adaptive Mutation Method

When the rate of change of the optimal fitness value is less than a certain threshold, the particle
variation of the currently found global optimal solution gbest can be made to jump out of the local
optimum in order to avoid the particle swarm falling into the local optimal solution in the solution
space [18,19].

When considering that the particle may find a better position under the current gbest, the mutation
operation introduces a random perturbation, that is, a certain probability Pm variation for the gbest
satisfying the mutation condition. The mutation operation for gbest is as follows, let gbestk be the tk
dimension of gbest and η is a random variable obeying the distribution of Gauss (0, l), then

gbestk = gbestk−1 · (1 + 0.5 · η) (25)

Figure 2 shows the flow of the mathematical model for optimal configuration of the BESS using
the improved particle swarm optimization algorithm.
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6. Case Analysis

Figure 3 shows a typical microgrid structure. In this paper, a case in a certain area of Northwest
China is adopted for analysis, and the installation location of energy storage is not considered.
It is assumed that the distribution is consistent with the photovoltaic-wind farm, and it meets the
requirements of new energy consumption and energy storage operation strategy [20,21].
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The electricity price elasticity matrix can be obtained based on the demand price elasticity
coefficient and the electricity price curve in the article [22,23].

M =


−0.0870 0.0502 0.0201
0.0912 −0.0526 0.0211
0.0915 0.0528 −0.0211

 (26)

Time-sharing electricity price segments are divided, electricity price is 0.077 $/(kW·h) in peak
hours, like 10:00–14:00 and 19:00–22:00; trough in 0:00–7:00, electricity price is 0.023 $/(kW·h); and,
the flat price for the rest of the period is 0.054 $/(kW·h). The life of the all-vanadium flow battery is
10 years and the discount rate is 10%. The conversion factor to the cost of battery storage system is
k1 = 0.381 $/kW, k2 = 0.0233 $/kW h, β = 0.13.

The load curve before and after the system response can be obtained according to the demand side
response model combined with the original data, as shown in Figure 4. It can be seen from Figure 4
that after the load response, the load during the peak hour of the electricity price is reduced, and the
other periods are improved in some degree. Thanks to the incentive of the demand response, the load
fluctuation is reduced, and the peak-to-valley difference of load curve becomes smaller. The following
is a study of the impact of demand response on the optimal configuration of microgrid energy storage.
The capacity of the system to access wind power is 1 MW and the photovoltaic capacity is 300 kW.
The typical daily output data of photovoltaic and wind power are obtained by reference to the operation
of wind-solar in this area, as shown in Figure A1 of Appendix A.
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Figure 4. Load curve before and after demand response.

The improved particle algorithm was used for analysis in MATLAB. The optimal capacity and
rated power and various costs of the VRB before and after the response are obtained. As shown in
Tables 1 and 2, it shows that the total operating cost of BESS reduces after considering the demand
response model. Moreover, the capacity and power of the energy storage are also reduced, which is
mainly due to the change of the load characteristics after the demand response, the reduction of the
power purchase from the upper power grid, and the reduction of the abandoned wind- solar power,
so that the energy storage device with smaller capacity and power can be configured. After considering
the demand response, the rated power PN of BESS is reduced by 16.7%, the rated capacity EN of BESS
is reduced by 10.3%, and the total cost F of BESS is reduced by 20.5% than without considering the
demand response.
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Table 1. Optimal power, capacity, and total cost before and after demand response.

PN/kW EN/(kW·h) F/$

Before demand response 198 1473 30.18
After demand response 165 1321 23.98

Table 2. Costs before and after demand response.

Ctol/$ Bdirl/$ Cpvl/$

Before demand response 273.66 345.31 101.83
After demand response 260.12 307.43 71.29

The state of charge, output characteristics, and efficiency curve can be observed in order to reflect
the dynamic characteristics of the battery energy storage system after considering the demand side
response, as shown in Figures 5–7.
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In the Figures 5–7, the time period that is marked by the red line segment indicates that the energy
storage system is charging and the ‘output power of BESS’ is negative. The time period that is marked
by the purple line segment indicates that the energy storage system is discharging, and the ‘output
power of BESS’ is positive (the time interval in the simulation results is taken as 0.5 h).

There are a few special time slots here that are not marked on the way. The output power of BESS
in the 12 h–12.5 h period is close to 0 and the efficiency is very low. The output power of BESS is
positive during the 12.5 h–13 h period, which means that the energy storage system is charging. The
output power of BESS in the 13 h–13.5 h period is close to 0 and the efficiency is very low. The output
power of BESS is negative during the period of 13.5 h–14 h, which means that the energy storage
system is discharging.
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As can be seen from Figures 5–7, the increase in SOC of the VRB is not linear, because the SOC
is limited by charge and discharge power and dynamic efficiency. It can be seen from Figure 7 that
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the SOC of the BESS changes, and the charging and discharging power is related to the distributed
power output and the system load. Meanwhile, SOC reaches the highest point at 0.7. This is because,
although the noon load is at the peak, the wind-solar output is also in a peak state, and its increment is
larger than the load. It shows that the SOC has not reached the maximum and the lowest point, and
the BESS utilization rate has not reached the maximum. However, the energy storage utilization can be
improved by changing the energy storage and discharge strategy or improving the wind-solar and
load output curves.

The distributed generation (DG) permeability was changed by changing the size of the wind-solar
output. The effects of different DG permeability on the energy storage configuration were studied.
Table 3 shows the results of the algorithm (the original example DG penetration rate is 27.6%).

Table 3. Influence of different permeability of DG on energy storage configuration.

DG EN/(kW·h) PN/kW F/$

0.1 1056 122 27.337
0.2 1208 139 25.766

0.276 1321 165 23.980
0.3 1464 199 21.670
0.4 1450 213 23.826
0.5 1647 250 22.585

As the penetration rate of DG in the distribution network continues to increase, the optimal
configuration of BESS capacity and power continues to increase, but there is no fixed pattern of the
changes in economic income F. This is because the type of DG in this paper accounts for a large
proportion of the wind power, and its output has a reverse load characteristic, that is, during the peak
load period, its output is also the smallest, the load is low, and its output is large. In addition, due to
the increase of DG output, the wind-solar fluctuations are large, which requires greater energy storage
capacity and power balance output, resulting in an optimal configuration of BESS capacity and power
as the permeability increases.

7. Conclusions

In this paper, the effects of demand response and energy storage dynamic characteristics on
the configuration and operation of microgrid system are studied for the energy storage system with
distributed generation and its operation status. The following conclusions are obtained through
simulation analysis:

• When researching the optimal configuration of microgrid energy storage, the optimal configuration
of the BESS that considers the demand side response shows that the energy storage optimization
configuration is better than the optimization configuration without demand response, and the
energy storage power and capacity requirements are lower. After considering the demand
response, the rated power PN of BESS is reduced by 16.7%, the rated capacity EN of BESS is
reduced by 10.3%, and the total cost F of BESS is reduced by 20.5% than without considering the
demand response.

• After considering the demand response, the operating efficiency of the energy storage system is
basically maintained above 0.8, which indicates that the flow battery has higher energy storage
operating efficiency. However, the energy storage system is underutilization. It can be improved
by adjusting the load and the distributed generation output, so that the energy storage can be
smoothly charged and discharged.

• With the increase of DG permeability, the optimal configuration of BESS capacity and power
is increasing, and the cost is continuously reduced. This is because DG has a reverse load
characteristic and the output fluctuation increases with the permeability.
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Appendix A

Table A1. Fitting parameters of charge-discharge efficiency η.

i
Parameters

ai bi ci di

c −0.128 1.05 0.038 0.118
d 1.0334 0.3454 0.1192 —

Table A2. Fitting parameters of charge-discharge absorption power Pab.

i
Parameters

ai
ab bi

ab ci
ab

c 0.5715 0.4605 −1.0321
d 0.1686 0.8553 −0.0238
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