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Abstract: For long-term storage systems such as rockets and missiles, most of the relevant models and
algorithms for inspection and maintenance currently focus on analysis based on periodic inspection.
However, considering factors such as the complexity of the degradation mechanisms of these systems,
the constraints imposed by failure risk, and the uncertainty caused by environmental factors, it is
preferable to dynamically determine the inspection intervals based on real-time status information.
This paper investigates the issue of maintenance optimization modelling for long-term storage
systems based on real-time reliability evaluation. First, the Wiener process is used to establish a
performance degradation model for one critical unit of such a system, and a closed-form expression
for the real-time reliability distribution is obtained by using the first-hitting-time theory. Second,
sequential inspection intervals are dynamically determined by combining the real-time reliability
function with a real-time reliability threshold for the system. Third, a maintenance optimization
model is established for the critical unit based on update process theory. An analytical expression for
the expected total cost rate is derived, and then, the real-time reliability threshold and the preventive
maintenance threshold for the unit are jointly optimized by means of Monte Carlo simulation, with the
lowest expected total cost rate as the optimization goal. Finally, two examples of a gyroscope and an
alloy blade that are commonly used in the long-term storage systems are considered, and the validity
of the proposed model is illustrated by means of a sensitivity analysis of the relevant parameters.

Keywords: sequential inspection; Wiener process; real-time reliability; preventive maintenance;
long-term storage system

1. Introduction

“Long-term storage, one-time use” systems, such as missiles and rockets, are kept in long-term
storage for the majority of their lifetimes, from the factory to either use or decommissioning, and most
such systems are high-value and high-risk products, and thus need to be maintained at a certain level
of reliability during this long-term storage. Due to a variety of natural factors (temperature, humidity,
gravity, atmospheric pressure, chemical corrosion, etc.) and other induced factors (electromagnetic
radiation and static electricity), the components of such a system will gradually degrade in performance,
causing some faults. These faults may prevent the product from working properly, resulting in economic
losses, and potentially lead to catastrophic accidents. However, in most cases, these faults will be
discovered only when a product is required to be put into operation or during an inspection. Thus,
if no suitable inspection and maintenance strategy is put into practice, the condition of such products
may deteriorate over time, and it will not be possible to eliminate the potential risk in a timely manner.
Therefore, it is of great significance to develop an inspection and maintenance optimization model for
long-term storage systems.
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Three main kinds of inspection schedules are used in condition-based maintenance (CBM):
continuous monitoring, periodic inspection, and nonperiodic inspection [1]. The greatest advantage of
continuous monitoring is that preventive maintenance can be applied to a system only when necessary,
thus reducing wasted inspection and maintenance activities; systems such as nuclear power plants [2],
chemical production plants, and aerospace components working under high-stress and high-risk
conditions are usually monitored continuously due to the safety risks they pose [3]. To find the optimal
degradation thresholds for maintenance intervention for continuously monitored deteriorating systems,
Barata and Soares [4] proposed an ‘on condition’ maintenance optimization scheme based on Monte
Carlo simulation. A reliability-centered predictive maintenance policy was proposed by Zhou et al. [5]
for a continuously monitored system subject to degradation due to imperfect maintenance. Tian et al. [6]
also proposed a CBM policy for wind power generation systems in which wind turbine components
are monitored continuously. Tang et al. [7] optimized a dynamic CBM policy for a slowly degrading
system with real-time condition-monitoring information. Other studies on the development of CBM
models for continuously monitored deteriorating systems have also been reported; see the articles
of Liao [8], Liu [9] and Besnard [10], for example. While continuous monitoring provides real-time
information about the system states, it is always associated with high inspection costs, and errors
due to noise typically arise in the many continuous data streams generated in such a scheme. There are
also some systems in which continuous monitoring is not applicable. For example, pipelines buried
underground, such as those used in the oil and gas industries, cannot be continuously monitored.
Another example is the class of long-term storage products studied in this paper, such as rockets and
missiles. Due to the complexity, high price and high risk of these systems, it is impossible to carry out
continuous power-on inspection. For such systems, only periodic inspections are feasible or affordable.
Related optimization models for the inspection interval of a missile under periodic inspection have
been extensively studied—see the articles of Shi [11], Fan [12] and Zhang [13], for examples.

Fewer inspections will lead to lower reliability, whereas more frequent inspections will lead
to higher costs, both of which are considerable concerns for long-term storage systems; therefore,
the optimal inspection policy should establish a suitable trade-off between reliability and operation
cost. A nonperiodic inspection policy can lead to potential cost savings since inspections are performed
less frequently in the early part of the system lifetime. Hajipour and Taghipour [14] proposed a model
for determining the optimal nonperiodic inspection intervals for multicomponent and k-out-of-m
systems. An inspection strategy based on a non-fixed period was proposed and applied in precognitive
maintenance for monitoring and repair in the context of a multistage degradation process in [15].
Jiang [16] proposed a sequential inspection scheme for determining the state of an item to prevent
functional failure, in which the inspection interval and alarm threshold were optimized by means of
two cost models. Zhao et al. [17] developed several approximate models for optimal replacement,
maintenance, and inspection policies; sequential maintenance policies were also developed to take
advantage of their simpler forms, and their optimal solutions were found to be good approximations
of the exact policies. Zhu et al. [18] developed a sequential CBM policy for systems subject to stochastic
degradation. However, there are currently few nonperiodic inspection strategies for long-term storage
systems such as missiles and rockets. Most existing strategies are based on continuous monitoring or
periodic inspection, and the optimization of the relevant thresholds is not considered. In addition,
the majority of existing CBM research on other products considers either a periodic inspection schedule
or a fixed preventive maintenance threshold. To address this gap, this paper focuses on long-term
storage systems and proposes corresponding nonperiodic inspection strategies. A sequential inspection
policy is used in this paper, and the relevant thresholds are also optimized to improve the efficiency of
inspection and maintenance for long-term storage systems.

Various optimization criteria are widely used for CBM, including cost minimization, reliability
or availability maximization, and multiobjective optimization. To ensure the normal operation and
safety of the products of interest, variations in reliability under different conditions should also be
considered. Real-time reliability evaluation is ideal because for dynamic systems, the factors that affect
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reliability vary continuously with time. Yan [19] developed a two-phase Wiener degradation model to
evaluate the real-time reliability of devices. Wang et al. [20] investigated the issue of real-time reliability
evaluation based on a general Wiener process-based degradation model. Zhang et al. [21] proposed an
effective method and established a framework for real-time reliability assessment based on bridge
health monitoring (BHM) acceleration information. In addition, cost is an important factor to consider
with regard to the inspection and maintenance process, especially for long-term storage systems,
which typically have high inspection and maintenance costs. Guo et al. [22] developed a nonperiodic
inspection maintenance model for a single-unit system, in which the preventive maintenance threshold
was optimized by minimizing the expected average cost per unit time. Ito et al. [23] optimized the
inspection cycles and storage times of long-term storage products in accordance with the different
impacts of predetermined maintenance on the failure rate, considering maintenance costs, failure
losses and replacement costs, with the lowest average cost rate. Hoseinie [24] considered that in the
case of complete maintenance, the minimum maintenance rate can be treated as the optimization goal,
and thus obtained the optimal inspection interval for a water injection system. Tan [25] proposed an
optimal maintenance strategy for medical instruments with the goal of reducing maintenance costs and
improving operational availability. Khatab [26] developed a new maintenance optimization model for
failure-prone systems and discussed some of its main cost components; for this model, the preventive
maintenance threshold and the number of inspections were optimized separately. In most of the above
studies, only one of the variables was optimized, such as the preventive maintenance threshold, the
reliability, or the number of inspections. Research on the joint optimization of the real-time reliability
threshold and the preventive maintenance threshold has not yet been reported. In addition, to ensure
the safety and reliability of a long-term storage system, a reliability constraint value is generally
specified first in engineering practice, and the real-time reliability threshold for the long-term storage
system during the inspection and maintenance process is included within the specified range of the
reliability constraint value. However, it is still uncertain which exact value of the real-time reliability
threshold within this range is optimal; consequently, an optimization analysis is needed. Therefore,
the real-time reliability threshold and the preventive maintenance threshold should both be decision
variables. In our paper, a maintenance optimization model based on minimizing the expected total cost
rate is established. Thus, we can not only ensure high reliability and safety of the long-term storage
system but also reduce the costs of inspection and maintenance.

In this paper, we propose a maintenance optimization model for a long-term storage system under
sequential inspection. The objective of the optimization model is to jointly find the optimal real-time
reliability threshold and the optimal preventive maintenance threshold such that the expected total
cost rate over an infinite time span is minimized. The model proposed in this paper can make full
use of the mathematical properties of the Wiener process, and the uncertainty of stochastic model
parameter estimation is also considered. Thus, the random degradation processes of key long-term
storage units can be well fitted, and an expression for the real-time reliability of such a unit is derived.
This expression is combined with the real-time reliability threshold to determine a sequential inspection
policy for such a long-term storage system. In addition, based on update process theory and the
real-time reliability model, a maintenance optimization model for a critical unit subjected to sequential
inspection is given, where the minimum expected total cost rate is taken as the optimization goal,
and an analytical expression for the expected total cost rate is also derived. Then, the optimal values
of the real-time reliability threshold and the preventive maintenance threshold can be obtained by
means of Monte Carlo simulation. The model proposed in this paper not only can guarantee the
safety and reliability of a long-term storage system but also can improve the efficiency of inspection
and maintenance and reduce maintenance costs, thus providing decision-making support for the
development of inspection and maintenance strategies for long-term storage systems.
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The remainder of this paper is organized as follows. In Section 2, we specify some assumptions
and present the flow chart of the proposed methodology. In Section 3, we introduce the specific
method of real-time reliability evaluation. In Section 4, we propose a sequential inspection model
and discuss the maintenance strategy. Then, we establish the maintenance optimization model in
Section 5. In Section 6, we present two examples to validate the model proposed in this paper. Finally,
we conclude our work in Section 7.

2. Assumptions and Methodology

The long storage system is a complex system, composed of a variety of components, devices and
subsystems. Taking the missile system as an example, it is mainly composed of four parts: warhead,
power device, guidance system, and missile body structure. The research object in this paper refers
to the key units that have important influence on the long storage system, which can be the key
component, such as the alloy blade of the rocket engine, or the key device in the subsystem, such as the
gyroscope in the guidance system. Therefore, the unit in this paper can be either a single component,
a single device or a single subsystem.

The Wiener process has been widely used by researchers to describe the degradation of aviation
units, such as satellite momentum wheels, rocket engine blades, and gyroscopes. The Wiener process
can be used to describe not only nonmonotonic degradation processes but also monotonic degradation
processes, making it an important tool for describing the degradation of units’ performance.

2.1. Assumptions of The Degradation Model

(1) Each critical unit of the system of interest is a degraded component, and its degradation process
can be described by a smooth Wiener process subject to the following conditions.

• If t = 0, the degradation level of the unit is 0, i.e., X(0) = 0, and the unit is in the normal state.

• The degradation increments (X
(
t j
)
− X(ti)) of the unit in different time intervals

(
ti, t j

)
are

independent of each other and obey a normal distribution: X
(
t j
)
−X(ti) ∼ N

(
µ
(
t j − ti

)
, σ2

(
t j − ti

))
(2) When the degradation state of a critical unit reaches its failure threshold w(w > 0), the resulting

component failure will cause system failure. The failure time is defined based on the first-hitting-time
theory for a random process, i.e., T f = inf{t : X(t) ≥ w|X(ti)}. Here, w is a fixed value that is set in
accordance with various constraints, such as those arising from engineering experience and design
requirements. w0(0 < w0 < w) is the threshold for preventive maintenance, which can be adjusted
based on the requirements of the maintenance strategy.

(3) In engineering practice, a reliability constraint R∗ is generally specified first for each critical
unit of a long-term storage system to ensure its safety and reliability. In other words, the evaluated
real-time reliability q of each critical unit must be no less than R∗; otherwise, the required reliability
constraint will not be met.

(4) Due to cost constraints and the limitations of the inspection method, the state of a critical unit
cannot be monitored in real-time; instead, the degradation information of the unit can be obtained
only by means of noncontinuous inspection. It is further assumed that there are no errors in the
inspection results.

(5) The time required for the inspection, repair or replacement of a critical unit is assumed to be
negligible in comparison to the long-term storage cycle of the system.

2.2. Maintenance and Optimization Methodology

The proposed methodology is broken down into three main modules (see Figure 1):
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Figure 1. Flow chart of the process of sequential inspection and maintenance optimization.

(1) Real-time reliability evaluation, which mainly consists of establishing the real-time reliability
model and adaptively updating the parameters.

(2) Sequential inspection, which mainly consists of determining the inspection intervals and making
maintenance decisions (preventive maintenance or corrective maintenance).

(3) Optimization model, which mainly consists of establishing the cost model and calculating the
optimal values.

3. Real-Time Reliability Evaluation

For certain critical units of a system that is in long-term storage, their reliability needs to be
evaluated to enable relevant maintenance decisions. If such a critical unit has not failed at the current
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time, a conditional probability can be used to represent its level of reliability. When a new degradation
data point is obtained, this real-time reliability can be updated.

On the basis of the first-hitting-time theory of random processes, Wang [27] investigated the
issue of real-time reliability evaluation based on a general Wiener process-based degradation model.
Accordingly, we can use Equation (1) to measure the real-time reliability of a critical unit:

R(t; X0:k,θk) = P(X(τ)< w,∀τ ∈ [tk, t]|θk, X0:k, X
(
t j
)
< w, j = 1, 2, · · · , k) (1)

where θk =
(
ak, Dk, Qk, σk

2
)T

and X0:k is the set of degradation data {x0, x1, · · · xk}, with X(tk) = xk being
the degradation data point for the unit at inspection time tk. In this study, the random drift parameter
µ is defined in accordance with a random walk model as described by Si [28]; this parameter can be
updated as new inspection data are obtained, i.e., µk = µk−1 + η, where η ∼ N(0, Q) and µk ∼ N(ak, Dk).
Therefore, the drift coefficient µ is a random variable that varies with time and depends on the value
µk−1 at the previous moment; the diffusion coefficient in the Wiener process is σk. To obtain the
expression for R(t; X0:k,θk), the remaining life of the product is first defined as follows

Lk = inf{lk : X(lk + tk) ≥ w|X0:k, X
(
t j
)
< w, j = 1, 2, · · · , k} (2)

Thus, R(t, X0:k,θk) can be expressed as follows

R(t; X0:k,θk) = P(Lk > t− tk) (3)

Similarly, the probability density function (PDF) for the remaining life of the product can be
obtained using the following formula [28].

fT|xk(t|xk) =
w− xk√

2π(t− tk)
3σ2

exp{−
(w− xk − µ(t− tk))

2

2σ2(t− tk)
} (4)

Then, for an inspection interval of t − tk = ∆tk, the real-time reliability of the product can be
obtained as follows

RS(∆tk|X0:k) =
∫
∞

t−tk
fLk |X0:k(lk|X0:k)dlk =

∫
∞

∆tk
fLk |X0:k(lk|X0:k)dlk

= Φ

 w−xk−µ̂k∆tk√
Dk∆tk

2+σ2
k ∆tk

− exp
{

2µ̂k(w−xk)

σ2
k

+
2Dk(w−xk)

2

σ4
k

}
×Φ

− 2Dk(w−xk)∆tk+σ
2
k (µ̂k∆tk+w−xk)

σ2
k

√
Dk∆tk

2+σ2
k ∆tk


(5)

In Equations (3) and (5), ak, Dk, Qk, and σ2
k are unknown parameters of the random degradation

model, which need to be estimated based on the inspection data X0:k. Based on the adaptive
estimation method presented in [29], which combines the strong tracking filtering algorithm,
the Rauch–Tung–Striebel (RTS) smoothing algorithm, and the expectation maximization (EM) algorithm,
the parameter estimates θ̂k = (a(i+1)

0k , D(i+1)
0k , Q(i+1)

k , (σ2)
(i+1)
k ) can be adaptively updated based on the

degradation data X0:k obtained from the inspection process.

4. Sequential Inspection and Maintenance Strategy

A long-term storage system will undergo a series of inspections I = {t1, t2, · · · , tn} during its
life cycle, where ti ∈ I is the time of the i-th inspection, and will eventually be subjected to either
preventive maintenance (PM) or corrective maintenance (CM). At each inspection time, it is necessary
to decide which maintenance activities are to be performed based on the current state of the system.
If maintenance is not required, the next inspection interval should be determined.
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4.1. Sequential Inspection Intervals

In engineering practice, a reliability constraint value R∗ is generally set for each critical unit to
ensure the safety and reliability of a system during long-term storage. Therefore, if q denotes the
real-time reliability threshold of the unit, the condition q ≥ R∗ must be met.

For a critical unit in a long-term storage system, the i-th inspection time is denoted by ti(i = 1, 2, · · ·),
the initial time is t0 = 0, and the degradation level of the component at time ti is denoted by X(ti) = xi.
According to Equation (5) in Section 3, which gives the expression for the real-time reliability function,
the next inspection time for the system can be expressed as follows

ti+1 = ti + ∆ti = ti + m(X(ti), q) = ti + m(xi, q) (6)

where m(X(ti), q) is the planning function for the inspection time, which consists of the real-time
reliability function, the real-time reliability threshold q and the degradation data point X(ti). ∆ti is the
result calculated using the planning function m(X(ti), q) and represents the time interval between the
i-th inspection and the (i + 1)-th inspection.

In Section 3, the expression for the real-time reliability has been obtained; based on this expression,
the inspection time planning function m(X(ti), q) can be expressed as follows

RS(m(X(ti), q)|X0:i) = RS(∆ti|X0:i)

= Φ

 w−xi−µ̂i∆ti√
Di∆ti

2+σ2
i ∆ti

− exp
{

2µ̂i(w−xi)

σ2
i

+
2Di(w−xi)

2

σ4
i

}
×

Φ

− 2Di(w−xi)∆ti+σ
2
i (µ̂i∆ti+w−xi)

σ2
i

√
Di∆ti

2+σ2
i ∆ti

 = q(q ≥ R∗)

(7)

Based on the real-time reliability threshold q, the inspection time planning function m(X(ti), q)
can be solved to obtain the inspection interval ∆ti.

4.2. Maintenance Strategy

The performance degradation and maintenance process of a critical unit under sequential
inspection is shown in Figure 2, where Hi(i = 1, 2 · · ·) represents the length of the i-th update cycle.
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Figure 2. Schematic diagram of the unit degradation and maintenance process. Figure 2. Schematic diagram of the unit degradation and maintenance process.

As seen in Figure 2, the unit is sequentially inspected, with the next inspection interval being
determined at the time of the current inspection, and a relevant maintenance strategy can be further
developed based on the obtained degradation information. The related maintenance strategies are
as follows.
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(1) If the degradation state of the unit when it is inspected at time ti is xi < w0, the system will
continue to be stored without maintenance, and the next inspection time ti+1 will be determined
in accordance with the current degradation level xi and the inspection time planning function.
The cost of each inspection is denoted by CI, and w0 is a PM threshold that can be optimized.

(2) The real-time reliability threshold q has an important impact on the inspection and maintenance
cost; therefore, it is also a value that can be optimized.

(3) If w0 ≤ xi < w, PM will be performed on the unit. After PM, the performance state of the unit will
be restored to the same level as when the unit was new, the degradation level will also return
to the initial state, and the update cycle of the system will be recalculated from 0, i.e., X(0) = 0.
The cost of each instance of PM is denoted by CP.

(4) If xi ≥ w, meaning that the degradation level exceeds the failure threshold, CM must be performed
on the unit. Similarly to the case of PM, after CM, the unit will be restored to like-new performance,
the degradation level will also return to the initial state, and the system cycle will be recalculated
from 0. The cost of each instance of CM is denoted by CC.

(5) If xi−1 < w0 and xi ≥ w, the system will be in a faulty state for a certain period of time before CM
can be performed; the length of this period is denoted by d(t), and Cd is the cost of failure loss per
unit time.

(6) The relationship between the costs of inspection, maintenance and failure loss satisfies CI < Cd <
CP < CC.

5. Maintenance Optimization Model

The maintenance optimization model established in this paper attempts to achieve the minimum
maintenance cost rate under long-term storage. An analytical expression for the expected total cost
rate is derived based on update process theory. Then, Monte Carlo simulations are used to obtain
the optimal values of two decision variables, namely, the optimal PM threshold w∗0 and the optimal
real-time reliability threshold q∗.

5.1. Expected Cost Rate Model

According to update process theory [30], the expected cost rate for a system under long-term
storage can be estimated based on the expected cost rate for one update cycle. Based on the maintenance
strategy described above, the inspection and maintenance cost for the system during one update cycle
H can be expressed as follows

C(H) =
∞∑

j=1
( jCI + CP)I{x j−1<w0≤x j<w}

+
∞∑

j=1
( jCI + CC + Cd

∫ t j
t j−1

(
t j − t

)
dFµ,σ(t))I{x j−1<w0,x j≥w}

(8)

Here, I{·} is an indicative function such that I{·} = 1 when the condition in {·} is satisfied and I{·}= 0
otherwise. Fµ,σ(t) is the lifetime distribution function of the critical unit of interest based on the Wiener
process, namely,

Fµ,σ(t) =
∫
∞

w fµ,σ(x)dx

= Φ
(

µt−w
√

Dt2+σ2t

)
+exp

( 2µw
σ2 + 2Dw2

σ4

)
Φ
(
−

2Dwt+σ2(µt+w)

σ2
√

Dt2+σ2t

)
fµ,σ(t) = w√

2πt3(Dt+σ2)
exp

[
−

(w−µt)2

2(Dt+σ2)t

] (9)

Note that µ and σ are parameters that are updated in real-time following the real-time reliability
evaluation procedure presented in Section 3, and the parameters from the previous inspection are used
to evaluate the time at which the degradation level of the unit is expected to reach the failure threshold.
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The length of the system’s update cycle H is

T(H) =
n∑

j=1

t jI{x j−1<w0≤x j<w} +
n∑

j=1

t jI{x j−1<w0,x j≥w} (10)

According to update process theory [30], the long-term expected total cost per unit time can be
calculated using the expected total cost rate for one update cycle H. Based on this approach, the expected
total cost rate Caver(w0, q) is

Caver(w0, q) = lim
t→∞

E
[

C(t)
t

]
=

E[C(H)]

E[T(H)]
(11)

where C(t) is the total cost for the inspection and maintenance of the unit over a time period t.
To calculate Equation (11), the expected values of Equations (8) and (10) need to be calculated first.

PP( j) and PC( j) denote the probabilities of PM and CM, respectively, after the j-th inspection of the
unit, namely,

PP( j) = P(x j−1 < w0 ≤ x j < w) (12)

PC( j) = P(x j−1 < w0, x j ≥ w) (13)

(1) When j = 1, the first inspection interval ∆t0 can be obtained according to the inspection

planning function given in Equation (7) and the approximate initial parameters θ0 =
(
a0, D0, Q0, σ0

2
)T

,
yielding the following Equations.

RS(m(x0, q)|x0) = RS(∆t0|x0)

= Φ

 w−x0−µ̂0∆t0√
D0∆t02+σ2

0∆t0

− exp{ 2µ̂0(w−x0)

σ2
0

+
2D0(w−x0)

2

σ4
0

}×

Φ

− 2D0(w−x0)∆t0+σ
2
0(µ̂0∆t0+w−x0)

σ2
i

√
Di∆t02+σ2

0∆t0

 = q(q ≥ R∗)

(14)

t1 = t0 + ∆t0(t0 = 0) (15)

In addition, the degradation data point x1 for the same unit at the first inspection can be similarly

obtained according to the approximate initial parameters θ0 =
(
a0, D0, Q0, σ0

2
)T

:

x1 = x0 + ∆x0(x0 = 0)
∆x0 ∼ N

(
µ0∆t0, σ2

0∆t0
) (16)

Then, we can obtain PP(1) and PC(1) as follows

PP(1) = P(w0 ≤ x1 < w) = Fµ0,σ0(∆t0; w0) − Fµ0,σ0(∆t0; w) (17)

PC(1) = P(x1 ≥ w) = Fµ0,σ0(∆t0; w) (18)

where

Fµ0,σ0(∆t0; w) = Φ

 µ0∆t0−w√
D0∆t02+σ2

0∆t0

+
exp

(
2µ0w
σ2

0
+ 2D0w2

σ4
0

)
Φ

− 2D0w∆t0+σ
2
0(µ0∆t0+w)

σ2
0

√
D0∆t02+σ2

0∆t0)


(19)
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(2) When j ≥ 2, first, the degradation data points {x0, x1, · · · x j−1} are used to update the model

parameters θ j−1 = (a j−1, D j−1, Q j−1, σ2
j−1)

T by means of the adaptive estimation method presented
in [29]. Then, the j-th inspection interval ∆t j−1 can be determined in accordance with the inspection
time planning function:

RS(m
(
x j−1, q

)
|X0: j−1) = RS(∆t j−1|X0: j−1)

= Φ

 w−x j−1−µ̂ j−1∆t j−1√
D j−1∆t j−1

2+σ2
j−1∆t j−1

− exp{
2µ̂ j−1(w−x j−1)

σ2
j−1

+
2D j−1(w−x j−1)

2

σ4
1

}×

Φ

− 2D j−1(w−x j−1)∆t j−1+σ
2
j−1(µ̂ j−1∆t j−1+w−x j−1)

σ2
j−1

√
D j−1∆t j−1

2+σ2
j−1∆t j−1

 = q(q ≥ R∗)

(20)

Thus, the j-th inspection time t j is as follows

t j = t j−1 + ∆t j−1 =

j∑
n=1

∆tn−1( j ≥ 2) (21)

Similarly, the degradation data point x j collected at the j-th inspection can be obtained in accordance

with the parameters θ j−1 = (a j−1, D j−1, Q j−1, σ2
j−1)

T:

x j = x j−1 + ∆x j−1 = x0 +
j∑

n=1
∆xn−1( j ≥ 2)

∆x0 ∼ N
(
µ0∆t0, σ2

0∆t0
)

∆x1 ∼ N
(
µ1∆t1, σ2

1∆t1
)

· · · · · ·

∆xn−1 ∼ N
(
µn−1∆tn−1, σ2

n−1∆tn−1
)

(22)

Then, we can obtain PP( j) and PC( j) as follows

PP( j) = P(x j−1 < w0 ≤ x j < w)

= P(x j−1 < w0, w0 − x j−1 ≤ x j − x j−1 < w− x j−1)

=
∫ w0

0 fφ(µ j−1,σ j−1)

(
x; t j−1

)
(Fµ j−1,σ j−1

(
∆t j−1; w0 − x

)
− Fµ j−1,σ j−1

(
∆t j−1; w− x

)
)dx

(23)

PC( j) = P(x j−1 < w0, x j ≥ w) = P(x j−1 < w0, x j − x j−1 ≥ w− x j−1)

=
∫ w0

0 fφ(µ j−1,σ j−1)

(
x; t j−1

)
Fµ j−1,σ j−1

(
∆t j−1; w− x

)
dx

(24)

where fφ(µ j−1,σ j−1)

(
x; t j−1

)
represents the PDF of the unit when the degradation level is x at time t j−1

based on the Wiener process, namely,

fφ(µ j−1,σ j−1)

(
x; t j−1

)
=

1√
2πt j−1

(
σ2

j−1 + D j−1t j−1

) × exp

− (x− µ j−1t j−1)
2

2
(
σ2

j−1 + D j−1t j−1

)
t j−1

 (25)

Fµ j−1,σ j−1

(
∆t j−1; w− x

)
= Φ

 µ j−1∆t j−1−(w−x)√
D j−1∆t j−1

2+σ2
j−1∆t j−1

+ exp
(

2µ j−1(w−x)

σ2
j−1

+
2D j−1(w−x)2

σ4
j−1

)
×

Φ

− 2D j−1(w−x)∆t j−1+σ
2
j−1(µ j−1∆t j−1+w−x)

σ2
j−1

√
D j−1∆t j−1

2+σ2
j−1∆t j−1


(26)
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Based on Equations (14)–(26), the expected total cost for the inspection and maintenance of the
unit during one update cycle can be obtained as follows

E[C(H)] =
∞∑

j=1
( jCI + CP)PP( j) +

∞∑
j=1

( jCI + CC + Cd
∫ t j

t j−1

(
t j − t

)
dFµ,σ(t))PC( j)

= (CI + CP)PP(1) + (CI + CC + Cd
∫ ∆t0

0 (∆t0 − t)dFµ0,σ0(t))PC(1)+
∞∑

j=2
( jCI + CP)PP( j) +

∞∑
j=2

( jCI + CC + Cd
∫ t j

t j−1

(
t j − t

)
dFµ j−1,σ j−1(t))PC( j)

= (CI + CP)Fµ0,σ0(∆t0; w0) + (CC −CP)Fµ0,σ0(∆t0; w)+

CdFµ0,σ0(∆t0; w)(
∫ ∆t0

0 (∆t0 − t)dFµ0,σ0(t))+
∞∑

j=2
( jCI + CP)

∫ w0

0 fφ(µ j−1,σ j−1)

(
x; t j−1

)
Fµ j−1,σ j−1

(
∆t j−1; w0 − x

)
dx+

∞∑
j=2

(CC −CP)
∫ w0

0 fφ(µ j−1,σ j−1)

(
x; t j−1

)
Fµ j−1,σ j−1

(
∆t j−1; w− x

)
dx+

∞∑
j=2

Cd(
∫ w0

0 fφ(µ j−1,σ j−1)

(
x; t j−1

)
Fµ j−1,σ j−1

(
∆t j−1; w− x

)
dx)(

∫ t j
t j−1

(
t j − t

)
dFµ j−1,σ j−1(t))

(27)

The expected length of the update cycle H is calculated as follows

E[T(H)] =
∞∑

j=1
t jPP( j) +

∞∑
j=1

t jPC( j)

= ∆t0Fµ0,σ0(∆t0; w0) +
∞∑

j=2
t j

∫ w0

0 fφ(µ j−1,σ j−1)

(
x; t j−1

)
Fµ j−1,σ j−1

(
∆t j−1; w0 − x

)
dx

(28)

Substituting Equations (27) and (28) into Equation (11) then yields the expected total cost rate
for the unit under long-term storage. With the lowest expected cost rate as the optimization goal,
the optimal values {w∗0, q∗} of the PM threshold w0 and the real-time reliability threshold q can then
be obtained:

Caver
(
w∗0, q∗

)
= Min[Caver(w0, q), 0 < w0 < w, 0 < R∗ ≤ q < 1] (29)

Because of the problem of limit summation in Equations (27) and (28), it is difficult to directly
perform numerical calculations. However, the relevant formulae can be used to perform Monte Carlo
simulations. The accuracy of the results calculated using this simulation method is closely related to
the number of simulations; with sufficient simulations, the optimal values of {w0, q} can be obtained
with reasonable accuracy. Specific simulation results will be presented in the following examples.

5.2. Optimization Algorithm

The optimization algorithm searches for the optimal real-time reliability threshold q in [R∗, 1) and
the optimal PM threshold w0 in (0, w) such that the expected total cost rate Caver is as low as possible
under the given reliability constraints. The detailed steps of the algorithm are as follows.

Step 1 Initialize the related parameters θ0 = (a0, D0, Q0, σ2
0)

T, R∗, CI, CP, CC, Cd, and w, and set the
number of simulations n.

Step 2 Select the smallest value in [R∗, 1) as the initial value of q, i.e., q = R∗, and set the step size to
∆q = 0.01.

Step 3 Initialize the value of w0, i.e., w0 = 0.01, and set the step size to ∆w0 = 0.01.
Step 4 Set k = 1 and perform a Monte Carlo simulation to calculate Ck(H) and Tk(H), thus obtaining

Ck
aver(w0, q) = Ck(H)/Tk(H).

Step 5 Set k = k + 1(k = 1, 2, · · · n− 1) and continue to calculate Ck(H), Tk(H) and Ck
aver(w0, q) accordingly.
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Step 6 Calculate the expected total cost rate Caver(w0, q) in the optimization model, namely,

Caver(w0, q) =
∑n

i=1 Ck
aver(w0, q)
n

(30)

Step 7 Increment w0 in steps of ∆w0 = 0.01 in the range [0.01, w) and repeat steps 4 to 6 for each
such increment.

Step 8 Increment q in steps of ∆q = 0.01 in the range [R∗, 1) and repeat steps 3 to 7 for each
such increment.

Step 9 Select the values of the parameters
(
w∗0, q∗

)
that correspond to the minimum Caver(w0, q) as the

optimal values.

6. Case Study

In order to prove the effectiveness of the proposed model, this section selects two key units of
the long-term storage system for analysis and illustration: one is the gyroscope commonly used in
missile guidance system and the other is the alloy blade commonly used in rocket engine. These two
examples verify the validity of the proposed model from two levels: component level and device level.

6.1. Maintenance Optimization of the Gyroscope

The inertial navigation system (INS) is a core subsystem of a long-term storage system such as a
rocket or missile. Its performance is directly related to the accuracy of navigation and the performance
of the control system. As the inertial unit at the heart of the INS, the gyroscope plays a vital role in the
entire system. However, during the long-term storage process, due to the influence of environmental
stresses and other factors, the performance and reliability of the gyroscope decrease with prolonged
storage time, eventually leading to failure of the gyroscope [31]. In addition, gyroscope drift has an
effect on the accuracy of the INS. Once the drift exceeds the failure threshold w, the gyroscope must be
replaced to ensure the INS’s accuracy; otherwise, this drift will cause significant losses. By establishing
a reasonable inspection and maintenance strategy, it is possible to effectively prevent the occurrence
of such failures. In the following, an example of a gyroscope in an INS is presented to illustrate the
method proposed in this paper.

The Wiener process is used to establish a degradation model of the gyroscope drift. The reliability
constraint R∗ for the gyroscope is set to R∗ = 0.6, the failure threshold for gyroscope drift is set to
w = 0.6(◦/h), and the approximate initial parameters θ̂0 = (0.055, 0.0004, 0.001, 0.06)T are obtained
by combining historical data from similar units based on the adaptive estimation method. The cost
parameters associated with the inspection and maintenance of the system are shown in Table 1.

Table 1. Related cost parameters.

CI CP CC Cd
20 150 200 50

6.1.1. Maintenance Optimization

Through the joint adjustment and optimization analysis, the combination of the optimal values(
w∗0, q∗

)
that result in the minimum expected total cost rate can be found. The range of w0 is set to

[0.01, 0.59], and the step size is ∆w0 = 0.01. The range of q is set to [0.60, 0.99] and the step size is
∆q = 0.01. Figure 3 shows the results of the global analysis performed by simulating each combination
of parameters (w0, q) n = 5000 times using the Monte Carlo method using the parameter settings given
above. The optimal result lies at the position indicated by the “o” symbol in Figure 3.
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real-time reliability threshold q.

Figure 3 shows that the optimal values of the decision variables w∗0 and q∗ are 0.48(◦/h) and 0.68,
respectively, as marked with the “o” symbol in the figure. The corresponding total expected cost rate is
Caver

(
w∗0, q∗

)
= 15.25.

6.1.2. Sensitivity Analysis

The results of maintenance optimization depend on multiple factors. This section will analyze
the influences of the real-time reliability threshold q, the PM threshold w0, the cost parameters
(CI, CP, CC, Cd), and the reliability constraint value R∗ on the maintenance optimization results.

(1) To analyze the relationship between the expected total cost rate Caver, the PM threshold w0,
and the real-time reliability threshold q, it is necessary to fix the value of one of the parameters
(w0, q). For example, we assume that the gyroscope is required to be stored with a real-time reliability
threshold of q = 0.90. In this case, the real-time reliability threshold is an input parameter set by the
decision-maker rather than a decision variable. The objective of the maintenance decision-maker is
then to find the optimal value of the PM threshold w0. Figure 4 shows the variation of the expected
total cost rate Caver with the PM threshold w0 when q = 0.90, where the step size for w0 is ∆w0 = 0.01.Processes 2019, 7, 481 14 of 22 
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As seen from Figure 4, in the case of q = 0.90, the expected total cost rate first gradually decreases
as the PM threshold w0 increases and then gradually rises. The minimum value Min(Caver) = 15.98 is
obtained at w0 = 0.47(◦/h), as marked with the “*” symbol in the figure. This result is found mainly
because the number of instances of PM performed increases when the PM threshold w0 is set to a lower
value, meaning that the update cycle H is shorter, which, in turn, increases the expected total cost rate.
On the other hand, a higher value of the PM threshold allows long and uninterrupted storage of the
system at the cost of an increased risk of failure, which increases the cost of failure loss and the number
of inspections, thereby also increasing the expected total cost rate.

Similarly, the relationship between Caver and q can be plotted for the case in which the PM threshold
w0 is fixed. Figure 5 depicts the expected total cost rates Caver obtained for different values of the
real-time reliability threshold q at w0 = 0.58(◦/h), where the step size is ∆q = 0.01. The optimal value
is q = 0.63, meaning that the expected total cost rate reaches its minimum when the real-time reliability
threshold is set to q = 0.63. If the real-time reliability threshold q is set to a higher value, more frequent
inspections need to be carried out and the number of instances of PM also increases, thus resulting in
an increase in the total expected cost rate. On the other hand, a low value of the real-time reliability
threshold will permit long and uninterrupted storage of the system, but with an increased probability
of failure, which will increase the number of instances of CM and the failure time of the system, thereby
increasing the expected total cost rate.
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Figure 5. Total expected cost rate Caver versus the real-time reliability threshold q when w0 = 0.58(◦/h).

(2) The values of the real-time reliability threshold q and the PM threshold w0 are closely related to
the number of inspections. Figures 6 and 7 show the effects of q and w0, respectively, on the expected
number of inspections.

As shown in Figures 6 and 7, the expected number of inspections increases as the real-time
reliability threshold q and the PM threshold w0 increase. This behavior occurs because the larger the
real-time reliability threshold q or the PM threshold w0 is, the longer the system update cycle will be,
meaning that more inspections will be required.

(3) The maintenance cost parameters are directly related to the maintenance optimization results.
Figures 8 and 9 show the influence of the cost parameters on the optimal values q∗ and w∗0, respectively.
The variation range of each cost parameter in Figures 8 and 9 is [50, 500].
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As shown in Figure 8, q∗ gradually decreases as CI increases. This is because, according to Figure 6,
the number of inspections can be reduced by lowering q∗, thereby reducing the influence of an increase
in CI on the expected total cost rate Caver. Moreover, reducing q∗ will increase the probability of system
failure, thus making the maintenance activities more likely to be of the CM type; therefore, q∗ decreases
as CP increases, thus reducing the influence of an increase in CP on Caver. Conversely, the probability of
system failure can be reduced by increasing q∗, thus making the maintenance activities more likely to
be of the PM type and consequently reducing the influence of an increase in CC on Caver. In addition,
increasing q∗ also reduces the failure time of the system by reducing the probability of system failure,
thereby reducing the influence of an increase in Cd on Caver. Therefore, q∗ increases as Cd increases.

Processes 2019, 7, 481 16 of 22 

 

 

Figure 8. Influence of the cost parameters on the optimal value q∗ . 

As shown in Figure 8, 𝑞∗ gradually decreases as 𝐶  increases. This is because, according to 
Figure 6, the number of inspections can be reduced by lowering 𝑞∗, thereby reducing the influence 
of an increase in 𝐶  on the expected total cost rate 𝐶aver. Moreover, reducing 𝑞∗ will increase the 
probability of system failure, thus making the maintenance activities more likely to be of the CM 
type; therefore, 𝑞∗ decreases as 𝐶  increases, thus reducing the influence of an increase in 𝐶  on 𝐶 . Conversely, the probability of system failure can be reduced by increasing 𝑞∗, thus making the 
maintenance activities more likely to be of the PM type and consequently reducing the influence of 
an increase in 𝐶  on 𝐶 . In addition, increasing 𝑞∗ also reduces the failure time of the system by 
reducing the probability of system failure, thereby reducing the influence of an increase in 𝐶  on 𝐶 . Therefore, 𝑞∗ increases as 𝐶  increases. 

 
Figure 9. Influence of the cost parameters on the optimal value 0w

∗ . 

Figure 9 shows the influence of changes in the cost parameters on 𝑤∗. As IC  increases, 𝑤∗ 
exhibits a downward trend. This is because the number of inspections can be reduced by lowering 𝑤∗, thereby achieving a reduction in the influence on the expected total cost rate 𝐶 . Similarly, the 
likelihood of PM can be increased by lowering 𝑤∗ , thus reducing the influence on 𝐶  of an 
increase in 𝐶 . By contrast, 𝑤∗ shows an upward trend with increasing 𝐶  because increasing 𝑤∗ 
can extend the uninterrupted storage time of the system and make the maintenance activities more 
likely to be of the CM type while seeking the optimal expected total cost rate 𝐶 . Figure 9 also 
shows that an increase in 𝐶  has no obvious influence on 𝑤∗. 

(4) It is currently assumed that a long-term storage system is required to be stored with a given 
reliability constraint value 𝑅∗; thus, we should find an optimal maintenance policy that can satisfy 

Figure 9. Influence of the cost parameters on the optimal value w∗0.

Figure 9 shows the influence of changes in the cost parameters on w∗0. As CI increases, w∗0 exhibits
a downward trend. This is because the number of inspections can be reduced by lowering w∗0, thereby
achieving a reduction in the influence on the expected total cost rate Caver. Similarly, the likelihood
of PM can be increased by lowering w∗0, thus reducing the influence on Caver of an increase in CC.
By contrast, w∗0 shows an upward trend with increasing CP because increasing w∗0 can extend the
uninterrupted storage time of the system and make the maintenance activities more likely to be of the
CM type while seeking the optimal expected total cost rate Caver. Figure 9 also shows that an increase
in Cd has no obvious influence on w∗0.

(4) It is currently assumed that a long-term storage system is required to be stored with a given
reliability constraint value R∗; thus, we should find an optimal maintenance policy that can satisfy
this demand. According to the proposed maintenance policy, we simply take the real-time reliability
threshold to satisfy R∗ ≤ q < 1. This means that the optimal policy can be found by varying the values
of the PM threshold w0 and the real-time reliability threshold q accordingly. Figure 10 shows the
influence of the reliability constraint value R∗ on the optimal values of the real-time reliability threshold
q and the PM threshold w0, respectively.

As shown in Figure 10, as the reliability constraint value R∗ increases from 0.49 to 0.68, the optimal
values q∗ and w∗0 remain unchanged at 0.68 and 0.48 (◦/h), respectively. This is because when R∗ is
small (R∗ ≤ 0.68), as seen from Figure 3, the global optimization results for q and w0 are q∗ = 0.68 and
w∗0 = 0.48(◦/h), respectively, and remain unchanged over the interval [0.49,0.68]. However, when
R∗ > 0.68, q∗ shows an upward trend as R∗ continues to increase, mainly because of the need to satisfy
the reliability constraint for the system; consequently, the optimization result for q can simply be
approximated as q = R∗. By contrast, it can be seen from Figure 10 that as R∗ continues to increase,
w∗0 fluctuates around 0.48(◦/h), indicating that R∗ has little effect on the optimization result for w0.
Indeed, this fluctuation of w∗0 around 0.48(◦/h) proves the robustness and applicability of the proposed
optimization model.
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6.2. Maintenance Optimization of the Alloy Blade

Alloy blades are the key components of rocket engines, and their reliability directly determines
the flight performance of long-storage systems. During long storage, the crack length of the blade
will gradually increase due to various environmental stresses. Therefore, the quality of this alloy
material is generally evaluated by the length of the crack. All alloy blade cracks have an initial length
of 0.9 inches (1 inch = 2.54 cm) [32] and are considered to be invalid when the crack length reaches
1.6 inches (1 inch = 2.54 cm), i.e., the failure threshold is w = 1.6 inches (1 inch =2.54 cm), the time
unit of crack growth in alloy blade is per million cycles, and the approximate initial parameters
θ̂0 = (6.5, 0.5, 0.5, 0.1)T are obtained by combining historical data from similar units based on the
adaptive estimation method. The relevant cost parameters are CI = 50, CP = 200, CC = 250, and
Cd = 100 respectively.

6.2.1. Optimization Results of Alloy Blades

Similar to the simulation optimization method of the gyroscope, the range of w0 is set to [0.91, 1.59],
and the step size is ∆w0 = 0.01. The range of q is set to [0.60, 0.99], and the step size is ∆q = 0.01.
Figure 11 shows the results of global analysis of the alloy blades, and the optimal result lies at the
position indicated by the “o” symbol.Processes 2019, 7, 481 18 of 22 
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It can be seen from Figure 11 that the optimization results of w∗0 and q∗ are 1.43 inches
(1 inch = 2.54 cm) and 0.66, respectively, and the corresponding total expected cost rate is
Caver

(
w∗0, q∗

)
= 2659.5.

6.2.2. Sensitivity Analysis

Similar to the method used to analyze gyroscopes, sensitivity analysis of relevant parameters of
alloy blades is carried out in this section.

(1) Figures 12 and 13 show the effects of q and w0, respectively, on the expected number of
inspections. As shown in these two Figures, the expected number of inspections increases as the
real-time reliability threshold q and the PM threshold w0 increase, as in the case of the gyroscope unit.
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(2) Figures 14 and 15 show the influence of the cost parameters on the optimal values q∗ and w∗0,
respectively, and the variation range of each cost parameter is also set to be [50, 500].
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As can be seen from Figures 14 and 15, their curve changes show similar trends as Figures 8 and 9,
respectively. Through specific analysis, the relevant reasons for this situation are similar to those in the
gyroscope case study and are limited to the length of the paper, they will not be described in detail
here. For details, please refer to the analysis part of the gyroscope case study.

(3) Figure 16 shows the influence of the reliability constraint value R∗ on the optimal values of the
real-time reliability threshold q and the PM threshold w0, respectively.

As shown in Figure 16, as the reliability constraint value R∗ increases from 0.5 to 0.66, the optimal
values q∗ and w∗0 remain unchanged at 0.66 and 1.43 inches (1 inch =2.54 cm), respectively. Then, when
R∗ > 0.66, q∗ shows an upward trend as R∗ continues to increase; this is also mainly because of the
need to satisfy the reliability constraint for the system, such as the analysis of the gyroscope case.
Besides, it can be seen from Figure 16 that as R∗ continues to increase, w∗0 fluctuates around 1.43 inches
(1 inch = 2.54 cm), also indicating that R∗ has little effect on the optimization result for w0.

Through the maintenance optimization modeling of the gyroscope and the alloy blade, the maintenance
optimization model proposed in this paper is analyzed from two levels: the device level and the component
level, respectively, which verifies the effectiveness of the model, thus can provide support for the
maintenance decision of long-term storage system.
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7. Conclusions

To ensure the safety and reliability of long-term storage systems and improve the efficiency of
inspection and maintenance, a maintenance optimization model with sequential inspection is proposed
in this paper based on real-time reliability evaluation. It is known that during the actual long-term
storage of a system, the mechanisms of performance degradation are complex, and the degradation
process itself shows a certain level of randomness. By means of real-time reliability assessment and
sequential inspection, the relevant parameters of the degradation model can be adaptively updated,
allowing the inspection interval for the system to be adjusted in real-time in accordance with the
observed system state, thereby improving the adaptability of the inspection strategy to the dynamic
system degradation process. This method can ensure the reliability of a long-term storage system
while avoiding the problems of overinspection and underinspection that may be encountered in the
traditional case of equal-length inspection cycles. In addition, an analytical expression for the expected
total cost rate of inspection and maintenance is presented based on update process theory, and the
use of Monte Carlo simulations is proposed to obtain the optimal values of the real-time reliability
threshold and the preventive maintenance threshold for the critical unit of interest, thereby providing
theoretical support for the scientific development of inspection and maintenance strategies. Finally,
through a sensitivity analysis of the cost parameters, the real-time reliability threshold, the preventive
maintenance threshold and the system reliability constraint value, the effectiveness of the proposed
maintenance optimization model is proven.

The research reported in this paper was carried out under the assumption of perfect product
maintenance. In order to reduce the complexity of the model and better derive the analytical expression
of the optimization model, this paper assumed that the performance state of the unit would be restored
to the same level as when the unit was new after preventive maintenance (PM). In some cases, however,
the performance of a product as a whole is affected by certain nonreplaceable parts and various
environmental factors affecting the system, thus the “new” state will contain a mixture of systems of
different ages, depending on how recently each system returned to this state; like-new performance
cannot be recovered after maintenance. Therefore, considering a similar maintenance method for a
product in the case of imperfect maintenance is a topic for further study.
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