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Abstract: Air-conditionings have energy storage functions. Through reasonable aggregation control,
the output tracking can be implemented for wind power with stronger fluctuation to enhance
its utilization rate. Cloud technology and intelligent appliances enable the appliance vendor to
implement information interaction with the air-conditioning through cloud platforms to realize
flexible regulation. In this paper, a management and control method of air-conditioning based
on cloud platform is established. Based on this structure, the air-conditionings are divided into
several aggregation groups according to the similarity of parameters, and each group completes the
consumption task collaboratively. The consumption evaluation model of the air-conditioning group
is established. On this basis, the allocation problem on consumption task for the aggregated group is
constructed to implement the optimal solution under the condition of guaranteeing the degree of
completion and user comfort. Each group implements the control for air-conditioning inside the group
through the sliding mode control model. The simulation experiment verifies that the algorithm can
effectively follow the output of clean energy, while intervening less in the air-conditioning operation.

Keywords: air-conditioning management; cloud control; wind power tracking; air-conditioning
grouping collaborative control

1. Introduction

Clean energy has the disadvantage of low utilization, which leads to a development restriction.
Generally, clean energy including photovoltaic and wind power has the characteristics of intermittence
and oscillation, and especially in situations with weak grids, it would be desirable to locate some
ancillary services in the vicinity of the plant [1]. Several recent researches have dealt with the low
utilization of clean energy in many ways, including demand side management, flywheel energy
storage, and micro-grid. The presence of abundant load resources in power demand would enable it to
provide ancillary services for the power supply side [2–7], for instance, the load following application
in clean energy by controlling residential air-conditionings (ACs). As thermostatically controlled loads,
ACs have the potential to store energy and account for a large proportion in power demand [1,8–12].
AC resources can be utilized to consume clean energy, especially to follow the detail of the oscillatory
clean energy output because they have large capacities and can be controlled flexibly. It is significant
to study consuming clean energy by modulating electrical demand of ACs [13].

In the demand side management, load resources in power demand can be regarded as an energy
storage system that is capable of improving clean energy utilization. Researches in thermostatically
controlled loads management are proposed in a lot of literature, especially in load control. The
aggregated model and controller are developed to modulate the electrical demand of aggregated loads
in Callaway, Lu and Bashash’s studies [1,9,10].
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Lu has developed a state-queuing model of thermostatically controlled appliances to describe
the dynamics of aggregated loads [8,9]. Based on Fokker-Planck, Callaway developed a system,
which modulated aggregated power of ACs to deliver load following by adjusting the temperature set
point offset [1]. Another method based on Callaway’s study was developed in Bashash’s study [10].
The dynamic of aggregated loads was described by the state-space model and the model was controlled
by the Lyapunov controller. An improving stochastic control method was proposed, which had better
robustness compared with a traditional stochastic controller [14]. The studies above consider AC
resources controlled by one controller, and the methods showed good performance when AC resources
were abundant, while they had degradation performance in the situation of ACs’ diversity shortage.
Some of the recent advances proposed the distributed control method including multiple controllers
to reduce the negative effect caused by ACs’ diversity shortage [11,15]. In Iacovella’s study the
thermostatically controlled loads were divided into major clusters. The control signal was broadcasted
to all ACs in one cluster, which was a simple communication approach with obvious signal delay. In
this paper, ACs fall into several groups and ACs in different groups subjected to independent signals.

At present, the existing researches on demand-side load management mainly focus on the load
control algorithm. However, demand-side resources are physically dispersed, which is difficult for the
implementation of centralized management. In order to make full use of demand-side load resources,
a mechanism to enable the power grid to manage dispersed loads centrally should be constructed, and
the communication between the power grid and the user side should be established. On the basis of
the mechanism, the developed control algorithm of load resources can be carried out. However, there
is still a lack of relevant discussion in load management foundation. With the development of smart
home appliances and cloud technologies, home appliance vendors with cloud platforms can control
their own loads centrally through the cloud platform, which provides the realization basis for loads
centralized control. Additionally, the appliance vendors with cloud platforms can manage and control
loads as aggregators. Based on the above, relevant research on load management and control has been
done in this paper. We established load resource management and control structure with power grid,
aggregator, and demand-side loads’ participation.

To solve the above problems, an AC management and control method based on cloud platform is
proposed in this paper. In this structure, appliance vendors with cloud platforms act as load aggregators
to manage the scattered ACs. As the cloud platform contains ACs with different characteristics,
aggregators need to divide the ACs into groups as the basic objects for collaborative control.

In what follows, the foundation of cloud control implementation is introduced in Section 2. Based
on the foundation, an AC management and control method is developed in Section 3, which contains
the AC group collaborative control process. Additionally, in Section 4, the performance of the proposed
method is verified by tracking the wind power output.

2. Foundation of Cloud Control Implementation

AC is an important demand response resource that has the potential to provide the load following
service for the power grid to consume clean energy. However, it is difficult to implement the centralized
management of the scattered ACs. In order to realize the centralized control of ACs, it is important to
acquire AC data in real time. Additionally, this problem is expected to be solved through the cloud
platform. With the development of Internet of things, load data will be uploaded to the Internet. AC
data can be obtained from the Internet and each AC will belong to at least one cloud platform.

In this paper, an AC management and control method based on cloud platform is proposed.
Appliance vendors act as aggregators to manage and control the ACs through cloud platforms.
Figure 1a shows the process of the AC cloud control method, including two parts: AC state data
acquisition and control instruction execution. The process of data acquisition is shown as route A:
AC sends packets to routers via WIFI; the cloud platform binds the appliance terminal MAC (Media
Access Control) address and the packets are transmitted to cloud platform through WAN (Wide Area
Network); the cloud platform analyzes packets and stores the data in the database; and the power
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grid is connected to the cloud platform to obtain the AC state data and creates the control instruction
according to the state data. The process of control instruction execution is shown as route B: The
connection between the control terminal of power grid and cloud platform is established; the control
signal is transmitted to the AC by cloud platform.
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In Figure 1a, the control signal is calculated by the aggregated AC control model, which is
established according to the state data of AC. There are different system parameters in the different
AC groups. According to the system parameters, the ACs are divided into homogeneous aggregated
groups as the basic objects of collaborative control.

In further research, centralized control and management for heterogeneous ACs are important.
Figure 1b demonstrates the process of heterogeneous AC cloud control. The difference between (a)
and (b) is that the edge computing is added to the demand side in the structure of AC cloud control.
The power grid control terminal generates the AC control criterion containing multiple regulations for
adjusting ACs in different states. After receiving the control criterion, according to the state information,
the regulation of each AC is determined by the edge calculation module.

3. AC Management and Control Model Based on Cloud Platform

Based on the cloud control structure, an AC management and control model is proposed to track
wind power output. Section 3.1 introduces a heat exchange model of single AC and establishes an
aggregated AC model, which is used to estimate the aggregated power of the AC group. Section 3.2
presents the optimization selection of aggregated AC groups and task allocation strategy, and Section 3.3
describes the control system of AC groups. Finally, feasibility analysis of this method is introduced in
Section 3.4.

3.1. Model of Single AC

Through the correlation between the internal temperature and switched-on/switched-off state of
the AC system, the dynamics of the AC power is obtained, and the aggregated power consumption of
an AC group is estimated.

The dynamic internal temperature evolution of an AC system is described by the first-order
differential equation that contains the internal temperature θi(t) and the switched-on/switched-off

state variable si(t) of the AC:

·

θi(t) =
1

CiRi
(Ta,i − θi(t) − si(t)RiPi), i = 1, 2, · · · , NL, (1)
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where Ta,i is the ambient temperature, Ci[kWh/◦C] is heat capacity of AC i, Ri[
◦C/kW] is thermal

resistance, and Pi[kW] is the average power consumption. It is assumed that the ambient temperature
remains constant for a period. The state variable si(t) switches its value according to the switching
criterion—as described in the following equation:

si(t) =


0 if si(t− τ) = 1&θi(t) < minθi(t)
1 if si(t− τ) = 0&θi(t) > maxθi(t)

si(t− τ) otherwise
, (2)

It is supposed that the ACs are in the refrigeration mode. When the internal temperature θi(t)
exceeds the set temperature upper limit maxθi(t) and the AC is “OFF” in the previous period, the AC
state at this period is switched to “ON”. On the contrary, when the internal temperature θi(t) is below
the temperature set point lower limit minθi(t) and the AC is “ON” in the previous period, the AC state
at this period is switched to “OFF”. The limits [minθi(t), maxθi(t)] are related to the set temperature
Tset,i and the temperature deadband of AC ∆db, i, shown as Equation (3).

minθi(t) = Tset,i(t) −
∆db, i

2
; maxθi(t) = Tset,i(t) +

∆db, i
2

, (3)

According to the heat exchange model of a single AC system, cf. Equation (1)–(3), the estimated
aggregated power consumption of AC group j can be obtained. Supposing that there are N j

L ACs in
group j and the aggregated power consumption at time t can be calculated:

P j
A(t) =

P j

η j

N j
L∑

i=1

s j
i (t), j = 1, 2, · · · , M, (4)

where η j is the efficiency ratio of ACs in group j.

3.2. Grouping of AC Resources and Task Assignment for AC Groups

The existing aggregated AC control models mainly focus on the homogeneous AC control. In
practice, if the specifications of the ACs are different, the corresponding equivalent thermal parameters
and system parameters are also different. Therefore, AC resources need to be divided into homogeneous
aggregated groups according to the parameters. In this paper, the ACs groups are managed as the
basic objects. Additionally, from the single AC model, it can be seen that the AC system parameters
include thermal resistance, heat capacity, set temperature, and average power, which affect the model
together. Therefore, according to the four kinds of parameters, the load resources are divided into
several groups that meet the requirements of the homogeneous aggregated model.

The selection and task assignment of aggregated AC groups should meet the
following requirements:

Firstly, in order to ensure high tracking accuracy, the two norms of the difference between the
total estimated power of the selected aggregated groups and the energy to be consumed are set as the
objective function. The objective function is solved to select the AC groups suitable for participating in
the task, as shown in Equation (5).

f = min
T∑

t=0

‖Pdes −
∑
j∈Θ

P j
A‖, (5)

where Θ = {1, 2, · · · , M} is the set containing the number of M groups of ACs. Additionally, n groups are
selected from the M aggregated AC groups to participate in the load following service. P j

A represents
the estimated power consumption of the aggregated AC group involved in the load following service
and Pdes is the accommodation target.
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Secondly, considering the impact on the users, the consumption task of the AC group is constrained
within its adjustable range. Set P j

T(t) as the tracking task of aggregated AC group j and it is

adjusted within [P j
A−(t), P j

A+(t)]. The power consumption range [P j
A−(t), P j

A+(t)] is related to the users’
acceptable temperature range. It is supposed that the set temperature of group j is adjusted within the
users’ acceptable range [minT j

acc, maxT j
acc]. The relationship between power consumption range and

temperature range is shown as:

P j
A−(t) =

P j

η j

N j
L∑

i=1

mins j
i (t), j = 1, 2, · · · , M, (6)

P j
A+(t) =

P j

η j

N j
L∑

i=1

maxs j
i (t), j = 1, 2, · · · , M, (7)

where mins j
i (t) and maxs j

i (t) are the switched-on/switched-off state variables with a set temperature of
AC group j, calculated as the following Equations:

mins j
i (t) =


0 if mins j

i (t− τ) = 1&θi(t) < minT j
acc(t) −

∆db j

2

1 if mins j
i (t− τ) = 0&θi(t) > minT j

acc(t) +
∆db j

2

mins j
i (t− τ) otherwise

, (8)

maxs j
i (t) =


0 if maxs j

i (t− τ) = 1&θi(t) < maxT j
acc(t) −

∆db j

2

1 if maxs j
i (t− τ) = 0&θi(t) > maxT j

acc(t) +
∆db j

2

maxs j
i (t− τ) otherwise

, (9)

The n AC groups that minimize the objective function can be obtained by intelligent search. The
artificial immune algorithm is an excellent swarm intelligence search algorithm that can converge
quickly and avoid local optimization. Additionally, it is used to solve the objective function in this paper.

The optimization process is as follows:

(1) Antigen recognition: It refers to the analysis process of the problem to be solved, and according
to the analysis results, the appropriate objective function is constructed.

(2) Generation of initial antibody population: The feasible solution of the problem needs to be
represented as an antibody in the solution space by coding. In general, the initial antibody
population is randomly generated in the solution space, and each antibody is a real vector.
Supposing that there are a total of M groups of aggregated ACs, n groups are selected to
participate in the accommodation. The antibody is the number combination of the n AC groups.

(3) Update individuals: The individuals are updated by executing immune operation, which contains
the clone, crossover, and mutation.

(4) Evaluation of individuals: Individuals are evaluated through calculating affinity, concentration,
and reproductive rate. Individual affinity contains antibody-antigen affinity and
antibody-antibody affinity. The affinity calculation equations are shown as follows:

Av =
1
f

, (10)

Sv,s =
kv,s

n
, (11)

where f is the objective function value cf. Equation (5), Av is the affinity of antibody v, and Sv,s is
the affinity between antibody v and s. kv,s is the similarity between antibody v and s and n is the
antibody length.
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(5) Parent individuals: The antibody was screened by immune balance operation and immune
selection operation, and the parental antibody was formed.

Immune balance is a mechanism to ensure population diversity. To regulate the concentration of
individuals, the balance operation containing the promoting operator and inhibiting operator should
be executed. The individuals with excessive concentration should be inhibited, which can effectively
prevent the problem of algorithm precocious due to excessive concentration. According to the affinity
and concentration of individuals, the reproductive rate of the individuals is calculated:

Cv =
1
N

∑
i∈N

Sv,s; , (12)

Pr = α
Av∑

Av
+ (1− α)

Cv∑
Cv

, (13)

where Cv is the concentration of antibody v; N is the number of iterations; Pr is the reproductive rate,
and α is the diversity evaluation parameter of antibody v.

(6) Record optimal individuals.
(7) Judging whether the iteration meets the end condition, if it meets the end condition, the recorded

optimal individuals is the optimal solution of the objective function, if not, the antibody population
should be updated by crossover and mutation and the above process should be repeated until the
optimal solution is obtained.

(8) Judge whether the maximum iteration N has been achieved. If the end request is met, then output
the optimum individual or go back to Equation (3).

The flow of artificial immune algorithm is shown in Figure 2.
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Through the immune algorithm, the optimal solution is obtained. The estimated power
consumption of selected AC group j is denoted as P j

A∗(t), and it is used to assign the tracking
tasks for n selected AC groups, shown as follows:

P j
T(t) =


∆ j(t) + P j

A∗(t), 0 < ∆ j(t) < P j
A∗+

(t) − P j
A∗(t) or 0 > ∆ j(t) > P j

A∗−(t) − P j
A∗(t)

P j
A∗+(t), ∆ j(t) ≥ P j

A∗+
(t) − P j

A∗(t)

P j
A∗−(t), ∆ j(t) ≤ P j

A∗−(t) − P j
A∗(t)

, (14)

where P j
T(t) is the task of group j at time t, adjusted within the adjustable range of the AC group and

∆ j(t) is the increment of the task assigned to a group j:

∆ j(t) =
P j

A∗(t)∑
j∈Θ

P j
A∗

(Pdes −
∑
j∈Θ

P j
A∗), (15)

3.3. Modeling of AC Group and Collaborative Control

Equations (1)–(4) can describe the aggregated ACs dynamics effectively, while it is difficult to
design the control module due to the characteristics of the multiple inputs single output. Hence, a
single input single output model is required. Bashash et al. proposed a state-space model to describe
the dynamics of aggregated ACs and it is a single input single output system. Figure 3 illustrates a
finite-difference discretization of the state-space model at time t and the state-space is divided into Q
segments. The loads distributed on the temperature axis, αon and αo f f represent the transport rates of
loads at ON and OFF states, calculated by:

αon(Ta, T) � αon(Ta, Tset) =
1

CR
(Ta − Tset −RP), (16)

αo f f (Ta, T) � αo f f (Ta, Tset0) =
1

CR
(Ta − Tset0), (17)

where, Tset0 is the initial temperature set point. Neglecting the temperature offset around Tset0, the
load transport rates are approximated to be average load transport rates αon, αo f f .
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To ensure that the aggregated AC groups complete the tracking task, a control algorithm that 
matches the aggregated AC model is introduced below. In reality, the wind power output is 
fluctuates because of the uncertainties in the environment. Therefore, we need a dynamic control 
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The state-space model is described in Bashash’s study [10] and we do not repeat it. The aggregated
power consumption at time t is calculated by Equation (18):

PAgg(t) =
P
η

Q∑
j=I+1

x j, (18)

where x j is the number of ACs in segment j.
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The state-space model can be written in the form of the bilinear equation, as shown in Equation (19).
It is a standard form in the area of automatic control.

.
x(t) = Ax(t) + Bx(t)u(t), u(t) =

.
Tset(t)

y(t) = Cx(t)
, (19)

where x(t) = [x1(t), x2(t), · · · , xQ(t)]
T is the state vector and y(t) = PAgg(t) is the output of

Equation (18). A(αon,αo f f ) is the coefficient matrix structured as Equation (20) and the other coefficient
matrixes B = A(−1,−1), C = [0, . . . , 0

∣∣∣I, P/η, . . . , P/η
∣∣∣Q] .
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To ensure that the aggregated AC groups complete the tracking task, a control algorithm that
matches the aggregated AC model is introduced below. In reality, the wind power output is fluctuates
because of the uncertainties in the environment. Therefore, we need a dynamic control algorithm with
the characteristics of fast response and flexible control to deal with the problem. The sliding mode
model has the advantage of insensitivity to disturbance and fast response. It can be carried by cloud
platform as the aggregated AC group control algorithm [16,17].

Refer to the study of Bashash [10], the sliding mode function is defined as:

s = e(t) = Pdes(t) − PAgg(t), (21)

Then, the Lyapunov candidate function is defined as:

V(t) =
1
2

s2, (22)

Treating the entire thermostatic ON state as a bulk control volume, the rate of change of aggregated
AC group’s power is then given by:

.
PAgg =

P
η

.
Non(t), (23)

where
.

Non(t) is the total number of loads over the ON state. The rate at which
.

Non(t) varies is governed
by the difference between the boundary fluxes entering and leaving the ON state as follows:

.
Non(t) = [αo f f (t, maxTacc) −

.
Tset]Xo f f (t, maxTacc) + [αon(t, minTacc) −

.
Tset]Xon(t, minTacc), (24)
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where αo f f (t, maxTacc) and αon(t, minTacc) represents the instantaneous local average transport rates
at the deadband boundaries. Note that these two quantities have opposite signs, and are time-varying
in general, due to load heterogeneity and the variation of ambient and set point temperatures. Let

f (α, X) =
P
η
(αo f f (t, maxTacc)Xo f f (t, maxTacc) + αon(t, minTacc)Xon(t, minTacc)), (25)

g(X) =
P
η
(Xo f f (t, maxTacc) + Xon(t, minTacc)) ≥ 0, (26)

u(t) =
.
Tset(t), (27)

.
V(t) = e(t)

{ .
Pdes(t) − f (α, X) + g(X)u(t)

}
, (28)

To ensure the stability of control system
.

V(t)must be negative for all nonzero e(t) [10]. Additionally,
to satisfy the requirement, the control input u(t) is structured as: u(t) = −κ(t)sgn

{
e(t)
ε

}
κ(t) >

∣∣∣∣Pdes(t)− f (α,x)
g(x)

∣∣∣∣ , (29)

The final control law for the set temperature is obtained by integrating Equation (29) as follows:

∆Tset(t) = −
∫ t

0
κ(τ)sgn(e(τ))dτ, (30)

3.4. The Feasibility of Data Acquisition and the Influence of Communication Delay on the System

In this paper, an AC cloud management and control method is proposed, and the scattered ACs
can be centralized controlled via the cloud platform. As the algorithm has the requirement of data
transmission speed in practical application, the real-time data acquisition of the AC system and fast
control signal transmission must be guaranteed. Here, the feasibility of data acquisition is analyzed
and the delay of data transmission is tested.

With the development of Internet of things, AC data can be obtained from the Internet and each
AC will belong to at least one cloud platform. Taking the remote control of intelligent home appliances
as an example, the intelligent home appliances and cloud platform is connected via the Internet. Users
can remotely control the appliances by APP (Application). Additionally, it demonstrates that the
cloud platform can control loads directly. There are lots of loads under the cloud platform, thus cloud
platforms participating in loads management will provide the foundation for the implementation of
the load control technology. Therefore, in this paper, the system parameters such as the state of AC
system, the set temperature, the average power, the heat capacity, and the thermal resistance can be
obtained through the cloud platform.

With the breakthrough of mobile network technology, the speed of communication speed has
been improved. Additionally, the real-time remote load control can be guaranteed. According to the
method proposed in this paper, the real-time control of ACs is the basis to ensure tracking accuracy.
In order to test the delay of data transmission over WAN, we measure the communication delay of
remote control for Midea intelligent AC. As the geographical position influences the signal intensity
of the mobile network, we tested the delay many times in many places of different signal intensity.
The results show that the control signal has a maximum delay of 2 s when the signal is weak, and
under normal conditions, the signal delay is less than 0.5 s. If the cloud platform directly controls
appliances, the communication between a mobile phone and cloud platform will be ignored, and the
data transmission delay will be less than two seconds, which has no obvious effect on the control
process and it can be ignored.
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4. Simulation and Analysis

To verify the performance of the collaborative group control method, an experiment is designed
to evaluate the method in terms of the tracking accuracy and influence on users. In this experiment,
there are 4000 ACs belonging to five cloud platforms participating in the tracking service.

4.1. Grouping of AC Resources

In this paper, the ACs are controlled by the cloud platform. The average power, thermal resistance,
heat capacity, and initial set temperature of the AC system are obtained by the cloud platform. The
initial set temperature and average power can be obtained directly, while the thermal resistance and heat
capacity are related to the thermal conductivity, structure, and orientation of the building. Therefore,
the thermal resistance and heat capacity should be calculated according to known parameters collected
by the cloud platform. The process is as follows:

Assuming that the air conditioning is in the refrigeration mode, the ambient temperature and
average power are known. In the ON state, the internal temperature of the AC system at r and r +

1 time is collected and denoted as Ti(r), Ti(r + 1); In the OFF state, the internal temperature of air
conditioning system at k and k + 1 time is collected and denoted as Ti(k), Ti(k + 1). By merging
the above known variables into the difference equation derived from Equation (1), we can obtain
Equations (31) and (32), shown as follows:

Ti(k + 1) = Ta,i(k + 1) − (Ta,i(k + 1) − Ti(k))e
−1

RiCi , (31)

Ti(r + 1) = Ta,i(r + 1) + PiRi − (Ta,i(r + 1) + PiRi − Ti(r))e
−1

RiCi , (32)

Solving Equations (31) and (32), the thermal resistance and heat capacity of AC system are
expressed as Equations (33) and (34):

Ri =
(Ta,i(r + 1) − Ti(r))(Ta,i(k + 1) − Ti(k + 1))
(Ta,i(r + 1) − Ti(r + 1))(Ta,i(k + 1) − Ti(k))

, (33)

Ci =
−Pi(Ta,i(r + 1) − Ti(r + 1))(Ta,i(k + 1) − Ti(k))

ln
(

Ta,i(k+1)−Ti(k+1)
Ta,i(k+1)−Ti(k)

)
(Ta,i(r + 1) − Ti(r))(Ta,i(k + 1) − Ti(k + 1))

, (34)

Finally, the 4000 ACs are divided into 70 homogeneous aggregated groups and the cluster centers
of the aggregated AC groups are shown in Table 1:

Table 1. Cluster center of the aggregated AC groups.

Parameter Value

P kW 14; 11.2; 8.4; 5.6; 2.8
R ◦C/kW 2; 2.5; 3.33; 5; 10

C kWh/◦C 10; 8; 6; 4; 2
Tset0

◦C 20; 21; 22; 23; 24; 25; 26

4.2. Consumption Task Assignment for AC Groups

The immune algorithm is utilized to select the aggregated AC group involved in the tracking task,
and finally 700 ACs of 10 groups are selected to track the wind power output. In Figure 4, it can be
seen that the estimated total power is similar to the tracking target.
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Additionally, the parameters of the AC groups involving tracking service are shown in Table 2.

Table 2. Parameters of the selected AC groups.

No. R ◦C/kW C kWh/◦C P kW Tset0
◦C NL

A3 2.5 8 11.2 24 82
A6 5 4 5.6 24 53
B3 2 10 14 20 60
B6 3.33 6 8.4 20 115

C11 5 4 5.6 20 85
C12 5 4 5.6 26 50
D13 2 10 14 26 60
D14 10 2 2.8 23 66
E4 2 10 14 23 85
E7 2 10 14 26 44

After determining the AC groups involved in the tracking service, tracking tasks are assigned to
the selected AC groups, as shown in Figure 5. Figure 5a is the estimated power trajectory of AC groups;
Figure 5b is the assigned task. The tracking target of the aggregated AC group and the assigned task is
within the adjustable range of the AC group. Additionally, the less interventions carried out in the AC
control process, the less impact there is on the users.Processes 2019, 7, x 12 of 14 
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4.3. Algorithm Performance Analysis

To validate the performance of the collaborative group control method, the AC groups are
controlled to track the wind power object in Figure 4. Additionally, Bashash’s algorithm [10] is
compared with the algorithm in this paper. In Bashash’s study [10], a discrete finite difference state
space model for homogeneous aggregated ACs is established, and a sliding mode control system is
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established for the model. Based on the model proposed by Bashash [10], a collaborative grouping
method of ACs is proposed in this paper. According to the estimated power of the AC groups, the
optimal tracking tasks are assigned to AC groups. Additionally, we think that the accuracy of tracking
control can be improved and the impact on users can be reduced when the tracking task is close to
the estimated power of the AC group. In order to verify this conclusion, we establish a comparison
experiment and the results are as follows:

It is assumed that the two methods control the same ACs and the tracking targets are the same.
The difference between the two methods is that ACs are the group control and optimal tracking tasks
are assigned to the AC groups in our method.

Figure 6a is the tracking process of the two methods. It can be seen that both the traditional method
and the proposed method can accurately track the target. Additionally, in Figure 6b,c, the tracking error
and error distribution of the two methods are shown. In terms of tracking accuracy, the results show
that the collaborative group control method has a better performance than the comparison method.
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Figure 6. (a) Wind power tracking of two methods; (b) tracking errors of proposed method and
comparison method; (c) error distribution of proposed method and comparison method; and (d) set
temperature variation of the proposed method and comparison method.

The effects of the two methods on user comfort can be evaluated by comparing the set temperature
changes of AC in the control process. Figure 6d is the set temperature variation comparison of the
two methods in the control process of air-conditioning. The variation of collaborative control method
in Figure 6d is equal to the average of the 10 AC groups set temperature variation. Obviously, the
variation of the proposed method is less than the traditional method and it means that our method has
good performance both in terms of tracking accuracy and its effects on users.

5. Conclusions

In this paper, an AC control and management method based on cloud platform for wind power
consumption is established. The scattered AC resources are aggregated into controllable groups
through the cloud platform, which is convenient for centralized management and provides ancillary
services for the power grid. According to the system parameters, the AC resources are divided into
several homogeneous aggregated groups, and the aggregated power of the AC group is estimated.
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Combined with the AC information fed back by the cloud platform and the wind power target to be
tracked, the power grid optimally selects the aggregated AC groups and assigns a tracking task to
each AC group. Additionally, the cloud platform collaboratively controls the aggregated AC groups to
complete the tracking task. In this paper, according to the users’ requirements and wind power output
to be tracked, the optimal task allocation algorithm is established. Firstly, according to the estimated
power and tracking target of the AC groups, the aggregated AC group participating in the task is
selected optimally. Secondly, combined with the adjustable range of each AC group, the tracking task
is assigned to each group. Finally, the sliding mode control model is used to control the aggregated AC
group to complete the tracking task.

The simulation results demonstrate that the proposed method can follow the objective wind
power effectively and meet users’ requirements. Compared with the baseline control method, the
AC set temperature varies within a smaller range and the method of this paper has a high tracking
accuracy, which shows that the proposed method has a lower impact on users. In addition, due to the
group management of AC resources, the proposed method is more flexible in tracking the output.

The managing framework based on the cloud platform can regulate the entire load under the
cloud. Being similar to air-conditioning, electric water heaters also have the potential to be controllable
load. Further research will focus on developing the integrated control model of electric water heater
and air-conditioning to balance power supply and demand in the integrated energy system.
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