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Abstract: A topological index of a graph is a single numeric quantity which relates the chemical
structure with its underlying physical and chemical properties. Topological indices of a nanosheet
can help us to understand the properties of the material better. This study deals with computation
of degree-dependent topological indices like the Randic index, first Zagreb index, second Zagreb
index, geometric arithmetic index, atom bond connectivity index, sum connectivity index and hyper
Zagreb index of nanosheet covered by C3 and C6. Furthermore, M-polynomial of the nanosheet is
also computed, which provides an alternate way to express the topological indices.
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1. Introduction

Nanosheets are two-dimensional polymeric materials which remain among the most actively
researched areas of subject chemistry and physics. Generally, nanosheets are inorganic materials
which can be created from bulk crystalline layered materials that have fascinating properties and
functionalities, excellent electrochemical performance, and high potential for separation applications
due to their exceptional molecular transport properties [1]. The nanomaterial has a sheet-like structure
with a size larger than 100 nm and thickness less than 5 nm, which is only one or a few atoms thick.
Topological indices quantify the physical as well as chemical properties of compounds by associating
a unique number to chemical graphs which represent a chemical structure by denoting atoms by
vertices and bonds are represented by edges of the graph.

Graphene derived from graphite is a highly attractive two-dimensional lubricating material,
wear-resistant with low-friction characteristics [2–4], endowed with high conductivity, tensile strength,
and remarkable toughness [5]. Other aspects of nanomaterials like optical properties, applications in
human therapeutics, biocompatibility, and stability are established in [6–8]. Boron nitride nanosheets
(BNNs) and nanotubes have closely analogous properties to carbon nanotubes. High stiffness and
excellent chemical stability make BNNs an ideal material for reinforcement in polymers, ceramics,
and metals. BNNs also exhibit excellent thermal conductivity, radiation shielding ability, and high
electrical resistance [8,9]. These ultrathin 2D nanomaterials possess utilization for wide ranges of
potential applications among the electronics/optoelectronics, electrocatalysis, batteries, supercapacitors,
solar cells, photocatalysis, and sensing platforms.

Today, topological indices are extensively applied in computational chemistry methods such as
(Q)SARs ((Quantitative) Structure-Activity Relationships) in the area of toxicology and drug design:
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computational models are used to predict the behavior and effects of nanomaterials in biological
systems. Topological indices (descriptors) provide a comprehensive understanding of the relationships
between the physicochemical properties and the behavior of nanomaterials in biological systems for
designing safe and functional nanomaterials. Quantitative Structure-Activity Relationship (QSAR)
methods help to establish such relationships and have been widely studied [10–13].

Let us consider G = (V, E) be such a graph having n vertices and m edges. The symbol du is the
degree of vertex u ∈ V(G) and is the number of vertices that are adjacent to u.

The first degree based topological index is a Randic index x(G), invented by Milan Randic [14] in
1975 and is defined as:

x(G) =
∑
uv∈E

1
√

dudv

Bollobás and Erdös [15] introduced the idea of the general Randic index in 1998.
The general Randic index of graph G is defined as:

Rα(G) =
∑
uv∈E

(dudv)
α (1)

The first and second Zagreb index M1(G), M2(G), termed by Gutman and Trinajstić [16], are also
among the oldest known topological indices and are defined as:

M1(G) =
∑
uv∈E

[du + dv] (2)

M2(G) =
∑
uv∈E

[dudv] (3)

The atom-bond connectivity index, or ABC index, is a degree based topological index which was
introduced by Estrada et al. [17]. It is represented as:

ABC(G) =
∑
uv∈E

√
du + dv − 2

dudv
(4)

Sum connectivity index (SCI(G)) was invented by Zhou and Trinajstić [18], expressed by Equation (5).

SCI(G) =
∑
uv∈E

1
√

du + dv
(5)

The Geometric-arithmetic index or GA(G) is a topological index of a molecular graph G which
was introduced by Vukičević and Furtula [19].

The geometric-arithmetic topological index is defined as:

GA(G) =
∑
uv∈E

2
√

dudv

du + dv
(6)

A new degree based topological index called the hyper-Zagreb index was introduced by
Shirdel et al. [20], and is given as:

HM(G) =
∑
uv∈E

(du + dv)
2 (7)

The first and second multiple Zagreb indices, denoted by PM1(G) and PM2(G), were introduced
in 2012 [21].

PM1(G) =
∏
uv∈E

[du + dv] (8)
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PM2(G) =
∏
uv∈E

[du × dv] (9)

Degree-based topological indices and M-polynomials of different types of nanotubes are being
studied by many researchers. Jagadeesh et al. computed degree based topological indices of graphene [22].
Chen et al. [23] analyzed topological indices of nanotubes covered by C4. Hayat et al. computed
topological indices of nanotubes covered by C5 and C7 [24]. Aslam et al. [25] worked for topological
characterization of triangular boron nanotubes. Idrees et al. provided results for topological indices of
an H-Naphthalenic nanosheet [26]. We refer readers to [27–30] for further studies in this area.

Degree based topological indices of nanosheets tessellated by C3 and C6, described in Figure 1,
are computed in this paper. These computations can give further insight into the underlying information
of the material. Moreover, M-polynomial of the nanosheet is also computed in the paper, which is
an eloquent way to describe topological invariants in a single expression. These types of nanosheets
appear as a type of coordination nanosheet; for further details of coordination nanosheet, see [31].

Processes 2019, 7, x FOR PEER REVIEW 3 of 10 

𝑃𝑀2(𝐺) = ∏ [𝑑𝑢 × 𝑑𝑣]

𝑢𝑣∈𝐸

 (9) 

Degree-based topological indices and M-polynomials of different types of nanotubes are being 

studied by many researchers. Jagadeesh et al. computed degree based topological indices of graphene 

[22]. Chen et al. [23] analyzed topological indices of nanotubes covered by C4. Hayat et al. computed 

topological indices of nanotubes covered by C5 and C7 [24]. Aslam et al. [25] worked for topological 

characterization of triangular boron nanotubes. Idrees et al. provided results for topological indices 

of an H‐Naphthalenic nanosheet [26]. We refer readers to [27–30] for further studies in this area. 

Degree based topological indices of nanosheets tessellated by C3 and C6, described in Figure 1, 

are computed in this paper. These computations can give further insight into the underlying 

information of the material. Moreover, M-polynomial of the nanosheet is also computed in the paper, 

which is an eloquent way to describe topological invariants in a single expression. These types of 

nanosheets appear as a type of coordination nanosheet; for further details of coordination nanosheet, 

see [31]. 

 

Figure 1. Chemical graph of nanosheet 𝐶[6,5] with five rows and six hexagons in each row. 

2. Methods 

The degree-based topological indices can be computed by using the degrees of end vertices of 

the coordination nanosheet. We denote it by 𝐶[𝑚, 𝑛], where 𝑚 denotes the number of hexagons in 

each row and 𝑛 denotes the number of hexagons in each column. Chemical graph of 𝐶[𝑚, 𝑛] has 

successive columns of hexagons (C6) and triangles (C3). We partition the edges of the graph according 

to the degrees of the end vertices. All vertices having degrees according to edges connected with the 

respective vertex are computed as 2, 3, and 4. Here we have five different types of edges whose end 

vertices have a degree (2,2), (2,3), (3,3), (3,4), and (4,4), symbolically denoted by 𝐸(2,2) , 𝐸(2,3), 𝐸(3,3), 

𝐸(3,4) and 𝐸(4,4), respectively. Total number of edges computed of the type 𝐸(2,2), 𝐸(2,3), 𝐸(3,3), 𝐸(3,4) and 

𝐸(4,4) are 4, 4𝑛, 4𝑚 − 6, 4𝑚 + 2𝑛 − 6 and 6𝑚𝑛 − 6𝑚 − 7𝑛 + 7, respectively. All of these results are 

summarized in Table 1. 

Table 1. Edge partition of coordination nanosheet 𝐶[𝑚, 𝑛]. 

Type of Edges 𝑬(𝟐,𝟐)  𝑬(𝟐,𝟑) 𝑬(𝟑,𝟑) 𝑬(𝟑,𝟒) 𝑬(𝟒,𝟒) 

(𝑑𝑢 , 𝑑𝑣) 
uv∈ 𝐸(𝐶[𝑚, 𝑛]) 

(2,2) (2,3) (3,3) (3,4) (4,4) 

Number of edges 4 4𝑛 4𝑚 − 6 4𝑚 + 2𝑛 − 6 6𝑚𝑛 − 6𝑚 − 7𝑛 + 7 

3. Results 

Theorem 1: Randic index of coordination nanosheet, denoted by 𝑅𝛼(𝐶[𝑚, 𝑛]) is given as: 

Figure 1. Chemical graph of nanosheet C[6,5] with five rows and six hexagons in each row.

2. Methods

The degree-based topological indices can be computed by using the degrees of end vertices of
the coordination nanosheet. We denote it by C[m, n], where m denotes the number of hexagons in
each row and n denotes the number of hexagons in each column. Chemical graph of C[m, n] has
successive columns of hexagons (C6) and triangles (C3). We partition the edges of the graph according
to the degrees of the end vertices. All vertices having degrees according to edges connected with the
respective vertex are computed as 2, 3, and 4. Here we have five different types of edges whose end
vertices have a degree (2,2), (2,3), (3,3), (3,4), and (4,4), symbolically denoted by E(2,2), E(2,3), E(3,3),
E(3,4) and E(4,4), respectively. Total number of edges computed of the type E(2,2), E(2,3), E(3,3), E(3,4)
and E(4,4) are 4, 4n, 4m − 6, 4m + 2n − 6 and 6mn − 6m − 7n + 7, respectively. All of these results are
summarized in Table 1.

Table 1. Edge partition of coordination nanosheet C[m, n].

Type of Edges E(2,2) E(2,3) E(3,3) E(3,4) E(4,4)

(du, dv)
uv ∈ E(C[m, n]) (2,2) (2,3) (3,3) (3,4) (4,4)

Number of edges 4 4n 4m− 6 4m + 2n− 6 6mn− 6m− 7n+ 7

3. Results

Theorem 1. Randic index of coordination nanosheet, denoted by Rα(C[m, n]) is given as:
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Rα(C[m, n])=

 24mn +
(
8
√

3− 12
)
m +

(
4
√

3 + 4
√

6− 28
)
n + 18− 12

√
13 i f α = 1

2
3
2 mn +

(
−1+4

√
3

6

)
m + 0.46n + 0.0179 i f α = − 1

2

Proof. General Randic index of the coordination nanosheet is given by Equation (1) and can be
computed as:

For α = 1
2 ,

R 1
2
(C[m, n]) =

∑
uv∈E

√
dudv

=
∑

uv∈E(2,2)

√
dudv +

∑
uv∈E(2,3)

√
dudv +

∑
uv∈E(3,3)

√
dudv +

∑
uv∈E(3,4)

√
dudv +

∑
uv∈E(4,4)

√
dudv

Using values from Table 1, we get

R 1
2
(C[m, n]) = 4+4n

√
2× 2 + (4m− 6)

√
3× 3 + (4m + 2n− 6)

√
3× 4

(6mn− 6m− 7n + 7)
√

4× 4

which is simplified to

R 1
2
(C[m, n]) = 24mn +

(
8
√

3− 12
)
m +

(
4
√

3 + 4
√

6− 28
)
n + 18− 12

√

13

For α = − 1
2 ,

R−1
2
(C[m, n]) =

∑
uv∈E

1
√

dudv

=
∑

uv∈E(2,2)

1
√

dudv
+

∑
uv∈E(2,3)

1
√

dudv
+

∑
uv∈E(3,3)

1
√

dudv
+

∑
uv∈E(3,4)

1
√

dudv
+

∑
uv∈E(4,4)

1
√

dudv

Again using Table 1, we get

R−1
2
(C[m, n]) =4 1

√
2×2

+ 4n 1
√

2×3
+ (4m− 6) 1

√
3×3

+ (4m + 2n− 6) 1
√

3×4
+(6mn− 6m− 7n + 7) 1

√
4×4

By simplification, we get

R−1
2
(C[m, n]) =

3
2

mn +

(
−1 + 4

√
3

6

)
m + 0.46n + 0.0179

�

Theorem 2. First Zagreb index of nanosheet C[m, n] is given as:

M1(C[m, n]) = 48mn + 4m− 22n− 6

Proof. We can compute the first Zagreb index of the nanosheet as defined in Equation (2) as:

M1(C[m, n]) =
∑

uv∈E
[du + dv]

=
∑

uv∈E(2,2)
[du + dv] +

∑
uv∈E(2,3)

[du + dv] +
∑

uv∈E(3,3)
[du + dv]

+
∑

uv∈E(3,4)
[du + dv] +

∑
uv∈E(4,4)

[du + dv]
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Now, from Table 1, we get

M1(C[m, n]) = 4(2 + 2) + 4n(2 + 3) + (4m− 6)(3 + 3) + (4m + 2n− 6)(3 + 4)
+(6mn− 6m− 7n + 7)(4 + 4)

which can be simplified to
M1(C[m, n]) = 48mn + 4m− 22n− 6

�

Theorem 3. For nanosheet C[m, n], the second Zagreb index is given as:

M2(C[m, n]) = 96mn− 12m− 64n + 2

Proof. To compute the second Zagreb index of the coordination nanosheet, we use edge partition from
Table 1 to split the relation in Equation (3) as:

M2(C[m, n]) =
∑

uv∈E
c[dudv]

=
∑

uv∈E(2,2)
[dudv] +

∑
uv∈E(2,3)

[dudv] +
∑

uv∈E(3,3)
[dudv] +

∑
uv∈E(3,4)

[dudv] +
∑

uv∈E(4,4)
[dudv]

After using values from Table 1, we have

M2(C[m, n]) = 4(2× 2) + 4n(2× 3) + (4m− 6)(3× 3) + (4m + 2n− 6)(3× 4)
+(6mn− 6m− 7n + 7)(4× 4)

which yields
M2(C[m, n]) = 96mn− 12m− 64n + 2

�

Theorem 4. The ABC index of the nanosheet C[m, n] is given as:

ABC(C[m, n]) = 3.67mn + 1.57m− 0.167n− 9.33

Proof. We can find the ABC index of coordination nanosheet as defined in Equation (4), which can be
further expanded by the edge partition of Table 1:

ABC(C[m, n]) =
∑

uv∈E

√
du + dv − 2

dudv

=
∑

uv∈E(2,2)

√
du + dv − 2

dudv

+
∑

uv∈E(2,3)

√
du + dv − 2

dudv
+

∑
uv∈E(3,3)

√
du+dv−2

dudv

+
∑

uv∈E(3,4)

√
du + dv − 2

dudv
+

∑
uv∈E(4,4)

√
du + dv − 2

dudv

Using values from Table 1, we get

BC (C[m, n] = 4

√
2 + 2− 2

2.2
+ 4n

√
2 + 3− 2

2.3
+ (4m− 6)

√
3 + 3− 2

3.3

+(4m + 2n− 6)

√
3 + 4− 2

3.4
+ (6mn− 6m− 7n + 7)

√
4 + 4− 2

4.4
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which further reduces to

ABC C[m, n] = 3.67mn + 1.57m− 0.167n− 9.33

�

Theorem 5. Sum connectivity index SCI of C[m, n] is given as:

SCI(C[m, n]) = 2.12mn + 1.02m + 0.069n− 0.242

Proof. After using values from Table 1, we can calculate the sum connectivity index of a coordination
nanosheet as defined in Equation (5):

SCI (C[m, n]) =
∑

uv∈E

1
√

du + dv

=
∑

uv∈E(2,2)

1
√

du + dv
+

∑
uv∈E(2,3)

1√
du+dv

+
∑

uv∈E(3,3)

1
√

du + dv

+
∑

uv∈E(3,4)

1
√

du + dv
+

∑
uv∈E(4,4)

1
√

du + dv

Using the values from Table 1, we have

SCI (C[m, n]) = 4
1

√
2 + 2

+ 4n
1

√
2 + 3

+ (4m− 6)
1

√
3 + 3

+ (4m + 2n− 6)
1

√
3 + 4

+(6mn− 6m− 7n + 7)
1

√
4 + 4

Now, by simplifying,

SCI (C[m, n]) = 2.12mn + 1.02m + 0.069n− 0.242

�

Theorem 6. Geometric arithmetic index GA(C[m, n]) of such a coordination nanosheet, is given as:

GA(C[m, n]) = 6mn + 1.95m− 0.101n− 0.94

Proof. Table 1 contains edge partition values; with these values the geometric arithmetic index of
coordination nanosheet as defined in Equation (6) can be calculated as:

A(C[m, n]) =
∑

uv∈E

2
√

dudv

du + dv

=
∑

uv∈E(2,2)

(
2
√

dudv

du + dv

)
+

∑
uv∈E(2,3)

(
2
√

dudv

du + dv

)
+

∑
uv∈E(3,3)

(
2
√

dudv

du + dv

)
+

∑
uv∈E(3,4)

(
2
√

dudv

du + dv

)
+

∑
uv∈E(4,4)

(
2
√

dudv

du + dv

)
Now, from Table 1, we have

GA(C[m, n]) = 4
(

2
√

2× 2
2 + 2

)
+ 4n

(
2
√

2× 3
2 + 3

)
+ (4m− 6)

(
2
√

3× 3
3 + 3

)
+(4m + 2n− 6)

(
2
√

3× 4
3 + 4

)
+ (6mn− 6m− 7n + 7)

(
2
√

4× 4
4 + 4

)
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Now, the simplified form is,

GA(C[m, n]) = 6mn + 1.95m− 0.101n− 0.94

�

Theorem 7. Hyper Zagreb index of the coordination nanosheet C[m, n] is given as:

HM(C[m, n]) = 348mn− 44m− 250n + 2

Proof. Hyper Zagreb index of coordination nanosheet as defined in Equation (7) can be computed by
using values from Table 1:

HM(C[m, n]) =
∑

uv∈E
(du + dv)

2

=
∑

uv∈E(2,2)
(du + dv)

2 +
∑

uv∈E(2,3)
(du + dv)

2 +
∑

uv∈E(3,3)
(du + dv)

2

+
∑

uv∈E(3,4)
(du + dv)

2 +
∑

uv∈E(4,4)
(du + dv)

2

From Table 1, we get

HM(C[m, n]) = 4(2 + 2)2 + 4n(2 + 3)2 + (4m− 6)(3 + 3)2

+(4m + 2n− 6)(3 + 4)2 + (6mn− 6m− 7n + 7)(4 + 4)2

Now we have
HM(C[m, n]) = 384mn− 446n− 44m + 2

�

Theorem 8. Let us consider the coordination nanosheet C[m, n], then first multiple Zagreb index is given as:

PM1(C[m, n]) = 256× (5)4n
× (6)(4m−6)

× (7)(4m+2n−6)
× (8)(6mn−6m−7n+7)

Proof. Using the edge partition from Table 1, we can find the first multiple Zagreb index of the
nanosheet as defined in Equation (9):

PM1(C[m, n]) =
∏

uv∈E
[du + dv]

=
∏

uv∈E(2,2)
[du + dv] +

∏
uv∈E(2,3)

[du + dv] +
∏

uv∈E(3,3)
[du + dv]

+
∏

uv∈E(3,4)
[du + dv] +

∏
uv∈E(4,4)

[du + dv]

Now from Table 1,

PM1(C[m, n]) = (2 + 2)4
× (2 + 3)4n

× (3 + 3)(4m−6)
× (3 + 4)(4m+2n−6)

× (4 + 4)(6mn−6m−7n+7)

PM1(C[m, n]) = 256× 54n
× 6(4m−6)

× 7(4m+2n−6)
× 8(6mn−6m−7n+7)

�

Theorem 9. The second multiple Zagreb index of C[m, n] is given as:

PM2C[m, n] = 256× (6)4n
× (9)(4m−6)

× (12)(4m+2n−6)
× (16)(6mn−6m−7n+7)
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Proof. Edge partitions are given in Table 1, and with these values we can calculate the second multiple
Zagreb index of coordination nanosheet as defined in Equation (9):

PM2C[m, n] =
∏

uv∈E
[du × dv]

=
∏

uv∈E(2,2)
[dudv] +

∏
uv∈E(2,3)

[dudv] +
∏

uv∈E(3,3)
[dudv]

+
∏

uv∈E(3,4)
[dudv] +

∏
uv∈E(4,4)

[dudv]

Using the values from Table 1, we get

PM2(C[m, n]) = 256× (6)4n
× (9)(4m−6)

× (12)(4m+2n−6)
× (16)(6mn−6m−7n+7)

�

4. The M-Polynomial of Nanosheet

Let us consider a molecular graph G = (V, E) having n vertices and m edges. Then the degree of
vertex u ∈ V(G) is denoted by du and is the number of vertices that are adjacent to u.

The M-polynomial [32] of a graph, G is defined as

M(G, x, y) =
∑
i≤y

mi j(G)xiy j

where mi j(G),(i, j ≥ 1) denotes the number of edges e = uv of molecular graph G such that (du, dv) = (i, j).

Theorem 10. Let G be the graph nanosheet C[m, n], then M-polynomial of G is

M(G, x, y) = 4x2y2 + 4nx2y3 + (4m− 6)x3y3 + (4m + 2n− 6)x3y4 + (6mn− 6m− 7n + 7)x4y4

Proof. By definition, M-polynomial is expressed as

M(G, x, y) =
∑
i≤y

mi j(G)xiy j

=
∑

2=2
m22(G)x2y2 +

∑
2≤3

mi j(G)x2y3

+
∑

3=3
m33(G)x3y3 +

∑
3≤4

m34(G)x3y4 +
∑

4=4
m44(G)x4y4

=
∑

uv∈E(2,2)
m22(G)x2y2 +

∑
uv∈E(2,3)

mi j(G)x2y3 +
∑

uv∈E(3,3)
m33(G)x3y3

+
∑

uv∈E(3,4)
m34(G)x3y4

+
∑

uv∈E(4,4)
m44(G)x4y4

M(G, x, y) = 4x2y2 + 4nx2y3 + (4m− 6)x3y3 + (4m + 2n− 6)x3y4 + (6mn− 6m− 7n + 7)x4y4

By differentiating M-polynomial with respect to x, we get

Dx = 8xy2 + 8nxy3 + 3(4m− 6)x2y3 + 3(4m + 2n− 6)x2y4 + 4(6mn− 6m− 7n + 7)x3y4

Dx x=1,y=1 = 8 + 8n + 3(4m− 6) + 3(4m + 2n− 6) + 4(6mn− 6m− 7n + 7)
Dy = 8x2y + 12nx2y2 + 3(4m− 6)x3y2 + 4(4m + 2n− 6)x3y3 + 4(6mn− 6m− 7n + 7) x4y3

Dy x=1, y=1 = 8 + 12n + 3(4m− 6) + 4(4m + 2n− 6) + 4(6mn− 6m− 7n + 7)

Sx and Sy are obtained by integrating M-polynomial with respect to x and y, respectively.
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Sx =
4x2y2

2
+

4nx2y3

2
+

(4m− 6)x3y3

3
+

(4m + 2n− 6)x3y4

3
+

(6mn− 6m− 7n + 7) x4y4

4

Sx x=1, y=1 = 2 + 2n +
(4m− 6)

3
+

(4m + 2n− 6)
3

+
(6mn− 6m− 7n + 7)

4

Sy =
4x2y2

2
+

4nx2y3

3
+

(4m− 6) x3y3

3
+

(4m + 2n− 6)x3y4

4
+

(6mn− 6m− 7n + 7)x4y4

4

Sy x=1, y=1 = 2 +
4n
3

+
(4m− 6)

3
+

(4m + 2n− 6)
4

+
(6mn− 6m− 7n + 7)

4

�

Figure 2 shows graphical interpretation of the M-polynomial of the nanosheet. Some topological
indices, derived from M-polynomial, are described in Table 2 below.
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Table 2. The relation between topological indices and M-polynomial.

Topological Index f(x,y) Derivation from M(G,x,y)

1st Zagreb index x + y
(
Dx + Dy

)
M(G, x, y)x = 1, y = 1

2nd Zagreb index xy
(
DxDy

)
M(G, x, y)x = 1, y = 1

Randic index 1
xy

(
SxSy

)
M(G, x, y)x = 1, y = 1

Dx =
∂( f (x,y))

∂x , Dy =
∂( f (x,y))

∂y , Sx =
∫ x

0
f (t,y)

t dt, and Sy =
∫ y

0
f (x,t)

t dt, J = f (x, x).

5. Conclusions

For the nanosheets covered by C3 and C6, various types of degree-based topological indices
like Randic index variants of Zagreb indices, atom bond connectivity index, Geometric Arithmetic
index, and sum connectivity index etc. are computed analytically. These results depend upon the
structural connectivity of the chemical graph of the nanosheet. M-polynomial of the nanosheet is also
computed, which provides an eloquent way to express and compute the degree-based topological
indices. These findings are extremely helpful in the theoretical study of physical features, chemical
reactivity, and biological activities of nanosheets. Topological indices computed in the study can be
employed in quantitative structure activity relations and quantitative structure property relations of
the nanosheets, and in turn, can be further helpful in understanding the physiochemical properties of
the nanosheet.
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