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Abstract: As a founder of the Process Systems Engineering (PSE) discipline, Professor Roger W.H.
Sargent had set ambitious goals for a systematic new generation of a process design paradigm based
on optimization techniques with the consideration of future uncertainties and operational decisions.
In this paper, we present a historical perspective on the milestones in model-based design optimization
techniques and the developed tools to solve the resulting complex problems. We examine the progress
spanning more than five decades, from the early flexibility analysis and optimal process design under
uncertainty to more recent developments on the simultaneous consideration of process design, scheduling,
and control. This formidable target towards the grand unification poses unique challenges due to
multiple time scales and conflicting objectives. Here, we review the recent progress and propose future
research directions.

Keywords: process design; scheduling; process control; integration

1. Introduction

It has been over half a century since Professor Roger W.H. Sargent envisioned a paradigm shift
in chemical process design methodologies, from ad hoc engineering judgment for specific problems to
fully computerized systematic approaches based on complex mathematical models [1]. He conceived the
notions of “explicitly formulating the techniques” and “precisely defining the objectives” for engineering
design problems, which used to be considered to be “an activity not worthy of higher minds” because of
the lack of scientific and systematic tools and methodologies. With the advent of computers, he further
emphasized the opportunity to expand the process design problem to account for foreseeable variations
in the plant environment over its life cycle to achieve more reliable and robust operations. “(During the
process design phase) Many parameters are left available for adjustment during plant operation, such
as flow rates, tank levels, operating pressures, etc., but here also the design places limits on the range of
variation possible.” stated Professor Sargent to underpin the interdependence between the design and the
uncertainty of future operational decisions.

The Process Systems Engineering (PSE) community has been accumulating formidable knowledge
and know-how on mathematical modeling techniques in the fields of process design and operations,
and developed efficient tools to solve these advanced models since Professor Sargent had outlined
the future of PSE in his 1967 perspective article [1]. Moreover, it has been long established that the
early design problem should be studied simultaneously with the operational time-variant decisions
to improve the operability and flexibility of the process under variable internal and external plant
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conditions, and consequently to achieve more reliable, economically more favorable, and inherently
safer processes. The most recent efforts towards simultaneous consideration of design and operational
decisions explore effective methodologies to integrate the short-term process regulatory decisions
(process control) and longer-term economical decisions (scheduling) through mixed-integer dynamic
optimization (MIDO) formulations. The proposed solution tools and techniques for this class of integrated
problems include (i) discretizing the dynamic high-fidelity representation of the process through
orthogonal collocation on finite elements followed by solving a mixed-integer nonlinear programming
problem [2], (ii) “back-off” approach to ensure constraint satisfaction under some assumed worst-case
scenario [3–5], and (iii) multiparametric programming to explicitly represent the operational strategies to
derive tractable and equivalent MIDO formulations [6].

In this paper, we present a historical perspective on the development and progress of modern
process design techniques that account for the dynamic variability introduced by the process control and
scheduling decisions. In retrospect, we observe the evolution of methodologies from fundamental analyses
on design and process uncertainty at steady state to dynamic complex models that explicitly encapsulate
the scheduling and control decisions, as illustrated in Figure 1, and summarized as follows.

i Flexibility analysis and flexibility index. The early stages for design optimization under uncertainty.
The studies here analyze the steady-state feasibility of a nominal process design under a set of unknown
process parameters and unrealized operating decisions, as we will discuss in Section 2.

ii Dynamic resilience and controllability analysis. Here, the researchers investigate the dynamic response
of a system in closed loop, its interdependence with process design, and attempt to develop the
“perfect controller” simultaneously the process that the controller can act on. Such attempts will be
demonstrated in Section 3.

iii Complete integration of design, control, and operational policies. The focus of the most recent studies in
the field. The goal is to model tractable dynamic design optimization problems that account for the
scheduling and control decisions to guarantee the operability and even profitability of the operation
under all foreseeable conditions. These approaches will be discussed in Section 4.

Clearly, it would be inaccurate and redundant trying to reduce the individual research efforts to
a single category. The literature is noticeably diverse in this field with numerous different approaches.
However, we find it useful to classify into certain schools of thought that are also in alignment with
the historical progress of the field. In Section 5, we further seek to pose the pivotal questions on future
challenges and opportunities for the seamless integration of the design, scheduling, and control problems
based on the cumulative knowledge of the PSE community and the current trends in the academia.

Steady state 
flexibility

Dynamic 
flexibility

Controllability

Profitability

Figure 1. A Venn diagram representation of major operability indices and their relationship with process
economics. It is interesting to note that the design optimization approaches started from the outermost layer,
and with the advance of modeling techniques, they have progressed towards the center for guaranteed
operability, which delivers the optimal process economics.
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2. Early Efforts in Design Optimization under Uncertainty

The ongoing collective efforts towards the grand unification of design, scheduling, and control was
inaugurated through steady-state design under uncertainty in plant conditions. Takamatsu et al. (1970) [7]
estimated the undesirable effects of variations in system parameters, measured process disturbances,
and manipulated variables on plant performance by sensitivity analysis on a linearized model. Nishida et al.
(1974) [8] adopted the notion of sensitivity analysis to structure a min-max problem for design optimization,
presented by Equation (1).

min
des

max
θ

C(x, des, θ)

s.t. h(x, des, θ) = 0

g(x, des, θ) ≤ 0

θ ≤ θ ≤ θ

(1)

where x is the vector of states of the system, des is the vector of design variables including the steady-state
manipulated variables, θ is the vector of parameters that agglomerates the system uncertainties and
process disturbances. Equation (1) is one of the first notable attempts to systematically assess the trade-off
between minimizing the investment cost and improving the flexibility of the process design. However,
this strategy yields conservative solutions since it does not distinguish the time-invariant design variables
and time-variant manipulated variables. Grossmann and Sargent (1978) [9] remedied this issue by treating
the time-sensitive variables (i.e., manipulated actions and design variables that can be modified in the
future) and fixed design variables separately. They further adopted the parametric optimal design problem
proposed by Kwak and Haug (1976) [10], and formulated an objective function to minimize the average
cost over the expected range of parametric uncertainty, as presented by Equation (2).

min
u,des

E{C(x, u, des, θ)}

s.t. max
θ∈Θ

gi(x, u, des, θ) ≤ 0, i = 1, 2, . . . , t
(2)

where the expected cost function is defined the joint probability distribution of the parameter set θ. Equation (2)
requires solving infinite nonlinear programming (NLP) problems. Grossmann and Sargent (1978) [9]
proposed an efficient solution procedure for a special case of Equation (2), where each constraint gi
is monotonic in θ, through discretization of the problem over the parameter space. However, solving
the NLP problem at a finite number of θ realizations does not ensure the feasibility of the design. This
issue was addressed by Halemane and Grossmann (1983) [11] through reformulating an equivalent design
feasibility constraint as presented by Equation (3).

max
θ∈Θ

min
u∈U

max
i∈I

gi(x, u, des, θ) ≤ 0 (3)

The max-min-max problem in Equation (3) mathematically expresses the feasibility question “For all
the uncertainty realizations Θ, does there exist a control action u such that the constraint set g is feasible?”.
Equation (3) was employed in a multiperiod design optimization problem, where the deterministic
uncertain parameter θ was allowed to vary within a prespecified range [11]. The feasibility constraint then
laid the foundation for the concept of feasibility index, F, proposed by Swaney and Grossmann (1985) [12],
as given by Equation (4).
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F = max δ

s.t. max
θ∈Θ

min
u∈U

max
i∈I

gi(x, u, des, θ) ≤ 0

T(δ) = {θ | (θnom − δ∆θ−) ≤ θ ≤ θ | (θnom + δ∆θ+}

(4)

where T is the hyperrectangle for the uncertain parameters, δ is the scaled parameter deviation, and the
superscript nom denotes nominal conditions. Equation (4) is the first significant attempt to quantify the
degree of flexibility of a process design, and has been exploited by numerous studies on design optimization
and process operability. However, Equation (4) constitutes a nondifferentiable global optimization problem
and is still quite challenging to solve. Therefore, it requires simplifying assumptions and approximations
to maintain a tractable problem. Swaney and Grossmann (1985) [13] introduced a heuristic vertex search
method and an implicit enumeration scheme for the special case where the critical uncertainty realizations
are assumed to lie at the vertices of the hyperrectangle T(δ). Clearly, this assumption fails to hold when
the feasible space of the design problem is non-convex. Grossmann and Floudas (1987) [14] relaxed this
assumption by developing a mixed-integer nonlinear programming (MINLP) problem for the feasibility
test presented by Equation (3). They further proposed an active constraint strategy for the solution of
the resulting MINLP. The mixed-integer formulation also provides a systematic approach to consider all
possible critical uncertainty realizations without exhaustive enumeration. The proposed formulation was
used for synthesis of a heat exchanger network with uncertain stream flow rates and temperatures [15].
The case of linear constraints reduces to an MILP problem, for which global solution is attainable by
standard branch and bound enumeration techniques [14,16,17]. Bansal et al. (2000) [18] developed a
computationally efficient theory and algorithm based on multiparametric programming techniques for
this special case of flexibility analysis problems. The authors derived explicit expressions for the flexibility
index as explicit functions of the continuous design variables. Pistikopoulos and Grossmann (1988a, 1988b,
1988c) used the flexibility test with linear constraints for optimal retrofit design [19–22] and redesign under
infeasible nominal uncertainties [23]. Although these approaches are effective and promising to handle
the design uncertainty, they require solving nested optimization problems, which poses a major challenge
to solve complex and large-scale problems in a reasonable time. Raspanti et al. (2000) [24] proposed
replacing the complementarity conditions of the lower level optimization problems with a well-behaved,
smoothed nonlinear equality constraints, namely Kreisselmeier and Steinhauser function [25] and Chen
and Mangasarian smoothing function [26].

One of the common assumptions in these approaches is the known bounds of the uncertainties,
which is rarely the case in real world industrial applications. Pistikopoulos and Mazzuchi (1990) [27]
and Straub and Grossmann (1990, 1993) [28,29] extended the flexibility test by assuming a probability
distribution model for the parameter uncertainty, which improved the economic performance of the design
optimization problem by addressing the “conservativeness” of the solution.

Another common assumption of these approaches is the steady-state operation of the plant design,
which creates a significant limitation on the applicability of the methodologies. Although steady-state
assumption holds true for the dominant life cycle of the plant operation, design optimization problem
may fail to ensure the operability under transient behaviors such as startup or shutdown and transitions
between different operating conditions. Dimitriadis and Pistikopoulos (1995) [30] proposed a dynamic
feasibility index for the systems that are described by differential algebraic equations (DAE) subject to
time-varying constraints. However, the time-dependent uncertainty in their formulation dictates to solve
infinitely many dynamic optimization problems. Therefore, the authors assumed that the critical scenarios
of uncertainties are known and lie on the vertices of the time-varying uncertainty space, similar to Swaney
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and Grossmann (1985) [12]. The simplifying assumption reduced the problem to the form given by
Equation (5).

DF(des) = max
δ,u(t),t

δ

s.t. ẋ = f (x(t), u(t), des, θ(t), t), x(0) = x0

g(x(t), u(t), des, θ(t), t) ≤ 0

θ(t) = θN(t) + δ∆θc(t)

δ ≥ 0, u(t) ≤ u(t) ≤ u(t)

(5)

where the time dependence of the variables constitutes a dynamic optimization problem, and the
solution was determined by control vector parameterization techniques [30]. Dynamic flexibility
has been widely used in numerous design optimization applications including batch processes [31],
separation systems [32–36], reaction systems [37], and heat exchanger network synthesis [38–40].

The dynamic assessment of the plant feasibility under uncertainty has been also studied through exploiting
the multiperiod design optimization formulation proposed by Halemane and Grossmann (1983) [11].
Varvarezos et al. (1992) [41] implemented an outer-approximation approach to solve the multiperiod
multiproduct batch plant problems operating with single product campaigns, which was formulated as an
MINLP. Pistikopoulos and Ierapetritou (1995) [42] considered stochastic process uncertainty and proposed
a two-stage decomposition that can handle convex nonlinear problems.

As presented in this section, the early studies on integrated design optimization have primarily
focused on (i) investigating the range of operation (flexibility) of a nominal design configuration under
foreseeable conditions, and (ii) determining the “best” possible trade-off between the investment cost
and the capability of handling variations in the internal and external operating conditions. These studies
mostly considered open loop processes, under the traditional assumption that controller design is a
sequential task to process design. However, most processes in industry are operated in closed loop, and the
controller schemes inherently alter the process dynamics, rendering the open loop flexibility analyses of
lesser relevance. In other words, an “attainable” operating point according to open loop flexibility analysis
may actually be an infeasible point in closed loop. Realizing the shortcomings of open loop flexibility
analyses, researchers began investigating the “controllability” of process systems, and the interdependence
of process control and design decisions. In the following section, we present a retrospective background
on the integration of process control in the design optimization problem.

3. Integration of Process Control in Design Optimization

The initial efforts towards the integration of process control and design problems established a
fundamental understanding on the interdependence of the two decision making mechanisms. The most
pronounced school of thought in the early years to evaluate the controllability of the process design is
“dynamic resilience”, as conceptually defined by Morari (1983a, 1983b) [43,44].

Morari (1983) [43] described dynamic resilience as “the ability of the plant to move fast and smoothly
from one operating condition to another and to deal effectively with disturbances”. This depiction implies
that there is not a clear-cut distinction between flexibility, which was discussed in Section 2, and resilience.
However, Grossmann and Morari (1983) [45] pointed out the main difference as “resiliency refers to the
maintenance of satisfactory performance despite adverse conditions while flexibility is the ability to handle
alternate (desirable) operating conditions”. This distinction is the primary motive for most of the flexibility
analyses to study steady-state operations, while the resilience deals with the dynamic operations, as we
will discuss in this section.

Dynamic resilience, as described by Morari (1983) [43], aims to find the “perfect controller” that is
allowed by the physical limitations of the system to assess the controllability of the process by using the
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internal model control (IMC) structure. The proposed technique decomposes the system transfer function
G̃ into (i) a non-singular matrix G̃− to design the perfect controller G̃−1

− , and (ii) a singular matrix G̃+ to
generate dynamic resilience indices based on (i) bounds on control variables, (ii) presence of right half
plane transmission zeroes, (iii) presence of time delays, and (iv) plant-model mismatch. The proposed
indices were used to improve the operability of numerous process, including heat integrated reactor
networks [46–48], separation systems [49], heat exchanger networks [50].

Among the four aforementioned resilience indices, Perkins and Wong (1985) [51] studied the last two
by adapting the “functional controllability” theorem proposed by Rosenbrock (1970) [52]. The authors
further define a system to be functionally controllable if there exists a manipulated action u(t) that can
generate any process output y(t) at any time t. Psarris and Floudas studied the dynamic resilience
and functional controllability of multiple input multiple output (MIMO) closed-loop systems with time
delays [53–55], and transmission zeroes [54,55]. Barton et al. (1991) [56] investigated the open loop process
indicators, namely minimum singular value and right half plane zeroes, to assess the interactions between
different design configurations and their operability with the best possible control configurations.

In the context of simultaneously assessing the process controllability in process design, one of the first
significant contributions is the “back-off approach” introduced by Narraway et al. (1991) [57]. Narraway
and Perkins (1994) [58] used this approach to systematically assess the trade-offs between all possible
controlled and manipulated variable pairs in a mixed-integer formulation. Bahri et al. (1995) [59] employed
the back-off approach to handle process uncertainties in an optimal control problem. The proposed
approach is applicable to design linear and mildly nonlinear processes, and relies on three key steps,
namely (i) perform a steady-state nonlinear process optimization, (ii) linearize the process at the optimum
point, and (iii) “back-off” from the optimal solution by some distance to ensure the feasibility of the
operation under some structured disturbance profile. The proposed approach was shown to be effective to
select between alternative flowsheets as well as alternative control structures.

With the burgeoning interest in exploring the simultaneous design and control problem,
the International Federation of Automatic Control (IFAC) organized the first workshop on
“Interactions between Process Design and Process Control” in the Center for Process Systems Engineering
at Imperial College London in 1992. The workshop laid the groundwork for a plethora of approaches with
a wide range of diversity. Walsh and Perkins (1992) [60] implemented a PI loop in the flexibility analysis,
where the input–output loop is selected by an exhaustive screening procedure. Luyben and Floudas
(1992) [61] formulated a multiobjective MINLP problem to simultaneously consider the disturbance
rejection capacity of the control loop through disturbance condition number and relative gain array to
evaluate the interactions between the inputs and outputs of a MIMO system, while designing the process.
Shah et al. (1992) [62] used the State-Task Network (STN) representation [63] to simultaneously consider
the scheduling and design problems in a batch plant. Thomaidis and Pistikopoulos (1992) [64] introduced
a framework to consider the design problem simultaneously with (i) the process flexibility through
stochastic flexibility index, (ii) the effect of equipment failures to the overall performance by combined
flexibility-reliability index, and (iii) the impact of equipment availability by combined flexibility-reliability
index. These aforementioned novel approaches were shown to be promising concepts and techniques to
address multiple facets of operational decisions simultaneously with the process design problem. As a
result, succeeding studies after this workshop expanded these techniques and branched out to explore
further opportunities.

Integrating PI controllers in the design optimization problem was one of the prominent outcomes
of the workshop and became the most attractive option for the following research. The literature on PI
controllers was already abundant and well-established by the time. Moreover, the explicit form of the
controller structure made the integration relatively easy and intuitive, which significantly accelerated
the research in closed-loop design optimization. Walsh and Perkins (1994) [65] presented an integrated
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PI control scheme and process design for wastewater neutralization. Although the proposed approach
was effective for the SISO process, it was reported that it entails further challenges for more complex
processes. One major drawback of PI control is its inability to tackle MIMO systems without any advanced
modifications in the feedback loop structure. Narraway and Perkins (1993, 1994) [58,66] developed an
MILP-based formulation to systematically evaluate the economic performance of every input–output pair
combination. Luyben and Floudas (1994a, 1994b) [67,68] adapted a similar approach in a multiobjective
framework to determine the best performing input–output pair based on the controllability indices
introduced by them, earlier (1992) [61]. The proposed framework was showcased on the design of a heat
integrated distillation system [67] and a reactor-separator-recycle system [68]. Mohideen et al. (1996) [32]
formulated a multiperiod design and control problem to account for the dynamic variations in the
operation, while including the input–output pairing superstructure in the problem. Moreover, the authors
used the flexibility index to account for the uncertain parameters in the model and presented a
decomposition algorithm for the resulting complex problem. Bansal et al. (2000) [69] constructed a
similar formulation as a mixed-integer dynamic optimization (MIDO) problem, which was solved by
a Generalized Benders Decomposition (GBD)-based algorithm. The MIDO formulation was presented
as follows.

min
u,des

∑
i∈NS

wiC
(

ẋi(t), xi(t), ui(t), desi)
s.t. ẋi(t) = hd

(
xi(t), ui(t), desi, θi, t

)
, x(t) = x0

yi(t) = ha
(
xi(t), ui(t), desi, θi, t

)
g
(

ẋi(t), xi(t), yi(t), ui(t), desi, θi, t
)
≤ 0

(6)

where wi is the discrete probability of a scenario i and NS is the discretized set of scenarios.
The discretization of uncertainty in the process was first proposed by Grossmann and Sargent (1978) [9].

Although the aforementioned PI-based design and control frameworks are applicable on nonlinear
processes, the range of operability is usually limited due to the mismatch between the nonlinear process
model and the linearized control model. Ricardez-Sandoval et al. (2008, 2009) [70,71] used robust control
tools and the back-off approach to integrate PI control and ensure its stability while solving the design
optimization problem. The proposed approach was also tested against the Tennessee Eastman Process [72].
The back-off approach was later generalized for control structure selection in nonlinear processes by
Kookos and Perkins (2016) [73]. Ricardez-Sandoval & co-workers have extensively studied back-off
approach for simultaneous process design and control under uncertainty [74–76].

One main limitation of integrating PI control in the design optimization in a dynamic formulation
is the increasing problem size and complexity. Kookos and Perkins (2001) [77] developed an algorithm
for the integrated PI control and design optimization problem, where the size of the search space
was reduced systematically in each successive iteration. Malcolm et al. (2007) [78] proposed an
“embedded control optimization” procedure, where the authors introduced a two-stage decomposition
scheme that approximates the complete integrated problem. The proposed approach reduced the problem
size and complexity, and was showcased on larger scale problems including a reactor-separator system [79].

Apart from the inability to naturally handle MIMO systems, PI controllers do not explicitly
account for any process constraints stemming from operational, environmental, and safety limitations.
Model predictive control (MPC) overcomes these shortcomings by postulating a constrained dynamic
optimization problem subject to an explicit model of the process [80]. One of the first remarkable efforts to
integrate an MPC scheme in a nonlinear design problem was published by Brengel and Seider (1992) [81].
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Here, the authors postulate a bi-level optimization problem, where the leader has an economic objective,
while the follower is the MPC formulation, as presented by Equation (7).

min
des

Cdes
(
des
)
+ κCκ

(
x(t), y(t), u(t), des, θ(t)

)
s.t. fdes

(
des, θ(t)

)
= 0

gdes
(
des, θ(t)

)
≤ 0

min
u(t)

Cu
(
x(t), y(t), u(t), des, θ(t)

)
s.t. ẋ = fu

(
x(t), y(t), u(t), des, θ(t)

)
gu
(
x(t), y(t), u(t), des, θ(t)

)
= 0

hu
(
x(t), y(t), u(t), des, θ(t)

)
≤ 0

(7)

where κ is the design and control integration parameter that scales the trade-off between the controllability
of the system and the investment cost. The bi-level problem presented in Equation (7) is challenging
to solve without appealing to simplifications. Therefore, the authors proposed replacing the follower
problem by complementary slackness equations. However, the solution strategy was still intractable for
more complex systems due to the numerical calculation of the second derivatives [81]. As a consequence,
integration of the MPC scheme in the design optimization had been rather limited in the literature for
almost a decade, until the invention of multiparametric MPC (mpMPC/explicit MPC).

Bemporad et al. (2002) [82] proposed formulating the MPC problem as an explicit function of the
initial conditions of the system. This novel strategy allowed for deriving piecewise affine explicit control
laws by treating the initial conditions as parameters. The proposed approach formulated the explicit MPC
problem as presented by Equation (8).

ut(θ) = arg min
ut
‖xN‖2

P +
N−1

∑
t=1
‖xt‖2

Q +
N−1

∑
t=1
‖yt − ysp

t ‖
2
QR +

M−1

∑
t=0
‖ut − usp

t ‖
2
R +

M−1

∑
t=0
‖∆ut‖2

R1

s.t. xt+1 = Axt + But + Cdt, yt = Dxt + Eut + Fdt

xt ≤ xt ≤ xt, y
t
≤ yt ≤ yt, ut ≤ ut ≤ ut, ∆ut ≤ ∆ut ≤ ∆ut, dt ≤ dt ≤ dt

θ = [xt=0, ut=−1, dt, ysp
t , usp

t ]T

(8)

where N is the prediction horizon, M is the output horizon, superscript sp denotes set point, Q, QR,
R, and R1 are the corresponding weight matrices determined by tuning, P is calculated by discrete
algebraic Riccati equation, and ‖·‖ψ denotes weighted vector norm with a weight matrix ψ. Different than
conventional MPC, Equation (8) formulates the optimal control problem exactly and completely offline as
a function of the set of parameters θ. The solution of this problem can be determined by multiparametric
programming techniques, which express the solution space as a piecewise affine function, as presented
by Equation (9).

ut(θ) =Knθ + rn, ∀θ ∈ CRn

CRn :={θ ∈ Θ | CRAθ ≤ CRb}, ∀n ∈ {1, 2, . . . , NC}
(9)

where CRn is referred as a critical region and it is the active polyhedral partition of the feasible parameter
space, Θ is a closed and bounded set, and NC is the number of critical regions.

The control law given by Equation (9) reduces the complexity of solving an online optimization
problem to a simple look-up table algorithm (also known as point location problem) and function
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evaluation, all of which are affine operations. Hence, the complexity of implementing an MPC scheme is
similar to that of a PI controller.

Sakizlis et al. (2003) [83] exploited the explicit nature of the mpMPC solution in the context of design
and control integration. The authors formulated a bi-level mixed-integer dynamic optimization problem
similar to Equation (7), where the leader accounted for the investment and operating costs in the objective
function subject to the dynamic high-fidelity model, and the follower MPC problem was substituted by the
affine control law Equation (9). The proposed formulation offered an elegant and systematic methodology
to reduce the complexity of the bi-level Equation (7) into a single level dynamic optimization problem.
However, the solution strategy still required repetitive linearizations and solving a multiparametric
programming problem at every iteration, which can be restrictive for large-scale complex problems.
Diangelakis et al. (2017) [84] alleviated that limitation by deriving a “design dependent offline controller”,
which allowed for solving a single MIDO problem after integrating the control law in the high-fidelity
model. Eliminating the linearization step and formulating a single synergistic design and control problem
also improved the economic performance of the resulting process compared to the approach proposed
by Sakizlis et al. (2003) [83]. The proposed formulation was also showcased on a tank, a continuous
stirred tank reactor, and a residential scale combined heat and power unit. The cost effectiveness of
the MPC integrated optimal design was also reported to be superior than PI integrated approaches in
the literature. Diangelakis and Pistikopoulos (2017) [85] reported that the mpMPC integrated optimal
combined heat and power unit operated more fuel efficient in closed loop than PI integrated design.
Similarly, Sanchez-Sanchez and Ricardez-Sandoval (2013) [86] showcased a system of CSTRs, where the
MPC integrated framework reduced both the operating and the investment costs compared to the PI
control integrated approach.

One common aspect of the studies on simultaneous design and control optimization is the assumption
that the process will be operated around the same steady-state point throughout the entire life cycle of the
plant. However, the external plant conditions, such as market conditions, may dictate a considerably wider
operating region with multiple steady-state points [1]. The increasing competition among the businesses
impacts the volatility of the market, which creates rapid fluctuations in the energy and raw material prices
as well as their availability. Moreover, the demand rate on the product is also subject to considerable
variations during the plant operation. Therefore, it is clear that there exists a “best” operating strategy
under the knowledge available to the operator, which necessitates the operability of the plant across a
wider range. For example, high production rates may be less profitable during the night time because
of increased energy prices and hence, operating the energy intensive processes during the daytime may
reduce the operating costs. This indicates that the operating level of a processing unit might vary drastically
by the choice of the operator. However, the integrated design and control frameworks discussed in this
section usually assume a single operating point around which a controllability and flexibility analysis is
conducted. Consequently, these frameworks do not attempt to provide any means of guaranteeing the
operability of the process at different regions. In the next section, we will discuss several approaches that
account for multiple operating regions in a plant, and their scheduling during the operational optimization.

4. Towards the Grand Unification of Process Design, Scheduling, and Control

Process design, scheduling, and control problems are traditionally constructed to address different
objectives and they span widely different time scales. In a nutshell, the plant design problem dictates
the capacity of processing and it usually comprises the most uncertainty due to its years long lifecycle.
The scheduling problem addresses the allocation of the resources and time, as well as the operating
level of processing units and their maintenance based on some economic criteria over days/months long
horizons. Lastly, the control problem maintains the performance of the plant, while satisfying any physical



Processes 2019, 7, 461 10 of 20

limitations such as the environmental and safety constraints. The discrepancy in the objectives and
time scales creates a challenging problem to systematically evaluate and determine the optimal trade-off
between different decision makers.

Process scheduling is more critical in batch operations than continuous operations, as the
former are inherently dynamically operated. Accordingly, the initial efforts focused primarily
on the batch processes for the integration of the operational optimization and design problems.
Birewar and Grossmann (1989) [87] formulated NLP models to incorporate the scheduling decisions in
the batch sizing and timing problem in a multiproduct plant for unlimited intermediate storage and
zero wait policies. Shah et al. (1992) [62] tackled a similar problem by using the STN representation.
White et al. (1996) [88] investigated the switchability of continuous processes between different operating
points through formulating an optimal control problem that accounts for the terminal criteria and path
constraints within a range of design parameters. Bhatia and Biegler (1996, 1997) [89,90] formulated
a dynamic optimization problem, where an economic objective function was subject to a dynamic
high-fidelity model of the process described by differential algebraic system of equations. The authors
proposed a solution strategy based on discretizing the process model by orthogonal collocation over finite
elements, followed by solving the resulting NLP by using a standard solver. The proposed modeling
and solution strategy was shown to be promising to satisfy the path constraints, which is a crucial
benefit for dynamic systems. Terrazas-Moreno et al. (2008) [2] extended this integration approach
to account for the binary decisions in the scheduling problem by formulating a MIDO. Similar to
Bhatia and Biegler (1996, 1997) [89,90], the authors first discretized the problem by orthogonal collocation,
followed by solving the resulting MINLP.

The early studies that explore the interactions between the scheduling and process control decisions
have a significant role in shaping today’s approaches for the integrated design optimization problem.
In their excellent review article, Baldea and Harjunkoski (2014) [91] classified these attempts to integrate
the scheduling and control decisions as (i) “top-down approaches”, where the process dynamics and
control elements are incorporated in a scheduling skeleton, and (ii) “bottom-up approaches”, where the
process economics are implemented in the plant-wide control decisions.

In terms of characterizing the transitions between different products in a single operating unit,
Mahadevan et al. (2002) [92] introduced a unique “top-down” perspective on the operational optimization
problem, revealing that a simultaneous approach on the scheduling and control problem can identify and
eliminate the fundamental limiting behavior during the transitions, as showcased on a polymer grade
transition process. However, the presented approach requires case specific heuristic decisions to select the
“best” fitting scheduling and control configuration and hence, it is not suitable for different applications in
the general sense. Chatzidoukas et al. (2003) [93] studied a similar polymerization reactor, and formulated
a MIDO problem to determine the time optimal transition between different polymer grades and best
performing control structure simultaneously. Flores-Tlacuahuac and Grossmann (2006) [94] introduced a
monolithic approach on a multiproduct cyclic CSTR, where the profit was maximized by manipulating
the production sequence, transition times, production rates, length of processing times, and amounts
manufactured of each product. In contrast to the earlier studies [92,93], the authors focused on the
manipulated actions rather than the optimal control configuration. They formulated a MIDO problem,
which was solved by discretization of the differential algebraic equations by orthogonal collocation on finite
elements followed by solving the resulting MINLP. The presented approach has been extensively studied
in the following years to broaden its scope and effectiveness. Terrazas-Moreno et al. (2007) [95] applied
this approach on two industrial polymerization reactors. Terrazas-Moreno et al. (2008) [2] formulated a
design optimization problem accounting for the scheduling and open loop control trajectories using this
approach. Flores-Tlacuahuac and Grossmann (2010, 2011) extended the formulation to partial differential
equation systems, and showcased on tubular reactors with single [96] and multiple production lines [97].
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This monolithic approach usually generates open loop control trajectories, i.e., no feedback loop is
assumed to develop the input and output profiles. However, the processing units are subject to internal
process disturbances, and the mismatch between the process and the model leads to deviations in the
targeted operations. Zhuge and Ierapetritou (2012) [98] implemented the monolithic approach in closed
loop, where the authors initiate a readjustment procedure to solve the integrated problem online if the
states deviate from their reference trajectories. This approach does not completely resolve the issue of
handling the process disturbances or the process/model mismatch; however, it was shown to mitigate
these concerns to a great extent. Gutiérrez-Limón et al. (2014) [99] also implemented a similar closed-loop
strategy with a nonlinear model predictive control scheme, while extending the scope of the problem
statement to account for an extended horizon production policy. However, both approaches require
solving a complex and large-scale MINLP problem at the time steps of the controller, which makes it
unsuitable for the processes with fast dynamics.

Low-order representation of fast process dynamics in the scheduling problem has been an
effective approach to reduce the computational burden of solving complex optimization problems.
Du et al. (2015) [100] proposed a time scale-bridging model that describes the closed-loop input–output
behavior of a process in the scheduling formulation, postulated as a MIDO problem. The low-order
representation also maintains the stability of the process in the existence of process/model mismatch and
handles disturbances. Baldea et al. (2015) [101] extended this approach to MPC governed systems.

Burnak et al. (2018) [102] also addressed the online computational burden of “top-down” approaches
by developing a multiparametric programming-based approach, where the authors explicitly mapped
(i) the closed-loop dynamic process behavior in a “control-aware” scheduling problem, and (ii) the
continuous and binary scheduling level decisions such as the operating level and operational mode of the
system in a “schedule-aware” MPC scheme (iii) to yield the optimal operational decisions. The offline
nature of the integrated scheduling and control scheme allows for determining the feasible operating
space prior to actualizing the operation. Furthermore, reducing the problem complexity from solving
online optimization problems to a simple look-up table and affine function evaluation, the framework is
well-suited for fast process dynamics. Charitopoulos et al. (2019) [103] employed a similar multiparametric
programming approach to include the planning decisions in their framework.

In the “bottom-up” approaches, on the other hand, incorporating the economic objectives in the plant
control structures has been perceived as the key for seamless integration of scheduling and control. For this
purpose, MPC formulations provide the flexibility to account for a spectrum of objectives in the control
level due to their optimization-based structures. Loeblein and Perkins (1999) [104] presented an economic
analysis of unconstrained MPC scheme operating under constrained systems. The authors determined the
most cost-effective model predictive regulatory control structure by using the back-off approach to satisfy
the constraints. Zanin et al. (2002) [105] addressed the discrepancy between the real-time optimization
(RTO) and control layers by incorporating the economic optimization problem in the controller and feeding
the same piece of information in both layers. The proposed formulation diminishes the discrepancy
between the decision layers to yield more economical operations, but the resulting control scheme does
not guarantee the stability of the process for the entirety of operations. Rawlings and Amrit (2009) [106]
developed asymptotic stability criteria by formulating the so-called “economic MPC” (or EMPC), where
the objective function of the MPC is designed to minimize the operational costs instead of maintaining the
steady state of the process. This approach aims to replace the conventional two-layer structure with RTO
and dynamic regulatory control by a single control layer, where the economic optimization and process
regulation are conducted simultaneously. Amrit et al. (2011) [107] further extended the stability criteria
by (i) imposing a region constraint on the terminal state instead of a point constraint, and (ii) adding a
penalty on the terminal state to the regulator cost.
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Similar to the monolithic “top-down” scheduling and control approach, EMPC has been shown
to be too complex to be solved in the control time steps. This limitation has led the researchers to
develop decomposition algorithms for faster computational times. Würth et al. (2011) [108] proposed
a decomposition framework for the single layer dynamic RTO formulation, where the slow trends
and process uncertainty is handled in the upper layer, while the lower layer accounts for the fast
disturbances acting on the process. Ellis and Christofides (2014) [109] focused on selecting a suitable input
configuration for such two-layered dynamic RTO structures such that the asymptotic stability is guaranteed.
Jamaludin and Swartz (2017) [110] and Li and Swartz (2019) [111] employed a convex MPC problem in
the lower level regulatory control, which enabled its exact substitution with KKT optimality conditions.
Simkoff and Baldea (2019) [112] used the same substitution strategy on a production scheduling problem.

Design optimization accounting for the scheduling and control decisions with closed-loop
implementation is relatively recent in the literature. Patil et al. (2015) [3] modeled the product transitions
in design optimization, while maintaining the stability of the closed-loop system governed by a PI
control scheme. The authors formulated an MINLP similar to Equation (6) with the contribution of the
criterion, eig(Az

i (xlin)) < 0, which enforces the stability of the linearized states for all products i in a
multiproduct unit under all critical scenarios z. Due to the linearization of the controllers around the
operating point, this approach requires repetitive identification of the states at every optimization iteration.
Koller and Ricardez-Sandoval (2017) [4] improved this approach by applying orthogonal collocation on
finite elements on the integrated problem, and Koller et al. (2018) [5] employed the back-off method to
satisfy the constraints under uncertainty by using Monte Carlo sampling techniques to determine the
back-off terms.

Recently, Burnak et al. (2019) [6] introduced a multiparametric programming-based theory and
framework for the integration of process design, scheduling, and control. The authors derived offline
design dependent control and scheduling schemes that can be incorporated in a MIDO formulation in a
multi-level fashion, as presented by Equation (10).

min
u,s,des

∫ τ

0
C(x(t), y(t), u(t), s(t), des, d(t))dt

s.t. ẋ(t) = f (x(t), y(t), u(t), s(t), des, d(t), t)

y ≤ y(t) = g(x(t), y(t), u(t), s(t), des, d(t), t) ≤ y

x ≤ x(t) ≤ x, des ≤ des ≤ des, d ≤ d(t) ≤ d

st(θs) = arg min
s ∑

ts∈Ns

Cs(xts , yts , sts , des, dts)

s.t. xts ≤ xts+1 = Ats xts + Bts sts + Cts dts ≤ xts

y
ts
≤ yts = Dts xts + Ets sts + Fts dts ≤ yts

sts ≤ sts ≤ sts , dts ≤ dts ≤ dts

θs ≤ θs = [xT
ts=0, yT

ts=0, dts , des]T ≤ θs

ut(θc) = arg min
c ∑

tc∈Nc

Cc(xtc , ytc , utc , des, dtc)

s.t. xtc ≤ xtc+1 = Atc xtc + Btc utc + Ctc dtc ≤ xtc

y
tc
≤ ytc = Dtc xtc + Etc utc + Ftc dtc ≤ ytc

utc ≤ utc ≤ utc , dtc ≤ dtc ≤ dtc

θc ≤ θc = [xT
tc=0, yT

tc=0, dtc , des]T ≤ θc

(10)
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where s and u denote the scheduling and control decisions, respectively. Note that the proposed
formulation postulates explicit expressions for the scheduling and control strategies as functions of
a set of parameters, θ, which includes the design of the process. The design dependence of the operational
strategies allows for their direct integration in the MIDO formulation. The postulated formulation has
two main benefits, (i) due to the explicit form of the follower problems, the multi-level MIDO problem
is reduced to a single level, and (ii) only the design variables are left as the degrees of freedom of the
problem, since the remaining are determined as a function of the design.

5. Current Challenges and Future Directions

The PSE community has achieved unequivocally remarkable progress in realizing and
advancing the set goals of Professor Sargent on systematic design optimization in five
decades. Today, using design optimization tools to at least some extent has long become
the standard practice in many industries. Commercial modeling and simulation software tools
such as gPROMS (https://www.psenterprise.com/products/gproms) and Aspen Plus Dynamics
(https://www.aspentech.com/en/products/pages/aspen-plus-dynamics) have been featuring robust
and efficient solvers for dynamic optimization problems for a few years. Despite these milestones in PSE,
we still must make significant assumptions and simplifications regarding the operational decisions in
the process design phase, even though the impact of their interdependence on process economics and
operability has been articulated in numerous studies. Hence, the academia still needs to mature the
theoretical foundations and the applicability of unified design optimization approaches before it gains
wide industrial recognition. Here, we discuss some of the bottlenecks and potential directions to improve
the state-of-the-art for industrial practice.

5.1. The Need for an Industrial Benchmark Problem

As we have presented in this paper, there is a plethora of proposed modeling techniques and solution
approaches for the next generation unified design optimization problems. Therefore, it is clear that we
need a generally accepted benchmark problem, preferably in industrial scale, to validate the effectiveness
of proposed methodologies. The PSE community has benefited greatly from such standardized problems,
such as the famous Tennessee Eastman Process detailed by Downs and Vogel (1993) [113] for process
control studies. We believe that a well-defined problem will clarify the objectives in unified design
optimization and accelerate the research towards industrial expectations. The problem should describe at
least the following.

1. A high-fidelity model that describes the dynamics of the process. The model should feature appropriate
design variables to exhibit the dynamic consequences of scaling up/down the process. Furthermore,
considering the reduction in capital investment that the multipurpose and multiproduct operating
units provide, the process should comprise such units to examine the scheduling/design
and scheduling/control trade-offs. Recent research that consider process design, scheduling,
and closed-loop control problems simultaneously [3,5,6] have studied only a single processing unit,
which reflects a limited fraction of the overall benefit that the grand unification can provide.

2. Cost relations for investment, utility, and raw materials. A functional form of the investment cost with
respect to the capacity of the process is required to have standardized comparable results. Also, utility
costs and raw materials may vary significantly, which inevitably impacts the optimal scheduling
decisions. For instance, grid electricity costs are known to exhibit considerable differences during
the day and night times. Thus, operational loads in energy intensive processes may fluctuate heavily.
The impact of such changes in operating levels on design and control decisions were discussed
in Section 3.
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3. Product demand and availability of the utility, raw materials, and operating units over a time horizon. Production
allocation and timing is a key aspect of scheduling problem, which are heavily dictated by the product
demand and availability of resources. However, it is not a trivial practice to estimate the future of these
quantities. Therefore, probability distributions of these components will be beneficial to determine
their expected values, while being able to take into account their worst-case scenarios.

5.2. Robust Advanced Control and Scheduling Strategies

Incorporation of advanced control schemes seamlessly in the design optimization problem
requires the controller to capture the dynamics of the process for the entire range of design variables.
Burnak et al. (2019) [6] attempted to approximately model the design configuration as a right-hand
uncertainty in the constraint set, validated by closed-loop simulations and closed-loop MIDO problems.
However, the design variables impose uncertainty in the left-hand side of the constraints, as well as the
nonlinear and bilinear terms in the objective function. Therefore, robust control strategies need to be
developed for accurate predictions of future states in the control level prior to the realization of the design,
and to guarantee the stability of the closed-loop operations in simultaneous approaches.

Analogously, scheduling schemes should be robustified in the design optimization to minimize the
rescheduling due to unexpected disruptive events, such as unit failure, drastic changes in product demand
rate and raw material availability. Excluding these events in the scheduling scheme may result in steep
changes in the target operation, and thus unattainable set points for the controller.

5.3. Considering Flowsheet Optimization, Process Intensification, and Modular Design Opportunities

Optimization-based plant design techniques have been used and developed for more than four
decades [114,115]. These techniques postulate “superstructures” that systematically simulate and compare
every combination of flowsheet possibility to determine the optimal process. More recently, superstructures
have been formulated at the phenomena level to capture the fundamental relations between the mass
and energy, which in turn yields intensified processes [116–122]. Such intensified processes are expected
to deliver significantly increased operational efficiency and decreased unit volumes, making them very
attractive options both in academia and industry [123]. This rapidly growing interest in intensified
processes is one of the most pronounced directions that the PSE community has been taking. Therefore,
studying these intensified processes in the context of unified design optimization will attract a wider
audience from the industry. Clearly, modeling the spatial (synthesis/intensification) and temporal
(scheduling/control) decisions simultaneously in a single problem formulation will capture even more
synergistic interactions, which will increase the process profitability.

Furthermore, the researchers studying process intensification can benefit from the tools and
methodologies on unification of design, scheduling, and control. Baldea (2015) [124] reported a theoretical
justification for the loss of control degrees of freedom due to process intensification, which poses a
significant limitation on intensification activities. Tian and Pistikopoulos (2019) [125] and Dias and
Ierapetritou (2019) [126] discuss the limitations on the operability of such intensified systems and potential
directions to overcome these limitations in their excellent review papers. The researchers on process
intensification technologies can adopt the techniques, ranging from steady-state and dynamic flexibility to
integration of scheduling and control decisions, in order to address the operability issues.

5.4. Theoretical and Algorithmic Developments in MIDO

The most limiting bottleneck of the simultaneous approaches is the size of the integrated
MIDO problems. The time component of the problem significantly increases the computational
complexity, yielding infinitely many NP-hard problems to acquire an optimal solution profile. However,



Processes 2019, 7, 461 15 of 20

tailored algorithms can be developed by using the special structure of such integrated problems.
For instance, the open loop design optimization problem is relatively simpler than the integrated MIDO,
and constitutes a lower bound on the optimal solution of the overall problem. Such properties can
be exploited in decomposing the MIDO into subproblems to significantly reduce the search space for
faster algorithms.

5.5. Software Development

Despite the theoretical and practical advances in the unified design problem among the academia,
there is no commercially available platform or a software prototype. Such a tool will make the integrated
approaches more accessible to the process designers in industry who are not necessarily experts on process
control and scheduling, and it will attract more researchers from different disciplines and backgrounds.
Pistikopoulos et al. (2015) [127] introduced the PARametric Optimization & Control (PAROC) framework
to design explicit controllers based on high-fidelity models, which can be a viable option to address the
grand unification challenge [6,84,102,128,129]. However, it is clear that more progress is needed to engage
a wider audience.
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