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Abstract: To remove the radioactive cesium from the polluted environment, tea leaves were
chosen as cheap, and abundantly available environment-friendly bio-adsorbents to investigate
the alkali metals adsorption. Fresh and used tea leaves (FT and UT) were found to have high
efficiency and selectivity for cesium adsorption, after the crosslinking with concentrated sulfuric acid.
Calculation of the proton-exchanged amount suggested adsorption mechanism of three alkali metals
on crosslinked tea leaves involve a cationic exchange with a proton from the hydroxyl groups of
the crosslinked tea leaves, as well as coordination with ethereal oxygen atoms to form the chelation.
Further, considering the practical application of the polluted water treatment, the competitive adsorption
of Cs+ and Na+ ions was investigated by the batch-wise method and column chromatography separation.
Unlike the conventional ion exchange and chelate resins with less selectivity for Cs+ coexisting cations,
both crosslinked fresh tea leaves (CFT) and crosslinked used tea leaves (CUT) exhibited Cs selectivity
over Na. In addition, batch adsorption studies revealed that the cesium adsorptions were driven by
the Langmuir isotherm model; the capacity of both crosslinked tea leaves for cesium adsorption was
determined to be around 2.5 mmol g−1. The adsorption capacities are sufficiently higher in comparison
with those of synthetic polymers, inorganic ion-exchangers, and other bio-adsorbents.

Keywords: biomass wastes; cesium selectivity; ion-exchange; adsorptive removal

1. Introduction

Cesium, the most active alkaline metal, is generally used in the photoelectric cells and various
optical instruments [1]. Natural cesium mainly exists as 133Cs, also slightly inclusive of other 11 major
radioactive isotopes. Three among them were concerned about the radioactive hazards because
of their long-term of half-life, 134Cs (2.1 years), 135Cs (2.3 million years), 137Cs (30.17 years) [2].
Radioactive 137Cs, as a representative fission product of uranium235, has been specifically increased
the utilization in a nuclear power plant. The Fukushima Daiichi nuclear power plant accident at Okuma,
Fukushima, Japan, produced massive hazardous nuclear waste in the form of dust into the atmosphere.
The released nuclear waste contained hazardous radioactive cesium, which was eventually adsorbed
onto soil and was contaminated into the groundwater, nearby seawaters, etc. The cesium and other
radioactive contaminated waters reached into the human body through the food chain, can cause
several unhealthy effects, such as cancers, for longer terms. Therefore, the method and technique to
reduce cesium pollution have been the utmost required.

For cesium recovery, general methods, solid adsorption, and solvent extraction, have been
so far applied. Some extractants exhibit remarkable efficiency for cesium (I) extraction due to
their specific macrocyclic structures [3–5], despite having some disadvantages such as the use of
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flammable and undesirable organic solvents. Metal ion adsorption either on the surface or inner of
adsorbents from aqueous solution can, therefore, an alternative method without employing toxic
extractants and diluents is recommended. In addition to the synthetic adsorbents, such as organic
compounds and polymers [6,7], the adsorbents obtained from the nature like resources-minerals
and bio-adsorbents [8,9], with a simple modification, less pollution, and most importantly low-cost,
provide the valuable way for cesium recovery.

Recently, because of the characteristics of environmental friendliness and a large wealthy resource
of adsorbents, the studies on metal adsorption using biomass adsorbents has been focused for several
years [10–12]. The presence of various active functional groups, like amino, hydroxyl, carboxylic
acid, and carbonyl groups, etc. in adsorbents makes them available for chelation or complexation
with metal ions. As the effective and cheaper materials of bio-adsorbents, tea leaves have high yield
and consumption in the world. In addition, the chemical composition of tea leaves are constituted
of alkaloids, proteins, amino acids, carbohydrates, polyphenols, chlorophyll, volatile compounds,
fluoride, minerals, trace elements, and other undefined compounds [13,14]. Remarkably, the phenolic
components in tea leaves have more than 10 kinds of structures. In the green tea leaves, flavan-3-ol
and flavonols are the main substances. The black tea, produced by fermentation of green tea leaves,
mainly contains gallic acid derivatives, flavonols, and thearubigins [15,16]. Therefore, the presence of
these groups provides the potential benefit to metal recovery by the ion-exchange or complexation
with the active groups. It was reported that Cr (VI) adsorption on tea waste/Fe3O4 composite
and the mechanism involved electrostatic attraction, reduction process, ion-exchange, and surface
complexation, etc. [17]. In addition, Wan et al. reported the adsorption of divalent heavy metals, Pb
(II), Cd (II), and Cu (II), adsorption was based on ion-exchange with the phenolic hydroxyl groups [18].
The successful removal of heavy metals on using tea leaves implies their ability for divalent metal
adsorption. It is indirectly implied that they may even have a potential for the monovalent metal
ions adsorption by simple modification, like decrease the number of hydroxyl groups. To figure out
the relevance of the assumption and estimation of adsorption ability, crude and crosslinked tea leaves
were employed to adsorption of alkali metals.

Hence, in this present work, the phenol groups on fresh and used tea leaves were independently
crosslinked to form ether groups by condensation assisted by catalysis of concentrated sulfuric acid.
Both the crosslinked tea leaves were continuously applied to other alkali metals (Na and K) adsorption
to elucidate the adsorption mechanism. Furthermore, the potential recovery of Cs on two types of
crosslinked tea leaves by the batch method and column chromatography were assessed.

2. Materials and Methods

2.1. Reagents

Analytical grade alkali metal chlorides (CsCl, KCl, and NaCl) and alkali metal hydroxide
(CsOH, KOH, and NaOH), purchased from Wako Reagent Co., Ltd., Tokyo, Japan, were used to prepare
sample solutions. The concentrated sulfuric acid and hydrochloric acid were also purchased from
Wako Chemicals. The fresh and used tea leaves were kindly supplied by Ochachamura Mine Tea MFG.,
Co., Uresino-city, Saga, Japan.

2.2. Preparation Method for Adsorbents

The used tea leaves were stored in a freezer to prevent from getting mold. As the pre-treatment,
the leaves were dried in an oven for 72 h at 60 ◦C. For crosslinking, 15.0 g fresh and used tea leaves were
stirred in 50 cm3 concentrated sulfuric (18.4 mol dm−3) acid at 90 ◦C for 20 h. The mixtures were cooled
down to room temperature and soaked into 500 cm3 deionized water. After the filtration, the product
was packed into the glass column and continuously washed with deionized water until the pH of
the solution became neutral. Then, the washed product was dried at 60 ◦C for 48 h. Finally, the obtained
cake was crushed and ground, then sieved through 150 µm mesh to keep the uniform size. The images
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and the micrographs of tea leaf surfaces before and after the crosslinking were measured by scanning
electron microscope (SEM) and X-ray diffraction (XRD).

2.3. Batch Adsorption Experiments

The pH of the alkali metal solution was adjusted by mixing 1.0 mM MOH (alkali metal hydroxide)
solution and 1.0 mM MCl (alkali metal chloride) containing 0.10 M HCl solution. The solution of
the time dependency test was used by the alkali metal solution of pH 2.6. Fifty milligrams adsorbents
were added to 10 cm3 of all the metal samples. Then, the mixture was shaken at 150 rpm at 30 ◦C
for 24 h. After filtration, the metal concentration of an aqueous solution was measured by atomic
absorption spectrophotometer (AAS, Shimadzu model AA-6650, Kyoto, Japan), and IR spectra of
the adsorbents were measured after drying. For the maximum adsorption capacity test, the different
concentrations of alkali metal solution were prepared by the direct addition of different amounts of
MCl powder into 10.0 mM MOH solution. The solution concentration lower than 10.0 mM was diluted
using deionized water.

2.4. Column Adsorption Experiment

The column chromatographic setup was provided by the peristaltic pump (IWAKI PST-100N,
Tokyo, Japan), connected to 8 mm diameter glass column in which glass beads, cotton, and 0.15 g
(volume is 0.515 cm3) adsorbents were successively packed. Deionized water was first passed
through the column, followed by water was exchanged with the coexisting metal ions: Cs+ and Na+,
at the constant flow rate, of 5.52 cm3 h−1 for crosslinked fresh tea leaves (CFT) and 5.85 cm3 h−1 for
crosslinked used tea leaves (CUT), respectively. The concentrations of Cs+ and coexisting Na+ in
solution adjusted to 1.84 and 2.68 mM for the experiment using CFT, while the concentrations of Cs+

and Na+ were 1.80 and 2.39 mM for using CUT. The pH values of both feed solutions were adjusted
to 8.9. At the equilibrium, pH value was around 7.7 (CFT) and 7.4 (CUT), and they were close to
the neutral solution and similar to the batch experimental pH value. Finally, the solution passed
through the column was collected at a constant interval by the fraction collector (BIORAD Model
2110 Fraction Collector, Berkeley, California, USA). At a fixed flow rate, the volumes of every samples
collected were calculated and the metal concentrations of every sample were measured by AAS
to obtain mol amount of the adsorbed metal. At the saturated state of the adsorption, the sum of
the molar mass of the adsorbed metal divided by the mass of the adsorbent corresponded to adsorption
capacity. After the adsorption reached a breakthrough, the adsorbed metal ions were eluted with HCl
solution (pH 1.9) by using the peristaltic pump at the constant flow rate. The eluted flow rates for
the experiments using CFT and CUT were adjusted to 4.68 and 4.62 cm3 h−1. The eluted solutions
were collected by the same procedure as a breakthrough test.

2.5. Evaluation of Adsorption Measurements

The alkali metal concentrations of all solutions were measured by AAS. The pH value of
the sample solution was measured by a pH meter (DKK-TOA model HM-25G). The FT-IR spectra of all
the samples were measured in the range of 4000–400 cm−1 wave number with FTIR spectrophotometer
(JASCO model FTIR-410 spectrophotometer) by using the KBr pellet method. The micrographs of
the metal loading materials were taken by SEM. The XRD images of the tea leaves and crosslinked tea
leaves were also measured.

The adsorption percentage (%) and the amount of alkali metal ions adsorbed on all the adsorbents
(q, mmol g−1) were calculated by the following formularies:

Adsorption percentage (%) =
Ci − Ce

Ci
×100

q =
Ci − Ce

W
×VM
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where Ci (mmol dm−3) and Ce (mmol dm−3) are the initial and equilibrium concentrations of metal
ions, respectively. VM is the volume (dm3) of sample solution, and W is the weight of the adsorbent (g).

3. Results and Discussion

3.1. Adsorption of Cesium Ions on Crude and Crosslinked Tea Leaves

The SEM images of tea leaves before and after crosslinking are shown in Figure 1a–d. The used tea
leaves (UT) were once soaked in hot water for a beverage before the experiment, and then they were
dried again. These pretreatments led to the appearance of more folding layers than those of on fresh tea
leaves (FT). After the crosslinking, the surfaces of both materials became smooth. That phenomenon
indirectly showed that the impure substances on tea leaves were removed by the crosslinking. The XRD
images of materials metal loading samples are shown in Figure S1a,b. The result showed the subtle
but important information on supporting crosslinking. Four tea leaves have an amorphous structure
without any sharp peaks, but with broad folding points except UT. The UT had a peak, while CUT
had no peaks. It is good evidence that UT was successfully crosslinked. By careful observation,
the folding points of the crosslinked materials were slightly shifted to the higher angles than those
of the original ones. It means that lattice spaces of the crosslinking materials became narrower than
those of the original ones. The crosslinking formed ethereal bonds by condensation of phenolic groups,
and consequently, the distance between molecules became closer. Therefore, it is also good evidence
that the materials were successfully crosslinked.
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Figure 1. SEM images of tea leaves before and after the crosslinking, (a) fresh tea leaves (FT), (b) crosslinked fresh
tea leaves (CFT), (c) used tea leaves (UT), and (d) crosslinked used tea leaves (CUT).

Adsorption of Cs+ ions on crude and crosslinked tea leaves at different pH values is shown
in Figure 2. Both of crosslinked adsorbents, CFT and CUT, showed the better performance of Cs+

adsorption than FT and UT at various pH values. The heating of crude tea leaves with concentrated
sulfuric acid and some polymers, such as cellulose and hemicellulose [19,20], were partly hydrolyzed
to the soluble product, as mentioned in the SEM section. With the washing treatment, the removal of
a large number of unreacted substances obviously improved the activity of the material. Besides, in
the aqueous phase, the alkali metal cations have coordination with water molecules [21,22]. In the Figure,
the Cs+ adsorption on both CFT and CUT is sensitively dependent on pH values of aqueous solutions;
hence, the adsorption mechanism is related to the ion-exchange. Furthermore, the production of
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ether groups through crosslinking could coordinate with Cs+ ion to replace its coordination with
oxygen atoms of water molecules. Therefore, by the function of coordination, Cs+ was promoted
contacting with hydroxyl groups, and the ion-exchange reaction took place. Based on such discussion,
the proposed model of Cs+ adsorption on crosslinked tea leaves is described in the Scheme 1.
That is, after the crosslinking, the phenolic hydroxyl groups were partially converted to ether groups.
The crosslinked adsorbents still provided ion-exchangeable hydroxyl groups, and consequently,
metal adsorption was driven by the ion-exchange mechanism. Meanwhile, the adsorbents also
provided coordinatively-active ethereal oxygen atoms for the dehydration of metal ions and attached
to these metal cations on their surface.
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3.2. Effect of Shaking Time on Adsorption of Alkali Metal Ions

Due to the low adsorption potential of crude FT and UT, the alkali metal ion adsorption on
crosslinked adsorbents was only of focus on the subsequent experiments. The effect of shaking time on
adsorption of alkali metal ions on the crosslinked adsorbents is shown in Figure 3a,b. Cesium has
the largest ionic radius and consequently has the lowest charge density. Adsorption of alkali metal ions
on crosslinked adsorbents was sufficiently fast to reach quantitative adsorption within 6 h. Thus, it was
found that crosslinked adsorbents exhibited a high effect on the adsorption of alkali metal ions.
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3.3. Effect of pH on Adsorption of Alkali Metal Ions

For further study on the mechanism of Cs+ ion adsorption on crosslinked tea leaves and other
alkali metal (Na and K) ions, adsorption was investigated at different pH range (1–11) as well.

The effect of equilibrium pH (pHe) on adsorption percentage is shown in Figure 4a,b. The fitting
curves theoretically drawn in the figures are discussed later. As Figure 4 shows, Cs+ was slightly
selectively adsorbed on both crosslinked tea leaves over other smaller two ions. A monovalent metal
ion with smaller ionic radius has higher charge density and consequently has higher hydration energy
than that with a larger radius. Therefore, larger Cs+ was easily dehydrated than smaller K+ or Na+

and preferably adsorbed among alkali metal ions.
The adsorption percentage was increased with increasing pH value, and the pH value was

dramatically dropped after the adsorption because protons were released from crosslinked adsorbents
and ion-exchanged with a metal ion. It is reasonable that the adsorption reaction of alkali metal ions is
driven by the cationic exchange. The adsorption equation is written as follows:

M+ + ROH
Kad� ROM + H+

where M and ROH represent alkali metal and active polyphenolic sites of adsorbents in crosslinked tea
leaves, respectively, and Kad represents the equilibrium adsorption constant of alkali metal ion.

As that equation indicates that one alkali metal cation was adsorbed on the phenolic group,
and one proton was released from the phenolic hydroxyl group at the same time.

The calculated equilibrium adsorption constant (Kad) of alkali metal ion from the reactional
equation is represented as following, where η represents the amount of substance (mol).

Kad =
ηROM ηH+

ηROH ηM+

Here, the ratio of metal concentration between solid and aqueous phases is simply defined
as the distribution ratio (D). The obtained mole ratio between the raw adsorbents and adsorbed
metal adsorbents (ηROM/ηROH) is as following description:

D =
q

Ce
=

(Ci − Ce)Vm

Ce mROH

ηROM

ηROH
=

(C i −Ce ) VM
mROH/MROH
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where the MROH represents the total molecular molar mass (mol kg−1) of adsorbents and mROH
represents the weight (kg) of adsorbents.

After those formula derivations, distribution ratio was taken logarithm, and obtained value of
logD is as follow.

log D = log Kad− log MROH+ pHe

The relationship between logD and equilibrium pH value (pHe) is linear. The effect of equilibrium
pH on distribution ratio is shown in Figure 5a,b. All plots lie on the straight lines with certain slopes
listed in Table 1. All of the slopes are close to one, which adequately indicates that all adsorption
reactions of alkali metal ions are driven by the cationic exchange, namely, one proton was released
by loading one cation. Although used tea leaves supplied after the use for beverage, it was expected
that water-soluble molecules dissolved and lost before the crosslinking. The slope of crosslinked tea
leaves was close to one as well, which means that the little number of ether groups in tea leaves hardly
affected Cs+ adsorption.

Table 1. Calculated slope value of alkali metal ions based on the equations.

Adsorbent
Cs+ K+ Na+

Slope R2 Slope R2 Slope R2

CFT 0.822 0.9863 0.858 0.9953 0.831 0.9919

CUT 0.997 0.9795 0.861 0.9860 0.780 0.9510

CFT and CUT respectively represents the crosslinked fresh and use tea leaves.

The intercept of the fitting equation in Figure 5 represents the logarithm value of the ratio of
Kad to MROH (log Kad/MROH), and “a” was used for instead of that value at the following description.
Comprehensively, the relation between adsorption percentage (Ad%) and equilibrium pH value (pHe)
is deduced as follows:

Ad =
Ci − Ce

Ci
= 1−

Ce

Ci

Ad
1−Ad

=
KadmROH

VMMROH[H+]
=

a mROH

VM[H+]

Ad % =
100 a mROH

VM 10−pHe +a mROH

The deduced relation was reflected to plot the fitting curve in Figure 4, each curve of alkali metal ions
was calculated with the value of the respective slope in Table 1. The logarithm value of the ratio of
Kad and MROH (replaced as a) results by the calculation of fitting equation. All the R square values of
linear lines drawn in Figure 4 are higher than 0.99. All experimental data of adsorption percentage in
Figure 4 are very reliably close to the calculated curve.
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3.4. Adsorption Isotherms of Na+ and Cs+ Ions on CFT and CUT Adsorbents

Naturally, the large existence of sodium ions leads to unavoidably the large amount of competitive
ions containing in the polluted water. Hence, the adsorption isotherms for Na+ and Cs+ ion on CFT
and CUT adsorbents at similar pHi (around 11) condition were investigated, as shown in Figure 6a,b,
respectively. The adsorption amounts of adsorbents for Na+ and Cs+ ions increased with the increase
of initial metal concentration and reached the maximum loading capacity. The results show that metal
adsorption is classified into the Langmuir models [23]:

qe=
qm∗b ∗Ce

1 + b ∗Ce
=

qm∗Ce

1/b + Ce

where qe is the adsorbed amount at equilibrium (mmol g−1); qm is the maximal adsorption capacity
(mmol g−1); b is the Langmuir constant related to the adsorption energy (dm3 mmol−1).



Processes 2019, 7, 412 9 of 15

Processes 2019, 7, x FOR PEER REVIEW 9 of 16 

 

  
(a) (b) 

Figure 5. Effect of pHe value on distribution ratio of alkali metal ion at 303K, (a) crosslinked fresh tea 
leaves (CFT) adsorbents and (b) crosslinked used tea leaves (CUT) adsorbents, adsorbent weight = 
0.05 g, solution volume = 10.0 cm3, [M+]i = 1.0 mM each, shaking time = 24 h. 

3.4. Adsorption Isotherms of Na+ and Cs+ Ions on CFT and CUT Adsorbents 

Naturally, the large existence of sodium ions leads to unavoidably the large amount of 
competitive ions containing in the polluted water. Hence, the adsorption isotherms for Na+ and Cs+ 
ion on CFT and CUT adsorbents at similar pHi (around 11) condition were investigated, as shown in 
Figure 6a,b, respectively. The adsorption amounts of adsorbents for Na+ and Cs+ ions increased with 
the increase of initial metal concentration and reached the maximum loading capacity. The results 
show that metal adsorption is classified into the Langmuir models [23]: 

qe= 
qm*b*Ce

1+ b*Ce
=

qm*Ce

1 b + Ce⁄  

where qe is the adsorbed amount at equilibrium (mmol g−1); qm is the maximal adsorption capacity 
(mmol g−1); b is the Langmuir constant related to the adsorption energy (dm3 mmol−1). 

  
(a) (b) 

Figure 6. Adsorption isotherms: (a) Cs+ ion on crosslinked fresh tea leaves (CFT) and crosslinked used 
tea leaves (CUT) adsorbents, (b) Na+ ion on CFT and CUT adsorbents, adsorbent weight = 0.05 g, 
solution volume = 10.0 cm3, pHe = 7.0 ± 1.0 (Cs+) and 7.5 ± 0.5 (Na+), shaking time = 24 h. 

As per the experimental data, the maximal adsorption capacities of Cs+ and Na+ on CUT 
adsorbents are 2.3 and 2.4 mmol g−1, while those on CFT adsorbent are 2.5 and 2.2 mmol g−1. To 
confirm the validity of the obtained maximum adsorption capacities, Langmuir formula was linearly 
transformed and described as follow: 

Ce

qe
= 

1
qm b +

Ce

qm
 

Figure 6. Adsorption isotherms: (a) Cs+ ion on crosslinked fresh tea leaves (CFT) and crosslinked
used tea leaves (CUT) adsorbents, (b) Na+ ion on CFT and CUT adsorbents, adsorbent weight = 0.05 g,
solution volume = 10.0 cm3, pHe = 7.0 ± 1.0 (Cs+) and 7.5 ± 0.5 (Na+), shaking time = 24 h.

As per the experimental data, the maximal adsorption capacities of Cs+ and Na+ on CUT
adsorbents are 2.3 and 2.4 mmol g−1, while those on CFT adsorbent are 2.5 and 2.2 mmol g−1.
To confirm the validity of the obtained maximum adsorption capacities, Langmuir formula was linearly
transformed and described as follow:

Ce

qe
=

1
qm b

+
Ce

qm

The maximum adsorption capacity obtained from linear relationship between Ce q−1 and Ce.
Figure 7a,b show transformed Langmuir adsorption isotherm of Cs+ and Na+ ions on CFT
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Figure 7. The Langmuir isotherm kinetic models: (a) Cs+ ion adsorption on crosslinked fresh tea leaves
(CFT) and crosslinked used tea leaves (CUT) adsorbents, (b) Na+ ion on CFT and CUT adsorbents,
adsorbent weight = 0.05 g, solution volume = 10.0 cm3, pHe = 7.0 ± 1.0 (Cs+) and 7.5 ± 0.5 (Na+),
shaking time = 24 h.

The Langmuir parameters and maximal adsorption capacities can be calculated from the intercept
and the slope of the straight line by linear regression analysis, and the obtained values are listed in
Table 2. The R2 values of both adsorbents are higher than 0.99, and it is also verified that adsorption is
governed by the Langmuir model. On the other hand, the maximal capacities of Cs+ and Na+ on CUT
adsorbents are 2.48 and 2.40 mmol g−1, while those on CFT adsorbents are 2.56 and 2.25 mmol g−1.
Those values, corresponding to the values obtained from Figure 6a,b, particularly confirm the reliability
of values. In addition, the Cs+ adsorption capacities on CUT and CFT adsorbents were compared with
those obtained by using other adsorbents with the batch method as listed in Table 3. As a comparison,
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the Cs+ capacities on both types of crosslinked adsorbents are sufficiently high. Especially for the used
tea leaves, they are much economical than the fresh tea leaves but have a similar capacity on Cs+ ion
adsorption as CFT.

Table 2. Langmuir isotherm constants for the adsorption of Na+ and Cs+ on adsorbents.

CUT Adsorbent CFT Adsorbent

Qm (mmol g−1) B (dm3 mmol−1) R2 Qm (mmol g−1) B (dm3 mmol−1) R2

Na+ 2.40 0.6431 0.999 2.25 0.3182 0.999

Cs+ 2.48 0.2802 0.997 2.56 0.9950 0.996

CFT and CUT respectively represents the crosslinked fresh and use tea leaves.

Table 3. Comparisons of adsorption capacities of present adsorbents with various kinds of other
adsorbents for Cs+ ion reported in the literature.

Adsorbent Adsorption Capacity
(mmol g−1)

pH Temperature(K) Reference

Layered metal sulfide
(KMS−1) 1.70 ≈7.0 (pHe) 298 [24]

Sericite 0.050 5.0 (pHi) 298 [25]
RIP of clay minerals 0.250 7.0 (pHi) * [26]

Prussian blue 1.254 Water 298 [27]
Biomass of marine algae 0.248 5.5 (pHi) 303 [28]

Arca shell biomass 0.036 5.5 (pHi) 298 [29]
CUT 2.48 7.0 ± 1.0 (pHe) 303 Present work
CFT 2.56 7.0 ± 1.0 (pHe) 303 Present work

* Temperature was not mentioned in the article, CFT and CUT respectively represents the crosslinked fresh and use
tea leaves.

3.5. Chromatography Separation of Cs+ over Na+ Ion Using Crosslinked Tea Leaves

Based on the investigation of adsorption isotherm of Na+ on crosslinked tea leaves by the batch
experimental result, the high adsorption capacity of Na+ may cause competition of Cs+ adsorption
in the co-existing solution. Hence, the essential investigation on adsorption of Cs+ in excessive Na+

solution by column chromatography technique was studied.
Figure 8a,b show the breakthrough profiles of Cs+ and Na+ adsorption on CFT and CUT,

respectively. The metal selectivity given here was followed by the result shown in Figure 4a,b.
Furthermore, adsorption capacities of the adsorbents towards Cs+, as listed in Table 4, are much

higher than that of Na+. For CFT adsorbents, the adsorption capacities of Cs+ and Na+ were
evaluated as 0.992 and 0.528 mmol g−1. For CUT adsorbents, the capacities of Cs+ and Na+ were 0.804
and 0.491 mmol g−1. The selectivity of CUT and CFT towards Cs+ is jointly decided by the lower
hydration energy and stable coordination. The CFT and CUT adsorbents still sufficiently exhibited
high ability to remove Cs+ from co-existing solution.
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Figure 8. Breakthrough profiles of Cs+ and Na+ ions upon passing the column packed with (a) crosslinked
fresh tea leaves (CFT) adsorbents and (b) crosslinked used tea leaves (CUT) adsorbents, pHe = 7.7 (CFT) and 7.4
(CUT), weight of adsorbents= 0.15 g (0.515 cm3), [Cs+]i = 1.84 mM (CFT), 1.80 mM (CUT), [Na+]i = 2.68 mM
(CFT), 2.39 mM (CUT), flow rate = 5.52 cm3 h−1 (CFT) and 5.85 cm3 h−1 (CUT).

Table 4. Separation and removal of Cs+ from the mixture of Na+ ions.

CUT Adsorbent CFT Adsorbent

Adsorbed
(mmol g−1)

Eluted
(mmol g−1)

% Recovery Adsorbed
(mmol g−1)

Eluted
(mmol g−1)

% Recovery

Na+ 0.491 0.484 98.57 0.528 0.497 94.13

Cs+ 0.804 0.716 89.05 0.992 0.951 95.78

CFT and CUT respectively represents the crosslinked fresh and use tea leaves.

After the saturation of the adsorbent bed, it was eluted by HCl solution with pH value adjusted
to 1.9 to recover the adsorbed metal ions, and the elution profiles are shown in Figure 9a,b. It was
found that massive metal ions were immediately released in a short period. Finally, all metal ions were
eluted, as listed in Table 4. The high efficiency of recoveries implies that tea leaves have the potential
for the contaminated water treatment, especially the used tea leaves.
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Figure 9. Elution profiles of the adsorption of Cs+ and Na+ ion on (a) crosslinked fresh tea leaves (CFT)
adsorbents and (b) crosslinked used tea leaves (CUT) adsorbents with HCl solution, pH = 1.9, flow
rate = 4.68 cm3 h−1 (CFT), 4.62 cm3 h−1 (CUT).

3.6. Fourier-Transfer Infrared Analysis

For the further study on the adsorption sites in adsorbents for alkali metal adsorption, FT-I spectra
of series of the adsorbents before and after the metal adsorption were studied, as shown in
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Figure 10a,b. Either crude or crosslinked tea leaves had broad bands at 3310–3430 cm−1, which
were assigned as phenolic O-H stretching. CFT and CUT were obtained by partial crosslinking of
hydroxyl groups of FT and UT by the condensation assisted by catalysis of concentrated sulfuric acid.
Hence, after the crosslinking, the peaks of O-H became lower but still existed. While, they became
slightly wider and shifted to a lower frequency, due to the formation of a hydrogen bond between
hydroxyl groups and formed ether oxygen atoms. Besides, the broken hydrogen bonds, as well
as ion-exchange between Cs+ and proton, led to the shifted peaks with slight sharper shape, after Cs+

adsorption. The peaks located at 1600 cm−1 are identified as the stretching vibrations of C = C groups
derived from benzene rings. The effect of crosslinking was also reflected on the shift of C = C peaks on
CFT and CUT. The observation of effect from formed hydrogen and ether bonds to changes in peaks in
FT-IR could be supported on obtained analysis of shrank spatial distance in XRD figures as well.
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Figure 10. FT-IR spectra of adsorbents, (a) 1 FT, 2 CFT, 3 CFT- adsorbed Cs+ and (b) 1 UT, 2 CUT, 3
CUT-adsorbed Cs+. FT: fresh tea leaves; CFT: crosslinked fresh tea leaves; UT: used tea leaves; CUT:
crosslinked used tea leaves.

In addition, the medium bands around 2930 and 2850 cm−1 of two types of crude tea leaves are
attributable to C-H stretching frequencies. After crosslinking, the degradation of some polymers led to
the weaker intensity of C-H on CFT and CUT. The new moderate peaks appeared at 1160 cm−1 on CFT
and CUT, belonging to C-O-C stretching vibrations, and they were caused by the formation of C-O-C
linkages produced from the condensation reaction of hydroxyl groups. Furthermore, the ethereal
peaks of CFT and CUT were slightly shifted to 1180 cm−1 after the Cs+ adsorption. This was caused by
the coordination of ethereal oxygen atoms to Cs+.

The ether groups coordinated with Cs+ and replaced with hydrated water molecules. These results
from FT-IR strongly supported that the partial crosslinking of the adsorbents converted hydroxyl groups
into ethereal oxygen atoms and easily facilitated dehydration of Cs+ by coordination. Consequently,
the adsorption reaction was enhanced not only by proton exchange mechanism but also coordination
with ether groups.

4. Conclusions

Both the fresh and used tea leaves, as environmentally friendly bio-sorbents, exhibited the excellent
adsorption performance of alkali metal ions by crosslinking with concentrated sulfuric acid.
Adsorption reaction of alkali metal cations involved coordination and ion exchange. The coordination
of Cs+ with hydrated water molecules in aqueous solution was firstly replaced with the oxygen atom
from ether groups, which were formed by the crosslinking of tea leaves. Meanwhile, the dehydrated
Cs+ ion was adsorbed by ion-exchange with the proton of hydroxyl groups on crosslinked tea
leaves and assisted by coordination with ethereal oxygen atoms. Following the Langmuir model,
compared with the maximal capacities of Cs+ ions with the batch method on synthesized chemicals,
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minerals, and other bio-adsorbents, those on the crosslinked tea leaves exhibited the superior uptake
due to the rich phenolic functional groups. Water-soluble molecules were partially eluted, and such
small loss had no suppression to the adsorption capacity of CUT, and it was similar to that of CFT.
Some conventional cation resins, such as carboxylic acid resin, have less selectivity for monovalent
metals [30–32]. On the contrary, a decreased amount of hydroxyl groups on crosslinked tea leaves
attributed to partial crosslinking and could lead to weaker electrostatic interaction between ion-exchange
groups and metal ions. Furthermore, formed ethereal oxygen atoms are coordinatively-active for
dehydration of monovalent metal ions. Therefore, the crosslinked tea leaves had the ability for
Na+, K+, Cs+ adsorptions. The different cationic size determined different hydration energy; hence,
the selective separation of Cs+ in excessive Na+ solution by using column chromatography found
that crosslinked tea leaves exhibited Cs+ selectivity over Na+. The elution of the loaded Cs+ ion was
successfully achieved with a low concentration of the acidic solution in a short period. Even used
tea leaves exhibited comparable adsorption behavior to the fresh ones after crosslinking. Low cost
and environmentally friendly adsorbents were easily prepared and could be potential candidates for
cesium removal from the polluted solution.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/7/7/412/s1,
Figure S1: X-ray diffraction patterns of (a) fresh and (b) used tea leaves before and after crosslinking, fresh tea
leaves (FT), crosslinked fresh tea leaves (CFT), used tea leaves (UT), and (d) crosslinked used tea leaves (CUT).
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