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Abstract: This paper presents a statistical analysis of wind speed data that can be extremely useful
for installing a wind generation as a stand-alone system. The main objective is to define the wind
power capacity’s contribution to the adequacy of generation systems for the purpose of selecting
wind farm locations at specific sites in Malaysia. The combined Sequential Monte Carlo simulation
(SMCS) technique and the Weibull distribution models are employed to demonstrate the impact
of wind power in power system reliability. To study this, the Roy Billinton Test System (RBTS) is
considered and tested using wind data from two sites in Peninsular Malaysia, Mersing and Kuala
Terengganu, and one site, Kudat, in Sabah. The results showed that Mersing and Kudat were best
suitable for wind sites. In addition, the reliability indices are compared prior to the addition of the
two wind farms to the considered RBTS system. The results reveal that the reliability indices are
slightly improved for the RBTS system with wind power generation from both the potential sites.

Keywords: reliability indices; wind farms; Sequential Monte Carlo Simulation; Malaysia

1. Introduction

Recent environmental impacts and the depletion of fossil fuel reserves are the main concerns that
have stimulated the integration of renewable energy power plants using solar power, wind power,
biomass, biogas, etc. as alternative sources of electrical generation. This has inspired global concerns
in energy balance, sustainability, security, and environmental preservation [1].

Wind energy is non-depletable, free, environmentally friendly, and almost available globally [2].
It is intermittent, though very reliable from a long-term energy policy viewpoint [3]. In the measure of
adequacy, wind energy is regarded as a better choice compared with other energies.

Electric power systems continue to witness the penetration of high-level wind power into the
system as a global phenomenon [4], due to the problems associated with power system planning
and operation. This makes the assessment of wind power generation system capacities, and their
impacts on reliability in the system by appropriate planning, in line with their power utilization and
environmental benefits. Thus, high penetration of intermittent wind energy resources into the electric
power system requires the need to investigate the system reliability while adding a large amount of
varying wind power generation to the system [5].

Owing to the industrial development and growth in the economy, an increase in the demand
for electricity is one of the major challenges faced by both developed and developing countries like
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Malaysia. This has precipitated the Malaysian electrical utility to integrate wind generation based
renewable energy into the grid. Many studies have been carried out by researchers to identify the
potential location of wind energy systems in Malaysia. This process has been encouraged by both public
and private institutions, with the aim of producing green energy [6,7]. In addition, the extraction of
power from wind energy is optimized, even in location with average wind speed, by the proper design
of wind turbine models that can effectively trap power due to the advancement in technologies [8].

In general, Malaysia experiences low wind speeds, but some particular regions experience strong
winds in specific periods of the year [9]. Locations like Mersing experience higher wind speed
variations throughout the year, with average wind speeds ranging from 2 m/s to 5 m/s [10]. According
to the literature, the wind in Malaysia could be able to generate a great quantity of electric energy
despite its lower average wind speeds, especially at the eastern coastal areas or its remote islands [11].
Researchers in [12] applied the Weibull function to investigate the characteristics of wind speed
and subsequently evaluated the wind energy generation potential at Chuping and Kangar in Perlis,
Malaysia. Furthermore, small capacity wind turbine plants (5–100 kW) have been installed by the
Ministry of Rural and Regional development in Sabah and Sarawak [11]. Researchers in [13] stated
that ten units of wind turbines with three different rated powers (6, 10, and 15 kW) were used in energy
calculation for the area in the north part of Kudat. As the wind turbine units are principally dependent
on wind velocity and location, wind speed forecast is essential for siting a new wind generating turbine
in a prospective location [14], as the study in Kudat location reveals. Moreover, another study was
performed by a research group of the University of Malaysia (UM) using the Weibull distribution
function for the analyses of wind energy potential at the sites in Kudat and Labuan in the Sabah region
in Malaysia [6]. The outcome of this research demonstrated that Kudat and Labuan are suitable for
sitting small-scale wind generating units [15].

The question to ask here is whether it is probable to harness small-scale wind generating units at
selected locations in Malaysia for the purpose of electricity generation. So far, studies on wind power
characteristics in Malaysia are limited and wind speed depends on geographical and meteorological
factors. This study discusses the effect of potential wind power from various locations in Malaysia for
adequately reliable power systems. Analysis of the wind speed data characteristics and wind power
potential assessment at three given locations in Malaysia was done. The main objective of the paper is
to examine the capacity contribution of wind power in generating system adequacy and its impact on
generation system reliability. The Sequential Monte Carlo simulation (SMCS) technique and Weibull
models are employed to demonstrate the impact of wind power in power system reliability. Also,
the results presented in the paper could serve as preliminary data for the establishment of a wind
energy map for Malaysia.

This paper is structured in six sections. The introduction includes a brief introduction of the
concept for the wind energy potential in Malaysia. The next section describes related work adapted
to enable estimation of the wind power potential of the region. Section 3 shows the fundamental
reliability indices evaluated in this work, which are used by assessment policy makers to exploit the
wind power potential of the region. Section 4 describes the wind speed data analysis at specific sites
in Malaysia. Section 5 shows the obtained results of the simulation in the case study, which are also
discussed. Finally, Section 6 summarizes the main conclusions of the study.

2. Related Work

2.1. Weibull Distribution for the Estimation of Wind Power and Energy Density

The Weibull distribution is the most well recognized mathematical description of wind speed
frequency distribution. The value of the scale parameter c of the Weibull distribution is close to
the mean wind speed in actual wind speed data, and because of that, the Weibull distribution is a
reasonable fit for the data. Consequently, using the two parameters (shape parameter k and scale
parameter c), the Weibull distribution can be used with acceptable accuracy to present the wind
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speed frequency distribution and to predict wind power output from wind energy conversion system
(WECS) [16].

Many numerical methods are employed to estimate the values of the shape parameter k and scale
c. The Empirical Method (EM) is used in this paper for calculating the Weibull parameters. The EM
can be calculated by employing mean wind speed and the standard deviation, where the Weibull
parameters c and k are given by the following equations [17].

k =

(
σ
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)−1.089

(1)

c =
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k

) (2)

where σ is standard deviation,
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The monthly or annual mean wind power density per unit area of any site on the basis of a Weibull
probability density function can be displayed in [20] as follows:

PD(w) =
p(v)

A
=

1
2
ρc3

(
1 +

3
k

)
(5)

where p(v) is the wind power (Watts), PD(w) is the mean wind power density (Watts/m2), ρ is the

air density at the site (1.225 kg/m3), A is the sweep area of the rotor blades (m2), and
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gamma function.

The extractible mean energy density over a time period (T) is calculated as

ED =
1
2
ρc3
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where the time period (T) is expressed a daily, monthly or annual.
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2.2. Estimation of Wind Turbine Output Power and Capacity Factor

The performance of how a wind machine located in a site performs can be assessed as mean power
output Pe,ave over a specific time frame and capacity factor, Cf, of the wind machine. Pe,ave determines
the total energy production and total income, whereas Cf is a ratio of the mean power output to
the rated electrical power Prated of the chosen wind turbine model [21]. Depending on the Weibull
distribution parameters, the Pe,ave and capacity factor Cf of a wind machine are computed according to
the following equations.

Pe,ave = Prated

 e−(
Vc
c )

k
− e−(

Vr
c )

k(
Vr
c

)k
−

(
Vc
c

)k

− e−(
Vc
c )

k

(7)

C f =
Pe,ave

Prated
(8)

where Vc is cut-in wind speed and Vr is the rated wind speed of the wind turbine generator (WTG).
For an economical and viable investment in wind power, it is advisable that the capacity factor should
exceed 25% and be maintained in the range of 25–45% [22].

2.3. Extrapolation of Wind Speed at Different Heights

Indirect wind speed estimation methods consist of measuring wind speed at a lower height and
applying an extrapolation model to estimate the wind speed characterization at different elevations.
The most commonly used model is the power law [23].

Wind speed increases significantly with the height above ground level, depending on the roughness
of the terrain. Therefore, correct wind speed measurements must consider the hub height (H) for the
WTG and the roughness of the terrain of the wind site. If measurements are difficult at high elevations,
the standard wind speed height extrapolation formula, as in the power law Equation (9) [24], can be
used to estimate wind speed at high elevations by using wind speed measured at a lower reference
elevation, typically 10 m [25].

v = vo

[
H

HO

]n

(9)

where v is the wind speed estimated at desired height, H; vo is the wind speed reference hub height Ho,
and (n) is the ground surface friction coefficient. The exponent (n) is dependent on factors such as
surface roughness and atmospheric stability. Numerically, it ranges from (0.05–0.5) [26]. The normal
value of ground surface for every station is approximated 1/7 or 0.143, as suggested by [27] for neutral
stability conditions.

3. Reliability Assessment for Generation Systems

3.1. Fundamental Reliability Indices

The Load and generation models are conjoined to produce the risk model of the system. Indices
that evaluate system reliability and adequacy can be used to forecast the reliability of the power
generating system.

The fundamental reliability indices evaluated in this work are adapted to enable the estimation
of the reliability level of the power generating systems, comprised of Loss of Load Frequency
(LOLF), Loss of Energy Expectation (LOEE), Loss of Load Duration (LOLD), and Loss of Load
Expectation (LOLE).

At present, LOLE represents the reliability index of the electrical power systems used in many
countries [3]. The standard level of LOLE is one-day-in ten years or less. This does not mean a full
day of shortages once every ten years; rather, it refers to the total accumulated time of shortages,
which should not exceed one day in ten years. Therefore, the level of LOLE in this study is used as a
reliability index of the generation systems.
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The combined Sequential Monte Carlo simulation (SMCS) method (or the Monte Carlo simulation
method cooperate with Frequency and Duration method) in [28] enables accurate evaluation of
reliability indices. To accurately evaluate the reliability assessment for the overall reliability of
generating systems adequacy containing wind energy, an SMCS method was used alongside the
Weibull distribution model to generate and repeat the wind speed. The Roy Billinton Test System
(RBTS) is an essential reliability test system produced by the University of Saskatchewan (Canada) for
educational and research purposes. The RBTS has 11 conventional generating units, each having a
power capacity ranging of around 5–40 MW, with an installed capacity of 240 MW and a peak load of
185 MW. Figure 1 shows the single line diagram for the RBTS, and the detailed reliability data for the
generating units in the test system are shown in Appendix A. The load model is generally represented
as chronological Load Duration Curve (LDC), which is used along with different search techniques.
The LDC will generate values for each hour, so there will be 8736 individual values recorded for each
year. The chronological LDC hourly load model shown in Figure 2 was utilized, and the system peak
load is 185 MW. Besides the traditional generators, the wind farm was comprised of 53 identical WTG
units with a rated power of 35 kW, each of which was considered in the current study. A peak load of
1% penetrated wind energy in the RBTS system, which has a peak load of 185 MW.
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Figure 2. Chronological hourly load (Load Duration Curve (LDC)) model for the RBTS.
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3.2. Proposed Methodology

The basic simulation procedures for applying the SMCS with the Weibull model in calculating
reliability indices for the electrical power generating systems with wind energy penetration are based
on the following steps.

Step 1: The generation of the yearly synthetic wind power time series employs a Weibull model,
as follows:

• Set the Weibull distribution parameters k and c.
• Generate a uniformly distributed random number U between (0,1).
• Determined the artificial wind speed v with Equation (10).

v = c
[
− ln(U)

1
k

]
(10)

• Set the WTG’s Vci, Vr, and Vco wind speeds.
• Determine the constants A, Bx, and Cx with the equations below.

A =
1

(Vci −Vr)
2

{
Vci (Vci + Vr) − 4VciVr

[Vci + Vr

2Vr

]3}

Bx =
1

(Vci −Vr)
2

{
4 (Vci + Vr)

[Vci + Vr

2Vr

]3
− (3Vci + Vr)

}

Cx =
1

(Vci −Vr)
2

{
2− 4

[Vci + Vr

2Vr

]3}
.

• Calculate the WTG output power using Equation (11),

PWTG =


0 ws < Vci
(A + Bx + Cx2) × Pr Vci ≤ ws < Vr

Pr Vr ≤ ws < Vco

0 ws > Vco

(11)

where ws = wind speed (m/s), Vci = WTG cut-in speed (m/s), Vco = WTG cut-out speed (m/s),
Vr = WTG rated speed (m/s), and Pr = WTG rated power output (MW). The constants A, Bx,
and Cx have previously been calculated by [3].

Step 2: Create the total available capacity generation by a combination of the synthetic generated
wind power time series with a conventional chronological generating system model by employing
SMCS, as follows:

• Define the maximum number of years (N) to be simulated and set the simulation time (h),
(usually one year) to run with SMCS.

• Generate uniform random numbers for the operation cycle (up-down-up) for each of the
conventional units in the system by using the unit’s annual MTTR (mean time to repair) and λ

(failure rate) values.
• The component’s sequential state transition processes within the time of all components are then

added to create the sequential system state.
• Define the system capacity by aggregating the available capacities of all system components

by combining the operating cycles of generating units and the operating cycles with the WTG
available hourly wind at a given load level.
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• Superimpose the available system capacity curve on the sequential hourly load curve to obtain
the available system margin. A positive margin denotes sufficient system generation to meet the
system load whereas a negative margin suggests system load shedding.

• The reliability indices for a number of sample years (N) can be obtained using Equations (12)–(18).

ΦLOLE(s) =
{

0 i f s j ∈ ssuccess

1 i f s j ∈ s f ailure
(12)

Ẽ(ΦLOLE(s)) =

∑N
i=1

{∑nj(s)
j=1 ΦLOLE(sji)

}
N

(13)

where i = 1, 2 . . . N, N = number of years simulated, φ(sji) = index function analogous to jth
occurrence within the year i, j = 1, 2 . . . , nj(s), nj(s) is the number of system state occurrences of (sj)
in the year i, sj = ssuccess
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sfailure is the set of all possible states (sj) (i.e., the state-space), and the
content of two subspaces ssucess of the success state and sfailure of the failure states.

ΦLOEE(s) =
{

0 i f s j ∈ ssuccess

∆Pj× T i f s j ∈ s f ailure
(14)

Ẽ(ΦLOEE(s)) =

∑N
i=1

{∑nj(s)
j=1 ΦLOEE(sji)

}
N

(15)

where ∆Pj×T is the amount of curtailing energy in the failed state (sji).

ΦLOLF(s) =
{

0 i f s j ∈ ssuccess

∆λ j i f s j ∈ s f ailure
(16)

Ẽ(ΦLOLF(s)) =

∑N
i=1

{∑nj(s)
j=1 ΦLOLF(sji)

}
N

. (17)

∆λj, is the sum of the transition rates between sj and all the ssuccess states attained from sj in
one transition.

LOLD =
LOLE
LOLF

. (18)

• If (N) is equal to the maximum number of years, stop the simulation; otherwise, set (N = N + 1),
(h = 0), then return to move 2 and repeat the attempt.

Step 3: Evaluate and update the outcome of the test function for the reliability indices evaluation.
The above procedure is detailed in the form of flowchart, as represented in Figure 3.
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4. Wind Speed Data Analysis at Specific Sites in Malaysia

To estimate the possible potential wind energy site in Malaysia, the analysis, correlation,
and prediction of wind data from the location need to be done. It has been often recommended in
the literature that making use of the wind data available from meteorological stations increases the
vicinity of the proposed candidate site by preliminary estimates of the wind resource potential of
the site. Meteorological data that are recorded for long periods need to be extrapolated to obtain
an estimation of the wind profile of the site. In this study, wind speed data from Mersing, Kudat,
and Kuala Terengganu have been statistically analyzed to propose the wind energy characteristics
for these sites. The data for this study were gathered from the Malaysia Meteorological Department
(MMD). The data recorded comprise three years of hourly mean surface wind speeds from 2013 to
2015 at three locations in Malaysia. The mean of the wind speed form the simulated process for each
hour is calculated based on Weibull parameters. The hourly mean wind speed is then used in the
sequential simulation process. Figure 4 shows the locations of MMD stations in Peninsular Malaysia.
This map was drawn by using the Arc Graphical Information System (AGIS) software and depicts
the strength of the wind speed distribution in Mersing, Kudat, and Kuala Terengganu. The area that
showed the highest wind speed value is in red and orange, while other areas show moderate wind
speeds. Table 1 presents a description of the selected regions in Malaysia, which consist of the latitude,
longitude, and elevation of the anemometer.
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Table 1. Description of the wind speed stations at selected regions in Malaysia.

Station Latitude Longitude Altitude (m)

Mersing 2◦27′ N 103◦50′ E 43.6
Kuala Terengganu 5◦23′ N 103◦06′ E 5.2

Kudat 6◦55′ N 116◦50′ E 3.5
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4.1. Estimation of Average Wind Speed with Different Height

In this study, the scale parameter (c) of Weibull distribution was applied to test the generated wind
speed data from the Weibull model at the Mersing, Kudat, and Kuala Terengganu sites. The monthly
average wind speed data for the three sites within the three year period, with a scale parameter,
are presented in Figure 5. It is clear from the figures that for the entire three years of the wind speed
data and scale parameter c of the Weibull distribution they showed similar variations during one year.

Wind speed is typically measured at standard heights, such as 10 m, but there is the need to
obtain wind speed values at a high level in cases where the electricity is generated by the mean power
of a wind turbine [29]. The wind power law has been acknowledged to be a beneficial tool and is
frequently employed in assessing the wind power where wind speed data at different elevations must
be adjusted to a standard height before use. In this study, the exponent n of the power law is set to
0.143 for the Kudat and Kuala Terengganu sites, as suggested by [13]. Meanwhile, for the Mersing site,
the exponent n of the power law is set to 0.5, according to the nature of the ground. Wind data taken
from the MMD station were measured at a level height of 43.6 m for Mersing. However, wind data of
the Kudat and Kuala Terengganu sites require the data to be converted at a height of 10 m above hub
height, because the wind turbine always runs at elevations above 10 m height.

Figure 6 shows both monthly and annual mean wind speeds at the sites (Mersing, Kudat,
and Kuala Terengganu) for the average years of 2013–2015; these results were extrapolated to a different
height. In this study, the wind speed was extrapolated for various heights (mean wind observation
station, 60 m, and 100 m) in the wind observation stations at Kudat, Kuala Terengganu, and Mersing
(extrapolated). The obtained results are presented in Table 2.

All the tabulated values reveal that the wind speed increases with an increase in elevation.
For Mersing, the annual average wind speed was 2.82 m/s, 3.31 m/s, and 4.27 m/s at wind observation
station elevations of 60 m, and 100 m, respectively. Furthermore, the annual average wind speeds in
Kudat and Kuala Terengganu were 2.45 m/s, 3.68 m/s, and 3.95 m/s; and 2.03 m/s, 2.89 m/s, and 3.10 m/s
at wind observation station elevations of 60 m, and 100 m, respectively.
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Kuala Terengganu.

4.2. Estimation of Wind Power Density and Energy Density at Different Heights

The observed wind speed data at the station were converted to 100 m height wind speed data
using Equation (9), and then the converted data were used to determine the wind potential. The scale c
and shape k Weibull parameters were estimated using the EM. The wind power and energy density
were measured, respectively, by Equations (5) and (6) at heights of (43.6 m) and (100 m) in Mersing,
as shown in Table 3. The rest of the calculations for wind power and energy density at heights of 3.5 and
100 m and 5.2 and 100 m in Kudat and Kuala Terengganu, respectively, can be found in Appendix B.

From Table 3, it is observed that the maximum power density from the actual wind speed of
Mersing, Kudat, and Kuala Terengganu was found to be 52 W/m2, 19 W/m2, and 20 W/m2, respectively.
However, the maximum power density of Mersing, Kudat, and Kuala Terengganu, when the actual
wind speed data was converted to 100 m height, was calculated to be 180 W/m2, 80 W/m2, and 72 W/m2,
respectively. Here, it is evident that the Mersing site has a higher mean monthly power density
compared to Kudat and Kala Terengganu under various heights.
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Table 2. Monthly and annual mean wind speed (m/s) in Mersing, Kudat, and Kuala Terengganu at different heights above ground level.
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Table 3. Wind power and energy density characteristics at heights of 43.6 m and 100 m in Mersing.
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The annual mean power density of Mersing, Kudat, and Kuala Terengganu varies between
84.59 W/m2, 79.28 W/m2, and 33.36 W/m2 at a height of 100 m. The annual power density is also less
than 100 W/m2 for all the locations, and, therefore, these locations can be categorized as a class 1 wind
energy resource. This wind energy resource class, in general, is inappropriate for large-scale wind
turbine applications. Nevertheless, the generation of small-scale wind energy at a turbine height of
100 m [6] is viable. However, for small-scale applications, and in the long-term with the development
of wind turbine technology, the use of wind energy continues to hold great promise.

4.3. Estimation of the Suitable Wind Turbine Units at Malaysia Sites

The selection of the wind turbine should be made with a rated wind speed that corresponds to
the maximum energy wind speed in order to maximize energy output. For the annual energy output,
the selected wind turbine will have the maximum capacity factor, defined by the ratio of the actual
power generated to the rated power output [30]. The average power output values, Pe,ave, and Cf,
are crucial performance factors of the wind energy conversion system (WECS).

The technical data of six differently sized wind turbines are summarized in Table 4.
The summarized information in Table 4 is obtained from [13,19]. The cut-in wind speed, or the
speed at which the turbine commences power production, is 2.7 m/s for four of the six turbines, while
for the other two turbines, the cut-in wind speed values are 2 and 3.5 m/s, respectively. The cut-out
wind speed of 25 m/s applies to all the turbines. Table 4 represents the information pertaining to the
rated speed, rated output power, hub height, and rotor diameter of the wind turbines analyzed.

Table 4. The technical data of wind turbines.

Characteristics P10-20 591672E P12-25 G-3120 P15-50 P25-100

Rated power (kw) 20 22 25 35 50 100
Hub height (m) - 30 - 42.7 - -

Rotor diameter (m) 10 15 12 19.2 15.2 25
Cut-in wind speed (m/s) 2.7 2 2.7 3.5 2.7 2.7
Rated wind speed (m/s) 10 10 10 8 12 10

Cut-off wind speed (m/s) 25 25 25 25 25 25

Depending on the turbine’s characteristics in Table 4, and the Weibull parameters derived from
applying EM using the Matlab toolbox, the electrical output of the wind turbines can be made available
by using the formulation earlier defined in Equation (7).

Knowing the output power of the wind turbines, it is then possible to obtain a computation of the
average output power value of each wind turbine. As the capacity factor of a wind turbine is the ratio
of its average output power to its rated power, the energy output data are employed in calculating the
capacity factor of the wind turbines, which are of sizes 20, 22, 25, 35, 50, and 100 kW. A comparison of
the capacity factors computed for various wind turbines at different heights is presented in Figure 7.

From Figure 7, it can be seen that the capacity factor goes up as the hub height increases. Moreover,
the capacity factor increases for wind turbines of a size of 35 kW. In Mersing, the maximum capacity
factor is achieved as about 23.66% for the Endurance America model of the G-3120 kW wind turbine,
whereas in Kuala Terengganu, the lowest capacity factor is achieved as approximately 7.82% for the
Endurance America model of the G-3120 kW wind turbine. Kudat, with about 19.21%, ranks second in
terms of capacity factors compared to the regions.
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Figure 7. Comparison of the capacity factors obtained for different wind turbines at various heights for
sites (a) Mersing, (b) Kudat, and (c) Kuala Terengganu.

The G-3120 (35 kW) wind turbine has the highest capacity factors of 23.66%, 19.21%, and 7.82%,
at suggested heights of 100 m for Mersing, Kudat, and Kuala Terengganu, respectively, among the
models considered. Therefore, the reliability analysis was carried out only for Mersing and Kudat,
which have high capacity factors, whereas Kuala Terengganu was not considered as it has low
capacity factors.
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5. Results and Discussion

In this section, the reliability indices evaluation of generating systems for wind power generation
using a sequential Monte Carlo simulation (SMCS) is presented. In addition, the strategies for wind
farm operation at Malaysian sites (Mersing and Kudat) are presented and compared by assessing the
reliability of wind energy generation when adding to the RBTS test system [31].

5.1. Case Studies

As reported in the literature, two wind generating stations suggested at the specific sites in
Malaysia, Mersing and Kudatas, have low wind speed and thus require small-scale rated power wind
turbines of around 35 kW for installation in two selected locations for reliability analysis.

Reliability analysis using the simulation technique suggested in this paper is applied to the
RBTS, which contains the WECS. The hourly wind data obtained from the two locations—Mersing
and Kudat—atre used for studying the hourly wind speed of the Weibull model considered for
the simulation. Then, the Weibull parameters c and the k are obtained by the empirical method.
The obtained values were used to generate hourly wind speed data for deducing the available wind
power from the wind turbine generators (WTG) chosen for both of the sites for reliability assessment.

The values of c are around 4.88 and 4.46 m/s, and the values of k for wind speed distribution are
2.25 and 1.84 for Mersing and Kudat at the proposed height of 100 m, respectively; these values were
obtained by simulation. The WTG unit that is selected for installation in the farm has the following
specifications: Vci = 3.5 m/s, Vr = 8 m/s, and Vco = 25 m/s, and the rated power output of every WTG
unit is Pr = 35 kW [19]. Figures 8 and 9 show the simulated output power with 35 kW for each WTG in
the sampling year, and the simulation of the farm with output power is 1.85 MW for 53 WTG units
in Mersing.Processes 2019, 7, x FOR PEER REVIEW  19 of 26 
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Figure 9. Simulation of the output power from wind farm for the sampling year.

The RBTS was simulated for 600 trials using the SMCS method. The simulation proceeded in
chronological order from one hour to the next, repeatedly, using yearly samples until the specified
convergence criteria were met. Figure 10 shows the available capacity for the power system containing
wind power generation from the wind farm in Mersing during the simulated process for yearly
samples and the superimposition of the available capacity with the chronological load model. It can be
seen from this state of the system that the available capacity of the power generating system is not
sufficient to meet the load demands. Thus, there are some intersections that are seen in the diagram.
Figure 11 represents the reliability indices for simulation with (600) sampling years. The values of
LOLE, the amount of the LOEE, and the frequency of losing a load during the simulation process are
depicted in Figure 11 for wind power in the Mersing site.
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5.2. Calculated Reliability Indices for RBTS Including Wind Power Generation

To evaluate the contribution of wind energy to the overall reliability of the generating systems,
Table 5 compares the reliability indices before and after adding the 53 WTGs and 106 WTGs to the
conventional units of RBTS. The results obtained were compared with the results obtained from the
SMCS method reported in [32]. The simulation process was terminated after a set number of samples
(600 times) had been achieved. The results show that the reliability indices demonstrate a distinguished
and slightly improved reliability of RBTS, including wind power from both locations (Mersing and
Kudat) by the addition of 1.85 MW and 3.71 MW from the proposed wind farms. The LOLE and
LOEE indices are typically employed to gauge the extent of benefits in assessing the wind energy of
generating systems. Therefore, after adding the wind generating 1.85 MW to the system, the LOLE
index was reduced to 1.115 and 1.131 h/year for Mersing and Kudat, respectively, when compared with
the results from the base case, which shows the reliability assessment of the power generation system.
Additionally, after adding the wind generating 3.71 MW to the system, the LOLE index wass reduced
to 0.987 and 1.128 h/year for Mersing and Kudat, respectively, when compared with the results from
the base case, which shows the reliability assessment of the power generation system.

Table 5. Reliability indices at various sites in Malaysia.

Name of Site
Reliability Indices

LOLE
(hrs/year)

LOEE
(MWh/year)

LOLF
(occ/year)

LOLD
(hrs/occ)

Basic RBTS system without wind generation
(published) 1.152 11.78 0.229 4.856

Basic RBTS system without wind generation
(computed) 1.161 10.191 0.230 5.05

Basic RBTS system and (53 × 0.035 = 1.85 MW)
wind generators at Mersing site 1.115 9.744 0.225 4.944

Basic RBTS system and (106 × 0.035 = 3.71 MW)
wind generators at Mersing site 0.987 7.357 0.220 4.486

Basic RBTS system and (53 × 0.035 MW) wind
generators at Kudat site 1.131 10.948 0.225 5.012

Basic RBTS system and (106 × 0.035 = 3.71 MW)
wind generators at Kudat site 1.128 10.018 0.236 4.779

Loss of Load Expectation (LOLE)/ LOLE (hour/year); Loss of Energy Expectation (LOEE)/ LOEE (MWh/year); Loss of
Load Frequency (LOLF)/ LOLF (occurrence/year); Loss of Load Duration (LOLD)/ LOLD (hour/occurrence).
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Further, it can be observed that this study was done with a small percentage of peak load reduction
at around 1% and a small number of wind turbines, to demonstrate the primary effect of wind energy
penetration from selected locations in Malaysia in the reliability of the generation system for the RBTS.

6. Conclusions

In this paper, analyses of the wind speed data characteristics and wind power potential assessment
at three given locations in Malaysia were done. In addition, this study tests the effects of the potential
wind power from different locations. An SMCS technique is used to show the effects of wind energy for
the RBTS test system by a set of reliability indices. The results reveal that the wind power connected
to the RBTS test system is only from two locations in Malaysia. Further, the reliability indices are
compared prior to and after the addition of the two farms to the considered system. The results
show that the reliability indices are slightly improved for RBTS, including wind power from both
locations, as suggested. Moreover, the wind resources at specific sites in Malaysia are more suitable for
small-scale standalone energy conversion systems and could also be hybrid energy systems.

Recommendations for future studies include extending the statistical analysis model used for
different sites in Malaysia to include more relevant factors for wind farms and evaluating their impact
on wind power potential for these sites, such as wind speeds at the installation site, types of wind
turbine offshore and onshore, and numbers of wind turbines installed, according to the size of the farm.
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Appendix A

Table A1. The RBTS generating unit ratings and reliability data.

Units No. Unit Size (MW) FOR MTTF (Hours) MTTR (Hours)

1 5 0.01 4380 45
2 5 0.01 4380 45
3 10 0.02 2190 45
4 20 0.02 3650 55
5 20 0.02 3650 55
6 20 0.02 3650 55
7 20 0.02 3650 55
8 20 0.03 1752 45
9 40 0.02 2920 60

10 40 0.03 1460 45
11 40 0.03 1460 45

Forced outage rate (FOR); Mean time to failure (MTTF); Mean time to repair (MTTR).
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Appendix B

Table A2. Wind power and energy density characteristics at heights of 3.5 m and 100 m in Kudat.

Processes 2019, 7, x FOR PEER REVIEW  23 of 26 

 

Appendix B 

Table B1. Wind power and energy density characteristics at heights of 3.5 m and 100 m in Kudat. 

A Height of 3.5 m A Height of 100 m 
Months/Year ⊽ k c PD (w/m2) Hours ED (kWh/m2) ⊽ k c PD (w/m2) Hours ED (kWh/m2) 

January 2.65 3.77 2.931 14.347 747 10.717 4.28 3.77 4.734 60.450 747 45.156 
February 2.94 4.00 3.244 19.217 675 12.972 4.75 4.00 5.239 80.946 675 54.639 

March 2.84 3.55 3.158 18.213 747 13.605 4.59 3.55 5.100 76.709 747 57.301 
April 2.31 2.87 2.594 10.905 723 7.884 3.73 2.87 4.190 45.957 723 33.227 
May 2.07 2.48 2.339 8.682 747 6.485 3.35 2.48 3.777 36.555 747 27.307 
June 2.05 1.99 2.314 10.142 723 7.333 3.31 1.99 3.738 42.753 723 30.911 
July 2.66 2.43 3.004 18.648 747 13.930 4.30 2.43 4.851 78.528 747 58.660 

August 2.27 2.12 2.562 12.922 747 9.653 3.66 2.12 4.137 54.406 747 40.641 
September 2.39 2.16 2.698 14.835 723 10.725 3.86 2.16 4.356 62.433 723 45.139 

October 2.74 2.86 3.077 17.015 747 12.710 4.43 2.86 4.969 76.777 747 57.353 
November 2.05 2.80 2.303 7.723 723 5.584 3.31 2.80 3.719 32.524 723 23.515 
December 2.43 3.27 2.708 11.772 747 8.794 3.92 3.27 4.373 49.574 747 37.032 

Annual 2.45 1.84 2.759 18.819 - 13.738 3.95 1.84 4.456 79.284 - 57.877 

  
Table A3. Wind power and energy density characteristics at height of 5.2 m and 100 m in Kuala Terengganu.
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