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Abstract: Pyrimidine-nucleoside phosphorylases (Py-NPases) have a significant potential to contribute
to the economic and ecological production of modified nucleosides. These can be produced via
pentose-1-phosphates, an interesting but mostly labile and expensive precursor. Thus far, no dynamic
model exists for the production process of pentose-1-phosphates, which involves the equilibrium
state of the Py-NPase catalyzed reversible reaction. Previously developed enzymological models are
based on the understanding of the structural principles of the enzyme and focus on the description of
initial rates only. The model generation is further complicated, as Py-NPases accept two substrates
which they convert to two products. To create a well-balanced model from accurate experimental
data, we utilized an improved high-throughput spectroscopic assay to monitor reactions over the
whole time course until equilibrium was reached. We examined the conversion of deoxythymidine
and phosphate to deoxyribose-1-phosphate and thymine by a thermophilic Py-NPase from Geobacillus
thermoglucosidasius. The developed process model described the reactant concentrations in excellent
agreement with the experimental data. Our model is built from ordinary differential equations and
structured in such a way that integration with other models is possible in the future. These could
be the kinetics of other enzymes for enzymatic cascade reactions or reactor descriptions to generate
integrated process models.

Keywords: enzymatic reaction; reversible reaction; dynamic modelling; pyrimidine-nucleoside
phosphorylase; spectroscopic assay; process kinetics; ODE model

1. Introduction

Pyrimidine-nucleoside phosphorylases (Py-NPases) are highly versatile enzymes used for the
production of pharmaceutically relevant nucleoside derivatives and pentose-1-phosphates. Generally,
nucleoside phosphorylases catalyze, in the presence of phosphate, the reversible conversion of
a nucleoside to the corresponding pentose-1-phosphate and nucleobase (Figure 1). Due to the
low yields of modified nucleosides or pentose-1-phosphates via conventional synthetic chemistry,
nucleoside phosphorylases have become attractive tools in their biocatalytic preparation [1–3]. Recently,
thermophilic Py-NPases have attracted increased interest, as they combine several favorable properties,
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such as long shelf life due to their thermal stability, an excellent tolerance towards harsh reaction
conditions, high turnover rates, and a broad substrate spectrum [4,5].
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Figure 1. Schematic and chemical illustration of an enzymatic nucleoside phosphorylation. (a) 
Schematic drawing of the proposed mechanics for an enzymatic nucleoside phosphorylation reaction 
as basis for the generation of the differential–dynamical model. Enzyme (E), nucleoside (N), and 
phosphate (P) react in a three-particle collision towards the enzyme complex (EC), which decays 
without other intermediates into enzyme, pentose-1-phosphate (S1P), and free nucleobase (B). Both 
reactions can occur in the other direction, as well; (b) chemical structures of an enzymatic 
phosphorylation using the example of the enzyme pyrimidine-nucleoside phosphorylase 
(Py-NPase; E) catalyzed reaction of the nucleoside deoxythymidine (N) and ortho-phosphate (P) to 
the free nucleobase thymine (B) and deoxyribose-1-phosphate (S1P). 

However, their industrial use is hampered by a lack of models which integrate the 
understanding of their behavior in enzymatic reactions over the full time course towards the 
reaction’s dynamic equilibrium. Previous research has focused on either: 1) Integrated processes, 
mainly with transglycosylation and/or product removal reactions, which renders modelling of the 
complete process unfeasible because of its complexity; or 2) Michaelis–Menten conditions, i.e., 
reactions in which one of the substrates (typically phosphate) is present in excess over the other 
substrate, and only initial rates are measured (reviewed in [6]). This is because the Michaelis–Menten 
assumptions are only fulfilled in the quasi-linear range of conversion at the very start of the 
enzymatic reaction. Only in this time frame one can observe a constant conversion rate. Invariably, 
this only allows for the investigation of the dependence of the initial rate of the reaction on the 
concentration of a substrate and does not permit the evaluation of the whole time-course [6].  

In industrial applications, the stoichiometric and quantitative conversion of substrates is highly 
anticipated. These requirements are only met when the reaction approaches its thermodynamic 
equilibrium, hence giving maximum product yield. Counteracting the accessibility of deoxyribose-1-
phosphate is the fact that the equilibrium for nucleoside phosphorylation reactions is strongly in 
favor of the substrates (Keq = 0.03–0.10 for pyrimidines [7,8], and Keq = 0.01–0.02 for purines [9,10]). To 
increase the concentration of desired products, it is therefore necessary to push the equilibrium, e.g., 
by increasing the phosphate concentration. Despite the clear need for a Py-NPase model describing 
those industrially relevant conditions, there has been no report of a suitable model so far. 

Models of ordinary differential equations (ODEs) derived from elementary reaction steps and 
from law of mass action kinetics (“differential–dynamical models”) present an attractive solution to 
many biotechnological problems. Their modularity allows for the combination of models of different 
scales, such as the progression of an enzyme reaction with a substrate feeding profile. Differential–
dynamical models have been used to describe, for example, enzymatic cellulose hydrolysis (reviewed 
in [11]), the production of enantiopure amines from a racemic mixture [12], the continuous 
production of lactobionic acid from lactose [13], or symmetric two-educts/one-product carboligations 
[14]. The rate laws of differential–dynamical models are usually derived from an underlying 
mechanical model. This enables chemical reaction engineering across different conditions and scales 
[15]. The ultimate promise of differential–dynamical models is the model-based design of dynamic 
experiments [16], which are favorable for biotechnological applications [17] and allow the in silico 
predictability of economic production processes [18], even for processes where the experimental 
information is scarce [19]. 

In this work, we present experimental data deduced from the reaction monitoring of small-scale 
Py-NPase reactions via a UV/Vis spectroscopy-based assay. Subsequently, we report the 

Figure 1. Schematic and chemical illustration of an enzymatic nucleoside phosphorylation.
(a) Schematic drawing of the proposed mechanics for an enzymatic nucleoside phosphorylation
reaction as basis for the generation of the differential–dynamical model. Enzyme (E), nucleoside
(N), and phosphate (P) react in a three-particle collision towards the enzyme complex (EC), which
decays without other intermediates into enzyme, pentose-1-phosphate (S1P), and free nucleobase
(B). Both reactions can occur in the other direction, as well; (b) chemical structures of an enzymatic
phosphorylation using the example of the enzyme pyrimidine-nucleoside phosphorylase (Py-NPase; E)
catalyzed reaction of the nucleoside deoxythymidine (N) and ortho-phosphate (P) to the free nucleobase
thymine (B) and deoxyribose-1-phosphate (S1P).

However, their industrial use is hampered by a lack of models which integrate the understanding
of their behavior in enzymatic reactions over the full time course towards the reaction’s dynamic
equilibrium. Previous research has focused on either: (1) Integrated processes, mainly with
transglycosylation and/or product removal reactions, which renders modelling of the complete
process unfeasible because of its complexity; or (2) Michaelis–Menten conditions, i.e., reactions in
which one of the substrates (typically phosphate) is present in excess over the other substrate, and
only initial rates are measured (reviewed in [6]). This is because the Michaelis–Menten assumptions
are only fulfilled in the quasi-linear range of conversion at the very start of the enzymatic reaction.
Only in this time frame one can observe a constant conversion rate. Invariably, this only allows for the
investigation of the dependence of the initial rate of the reaction on the concentration of a substrate
and does not permit the evaluation of the whole time-course [6].

In industrial applications, the stoichiometric and quantitative conversion of substrates is highly
anticipated. These requirements are only met when the reaction approaches its thermodynamic equilibrium,
hence giving maximum product yield. Counteracting the accessibility of deoxyribose-1-phosphate is the
fact that the equilibrium for nucleoside phosphorylation reactions is strongly in favor of the substrates
(Keq = 0.03–0.10 for pyrimidines [7,8], and Keq = 0.01–0.02 for purines [9,10]). To increase the concentration
of desired products, it is therefore necessary to push the equilibrium, e.g., by increasing the phosphate
concentration. Despite the clear need for a Py-NPase model describing those industrially relevant
conditions, there has been no report of a suitable model so far.

Models of ordinary differential equations (ODEs) derived from elementary reaction steps and from
law of mass action kinetics (“differential–dynamical models”) present an attractive solution to many
biotechnological problems. Their modularity allows for the combination of models of different scales,
such as the progression of an enzyme reaction with a substrate feeding profile. Differential–dynamical
models have been used to describe, for example, enzymatic cellulose hydrolysis (reviewed in [11]),
the production of enantiopure amines from a racemic mixture [12], the continuous production of
lactobionic acid from lactose [13], or symmetric two-educts/one-product carboligations [14]. The rate
laws of differential–dynamical models are usually derived from an underlying mechanical model. This
enables chemical reaction engineering across different conditions and scales [15]. The ultimate promise
of differential–dynamical models is the model-based design of dynamic experiments [16], which are
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favorable for biotechnological applications [17] and allow the in silico predictability of economic
production processes [18], even for processes where the experimental information is scarce [19].

In this work, we present experimental data deduced from the reaction monitoring of
small-scale Py-NPase reactions via a UV/Vis spectroscopy-based assay. Subsequently, we report
the development of a differential–dynamical model for the Py-NPase-mediated biocatalytic preparation
of deoxyribose-1-phosphate from thymidine.

2. Materials and Methods

2.1. Materials

All chemicals used in this study were of analytical grade and used without further purification.
The water used in all solutions was deionized to 18.2 MΩ·cm with a water purification system from
Werner. Deoxythymidine was purchased from Carbosynth. Thymine and phosphate (KH2PO4) were
purchased from Sigma–Aldrich. Tris (2-Amino-2-(hydroxymethyl)propane-1,3-diol) was of buffer
grade and purchased from Carl Roth.

Tris buffer was prepared as a 50 mM solution, and the pH was adjusted to 9.0 using 1 M HCl.
Phosphate was prepared as a 1 M stock solution in 50 mM Tris buffer, and the pH was subsequently
adjusted to 9.0 using 1 M NaOH. Deoxythymidine, and thymine stock solutions were prepared in
different concentrations (ranging from 1 to 10 mM) by adding 50 mM of Tris buffer (of pH 9.0; the
final pH of the prepared solution was found to be 9.0 as well) and treated with ultrasound to facilitate
full dissolution.

The enzyme under investigation was a Py-NPase (EC 2.4.2.2, NCBI sequence accession number
WP_041270053.1) from Geobacillus thermoglucosidasius (DSM No.: 2542). After IPTG-induced recombinant
overexpression, the N-terminally His6-tagged Py-NPase was purified from E. coli BL21 using Ni-NTA
affinity chromatography, as described previously [20]. Purity was determined by SDS-PAGE analysis
and found to be >90%. Subsequently, the enzyme was dialyzed against 2 mM potassium phosphate
buffer, pH 7.0 (measured at 25 ◦C), and stored until use at +4 ◦C at a concentration of 3.69 mg/mL,
as judged by NanoDrop analysis (calculated with 0.48 absorption units (AU) at 280 nm = 1 mg/mL).
One unit (1 U) of enzyme activity was defined as the conversion of 1 µmol of deoxythymidine per
minute in a 1 mL assay mixture of 2 mM deoxythymidine and 75 mM phosphate in 50 mM Tris buffer
at a reaction temperature of 40 ◦C and at pH = 9.0 (measured at 25 ◦C), as determined by the method
described later. The molecular weight of the enzyme was 47.6 kDa, as calculated from its amino acid
sequence. The used enzyme preparation had an activity of approximately 0.46 U/mg.

UV/Vis transparent 96-well plates (UV-STAR F-Bottom #655801, purchased from Greiner Bio-One)
were used to host the solutions for UV/Vis spectroscopy.

2.2. Experimental

Phosphate and deoxythymidine concentrations were varied in the range of 2–80 mM and 0.8–5 mM,
respectively, in the assay mixture. The final enzyme concentration in the assay mixture was in the
range of 12.5–50 µg/mL. This corresponds to an enzyme monomer concentration of 0.26–1.05 µM, as
calculated from its molecular weight.

Reaction mixtures were prepared in 1.5 mL microreaction tubes. Appropriate amounts of
phosphate and deoxythymidine stock solutions were added to an appropriate amount of the 50 mM
Tris solution. All components were mixed by vortexing, and the microreaction tube preheated for at
least 5 min in an Eppendorf ThermoStat Plus. Subsequently, an appropriate amount of enzyme stock
solution was added to the tube, which was mixed by slight inversions. At given timepoints, a 60 µL
sample was removed from the microreaction tube and injected immediately into 940 µL of a 0.2 M
NaOH solution in a separate tube to stop the reaction and to dilute the sample simultaneously. After
vortexing, 300 µL of the diluted mixture was transferred into UV/Vis transparent 96-well plates. When
the concentration of UV/Vis absorbing compound, i.e., deoxythymidine or thymine, was varied, the
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sampling volume was adjusted as appropriate to give a constant final concentration of approximately
60 µM UV/Vis absorbing compounds in the alkaline dilutions to generate a UV/Vis absorption in
the linear range, i.e., 0–1 absorption units (AU) at 260 nm. The ratio of substrate and product was
determined by fitting the spectral 300/277 nm ratio (see below).

UV/Vis absorption spectra were recorded with a PowerWave HT or Synergy MX (BioTek Instruments,
Bad Friedrichshall, Germany) in the range of 250–350 nm in 1 nm steps. Spectra were corrected for
blanks, i.e., a 0.2 M NaOH solution, recorded within each set of measurements.

2.3. Spectroscopic Determination of Deoxythymidine/Thymine Ratio

The deoxythymidine/thymine ratio was determined with a spectrophotometric assay, modified
from [21]. In an extension to previous versions of this assay, the spectra were normalized to the
isosbestic point of deoxythymidine-thymine mixtures as suggested by [22], which we determined to be
at 277 nm. This increased robustness against random dilution errors [23], as they commonly appear in
high-throughput experimentation.

Briefly, the spectrum was first blank-corrected by subtracting a spectrum of 0.2 M NaOH, and
was subsequently divided by its absorption at the isosbestic point to normalize the spectrum at
this position to “1”. Then, the normalized absorption at 300 nm was considered as a proxy of the
deoxythymidine/thymine ratio.

Thus, the measured absorption ratio Abs300/277 = Abs300/Abs277 was fitted by a linear relationship
without intercept:

Abs300/277(experimental) = x×Abs300/277(deoxythymidine) + (1− x)×
Abs300/277(thymine),

(1)

where x is the mole fraction of deoxythymidine in the mixture. From pure compound spectra,
we determined Abs300/277(deoxythymidine) = 0.005115 and Abs300/277(thymine) = 0.772973.

The algorithms and data treatment functions were implemented in Python 2.7 [24] and Python
3.6 [25]. A snapshot of the software code and the data set used for this work is openly available on
zenodo.org and in the Supplementary Material [26–29].

2.4. Modelling of the Py-NPase Catalyzed Reaction

The model was implemented as a system of ordinary differential equations in SymPy [30].
The system of equations was wrapped by python-sundials [31] and subsequently integrated by
SUNDIALS-CVODE [32]. Parameter estimation was conducted via the lmfit interface [33]. The
experimental data handling was performed by in-house Python software, which is equally available
from the sources mentioned above.

2.4.1. Cost Functions

In the parameter estimation of the dynamic system (i.e., time courses of the reactions),
a weighted-least squares cost function Z was used:

Z(k) =
∑Q

i=1

1
Var(xi)

× (c(yi) − c(xi))
2 , (2)

where k is the parameter set used for calculation of the modelled concentrations; Var(xi) is the variance
of the i-th data point; c(yi) is the modelled concentration of nucleoside for i-th data point; c(xi)

is the nucleoside concentration as calculated from the experimentally determined mole fraction of
deoxythymidine for i-th data point, multiplied with c0(xi)

, i.e., the designed nucleoside concentration
at t = 0; and Q is the total number of data points.
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For the determination of weights, the 95% confidence interval of data points was set to 5 percentage
points of the determined mole fraction as judged by inspection of calibration plots (Figure S1):

Var(xi) =

( √
ε

z0.975
× xi

)
× c0(xi)

, (3)

where ε = 0.05 gives the absolute error of the analysis method, and z0.975 = 1.96 gives the standard
score to include 95% of values.

2.4.2. Definition of the Differential–Dynamical Model

A schematic visualization of the mechanical model is shown in Figure 1a, with specification into
its chemical meaning in Figure 1b. The underlying mechanics of our differential–dynamical model at
the process scale can also be represented indirectly by Scheme 1:
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Scheme 1. Reaction equation of an enzymatic nucleoside phosphorylation. Enzyme (E), nucleoside
(N), phosphate (P), enzyme complex (EC), pentose-1-phosphate (S1P), free nucleobase (B), reaction rate
constants (k1, k−1, k2, k−2) as defined by Equations (7)–(10).

All steps indicated in the representation of the mechanics are considered elementary step reactions,
and, applying law of mass action, the reaction rate equations are derived as the following system of
ordinary differential equations:

d[N]

dt
=

d[P]
dt

= −r1 + r−1 (4)

d[E]
dt

= −
d[EC]

dt
= −r1 + r−1 + r2 − r−2 (5)

d[S1P]
dt

=
d[B]
dt

= +r2 − r−2 (6)

where [N] is the concentration of nucleoside (i.e., deoxythymidine), [P] is the concentration of phosphate,
[E] is the concentration of free enzyme, [EC] is the concentration of enzyme complex, [S1P] is the
concentration of pentose-1-phosphate (i.e., deoxyribose-1-phosphate), and [B] is the concentration of
nucleobase (i.e., thymine), with the following rates:

r1 = k1 × [E]×[ N] × [P] (7)

r−1 = k−1 × [EC] (8)

r2 = k2 × [EC] (9)

r−2 = k−2 × [E]×[ S1P] × [B] (10)

3. Results

3.1. The Absorption Spectrum of Thymine but Not Deoxythymidine Changes at Alkaline Conditions

The evaluation of enzymatic deoxyribose-1-phosphate forming reactions requires the fast detection
of substrates and products. The detection of nucleoside and its corresponding nucleobase by HPLC,
and thus the indirect determination of pentose-1-phosphate, has been the standard method to date
(e.g., [8,34]). However, it is very time-consuming and laborious and therefore not suitable for use in
high-throughput screenings.
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We intended to measure the deoxythymidine/thymine ratio by following wavelengths at regions
where thymine absorbs at high pH, but deoxythymidine does not, based on an early report [21], and
the more recent employment of an UV/Vis assay based on this principle [35]. These are wavelengths
>290 nm [36–38]. To correct for varying path lengths which are commonly observed in high-throughput
environments based on microtiter plates, and, thus, to make the assay more robust, we normalized
the spectra to their isosbestic point, i.e., the point where no change in absorption is observed for any
mixture of deoxythymidine and thymine.

To verify this concept experimentally, spectra of pure deoxythymidine, thymine, and mixtures of
both were recorded after dilution in NaOH (Figure 2). We then calculated the composition of mixtures
from the Abs300/277 ratios as described in Materials and Methods. The composition of the full range of
mixtures (0–100%, in 10% steps) could be estimated with high accuracy, and the absolute errors between
the predicted and actual composition of the mixtures were approximately constant (Figure S1). With this
high-throughput tool in hand, we pursued our investigation of a Py-NPase-catalyzed phosphorylation
reaction and set out to describe our experimental data in a suitable model.
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Absorption spectra of deoxythymidine and thymine were recorded as described in Materials and
Methods in an alkaline dilution at pH 13. The isosbestic point of deoxythymidine/thymine mixtures at
277 nm and the point for determination of the deoxythymidine/thymine ratio at 300 nm are indicated
on the x axis. (a) The spectra of pure deoxythmidine (red curve) and pure thymine (blue curve) differ
significantly when measured in an alkaline dilution. The Abs300/277 ratios of pure deoxythymidine
(Abs300/277(deoxythymidine) ≈ 0.77) and pure thymine (Abs300/277(thymine) ≈ 0.01) are indicated on
the y axis. The exact values are given in Materials and Methods. Both spectra are shown normalized to
the isosbestic point at 277 nm; (b) comparison of absorption spectra of pure deoxythmidine, thymine,
and indicated mixtures, measured in an alkaline dilution. Abs300/277 increases linearly with increasing
thymine mole fraction (given as percentage; from red to blue).

3.2. Model and Experimental Data Are in Excellent Agreement

Py-NPase-catalyzed phosphorylic cleavage reactions are reversible reactions proceeding towards
a dynamic equilibrium. Therefore, the reaction trajectory until equilibrium does not only depend
on physical parameters, like temperature and pressure, but also on enzyme concentration, the
concentration of substrates, or the presence of products. In order to investigate this enzymatic
reaction under biotechnologically relevant conditions, we performed 48 experiments with varying
concentrations of enzyme, nucleoside, and phosphate (see Table S1). For our experimental conditions,
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i.e., reaction times of 24 h at pH 9.0 and 40 ◦C, we ensured that the enzyme remained active and
deoxyribose-1-phosphate did not degradate (see Figure S2).

To describe the recorded data, a differential–dynamical model was set up. This model allows for
the simulation of the concentrations of substrates, products, and enzyme forms over an arbitrarily long
time-course. The enzyme reaction can reach a dynamic equilibrium and assumes equal contribution of
both substrates to reaction rates and level of equilibrium, as dictated by the underlying law of mass
action. We conducted local optimization of the parameters k = (k1, k−1, k2, k−2)T (given in unitless
numbers for simplicity and in transposed vector form for brevity) to find a parameter set which
described the data well. The parameter set we found to perform best on our experimental data is k =

(0.42, 0.17, 0.31, 7.6)T. The explicit form (k1 = 0.42 (mM)−2 min−1; k−1 = 0.17 min−1; k2 = 0.31 min−1;
k−2 = 7.6 (mM)−2 min−1) will be omitted from here on for reasons of brevity.

In the tested range of enzyme and substrate concentrations, we found an excellent agreement
between experimental data and our model with this parameter set (Figure 3). The predictions of our
models were consistent and evenly distributed around the experimental data points over the whole
time course of 24 h (Figures S3 and S4). We could not detect any particular trend of prediction errors
towards phosphate, deoxythymidine, or enzyme concentrations. Thus, we conclude that our model is
well balanced in the range of experimental conditions described here.
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model for the forward reaction only, and all parameter sets describe the forward reaction reasonably 
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Figure 3. Exemplary fits for experimental data at low and high phosphate concentrations.
(a) Experimental data and model predictions for conditions with low phosphate-to-deoxythymidine
ratio (2 mM : 5 mM), and varying enzyme concentrations (red: High enzyme concentration, Experiment
#13; blue: Low enzyme concentration, Experiment #12). Though the speed of reaction differs in
the beginning, both reactions reach the same equilibrium during the time course of the experiment.
Error bars represent 95% confidence intervals for the experimentally determined concentrations;
(b) experimental data and model predictions for conditions with high phosphate-to-deoxythymidine
ratio (80 mM : 5 mM), and varying enzyme concentrations (red: High enzyme concentration, Experiment
#21; blue: low enzyme concentration, Experiment #20). The two conditions differ in their speed and
low enzyme concentration is not sufficient to reach equilibrium. Error bars represent 95% confidence
intervals for the experimentally determined concentrations. See Table S1 for experimental condition
numbers as given in this figure legend (“Experiment #”).

3.3. Multiple Parameter Sets Can Be Used for the Description of the Phosphorolysis Reaction

We performed global optimizations with basin-hop and differential evolution algorithms, as well
as large-scale local optimizations from widely distributed initial parameter set guesses to find the
best global parameter set. We found multiple parameter sets to describe the experimental dataset
with almost similar accuracy. Except for k2, which is almost constant, some alternative parameter
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sets, e.g., k* = (0.18, 0.12, 0.35, 5.5)T or k** = (1.4, 0.94, 0.28, 4.6)T, differ drastically from the optimal
parameter set k = (0.42, 0.17, 0.31, 7.6)T. However, the cost functions are insignificantly different, with
Z(k) = 2.9 × 103, Z(k*) = 3.0 × 103, and Z(k**) = 3.2 × 103 (all values in (mM)2). In practice, this can
be attributed to the lacking difference in goodness-of-fit for comparison of simulations for k and the
alternative parameter sets, as visualized in Figure 4.
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Figure 4. Non-identifiability of parameter sets from given experimental data. Experimental data
(blue squares) and simulation of parameter sets k, k*, and k**, for a given experimental condition. The
modelled results from different parameter sets are almost indiscernible, and, therefore, no decision can
be taken on which parameter set is correct.

As the forward reaction is described reasonably well with multiple parameter sets, we cannot
decide for any parameter set from our experimental data. This is caused by low sensitivities of the
uncertain parameters in regard to our experimental data. As the scope of this work is fulfilled by
a model for the forward reaction only, and all parameter sets describe the forward reaction reasonably
well, we chose to communicate the parameter set k with lowest value of cost function Z.

3.4. The Value of the Thermodynamic Equilibrium Constant Is Constant across Methods of Determination

Finally, we investigated the behavior of the thermodynamic equilibrium constant across all
experimental conditions. The thermodynamic equilibrium is approached when there is no observable
change in the concentration of the enzyme complex, [EC]:

d[EC]

dt
= 0 . (11)

For our model, this yields two forms to express the equilibrium constant: Either (1) by considering
the concentrations of substrates and products at equilibrium:

Keq =
Beq × S1Peq

Neq × Peq
, (12)

or (2) by considering the parameter values:

Keq =
k1 × k2

k−1 × k−2
. (13)

Estimating the equilibrium constant from the values found in the parameter estimation, one
obtains Keq = 0.10. The value of the equilibrium constant is approximately the same for alternative
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parameter sets, e.g., k* and k**, emphasizing the principal agreement between multiple parameter sets
with the given experimental data.

Similarly, it is possible to derive the equilibrium constant from the equilibrium concentrations
of products and substrates, giving a median value of Keq = 0.10, similar to the value calculated from
kinetic parameters (Figure 5).
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Figure 5. Equilibrium constant determined at different phosphate concentrations. Equilibrium
constants of the 48 experiments under varying conditions (see Table S1) as determined from the
deoxythymidine/thymine ratios of the 24 h data point as described in Materials and Methods.
For concentrations of >2mM phosphate, the experimentally determined values from the 24 h data
points are evenly distributed around the value calculated from the parameter estimation (Keq = 0.10).
For experiments with lower phosphate concentrations (dark purple circles), the equilibrium constant is
significantly off the calculated value from the parameter sets. The median of all experiments is equal
to the value calculated from the parameter estimation. Colored circles: Keq calculated from the 24 h
data points, purple to yellow: Increasing initial phosphate concentration; blue dashed line: Keq = 0.10,
as calculated from the parameter estimation.

4. Discussion

To the best of our knowledge, this study presents the first ODE model of an enzymatic two-substrate
two-product process. For biotechnological production processes, it is desired to reach equilibrium
state conditions to maximize the product yield. For the description of such processes, ODE models
are required. In this contribution, we developed such a differential–dynamical model, which places
a process perspective onto the enzymatic nucleoside phosphorylation reaction, and which is, regardless
of its simplicity, in excellent agreement with our experimental data.

4.1. Model Structure

Contrary to Cleland’s interpretation of multi-substrate/multi-product enzyme reactions [39–41],
which considers multiple enzyme complex intermediates, we modeled the production process as
consecutive law of mass actions, and only included one enzyme complex intermediate. Further,
we explicitly decided to simplify a probable ordered binding mechanism [10] towards a three-particle
collision. In our eyes, these simplifications are justified by the excellent agreement between the
experimental data and our model (Figure 3 and Figure S3).

Further elegance of our model is found in its pluggability of equations, which allows for the easy
introduction or decommissioning of individual reaction steps. Further, it does not need to rely on
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steady-state assumptions, although it is easy to integrate these. Finally, it is easier to provide explicit
and precise description of, e.g., inhibitory actions into mechanistic models.

To date, our model does not include terms for the decay of enzyme activity or the degradation of any
chemical species. We base these decisions on reports of the exceptional stability in alkaline conditions
of deoxyribose-1-phosphate [34] and ribose-1-phosphate [42], as well as on the report of stable enzyme
activity over days for thermophilic pyrimidine- [20] and purine-nucleoside phosphorylases [43] at
even higher temperatures than those used in this study.

4.2. Plausibility of Our Results

To check the correctness of our results, we compared the equilibrium constant (1) from literature
and (2) derived from our parameter sets or (3) determined by the equilibrium concentrations of the
latest data points. As shown in the Results section, (2) and (3) accord with each other. The values
for the equilibrium constant of the Py-NPase catalyzed reaction can be approximated by considering
examples from literature [9,10,44,45], being in the similar order of magnitude for related reactions but
differing in temperature, buffers, and exact specifications of base and sugar moiety. For a reaction with
similar substrates at not too distant experimental conditions, the equilibrium constant was found to be
Keq = 0.102 at 37 ◦C and pH 7.4 [7]. This equals the equilibrium constant determined in this work.

Searching for experimental conditions that could discriminate between multiple parameter sets,
we found major differences between the parameter sets to be only visible in kinetic study of the
backward reaction. Exemplarily, parameter set k** would show significantly faster conversion of
deoxyribose-1-phosphate than parameter set k, as k−1 is significantly larger. The parameters k−1

and k2 can be understood to correlate with the kcat values of the phosphorolysis and synthesis
reaction, respectively. Previous work [9] included the progress curve of one phosphorolysis and the
corresponding synthesis reaction, and the initial reaction rates can be estimated from the graph given
there, being of approximately similar speed. This argument favors k over k**, but for k and k* the
situation is less clear. Further research needs to be conducted to resolve this ambiguity.

4.3. Limitations and Domain of Validity of the Model

The stability of deoxyribose-1-phosphate and enzyme activity over the assay duration is
key to correct conclusions from the experimental data. In addition to reports from literature on
pentose-1-phosphate and enzyme stability [20,34,42,43], we performed a control experiment via
a coupled read-out, providing evidence for fulfilling these preconditions (Figure S2).

This also clearly points out the domain of validity of the model: In its current form, it applies only
in the direction of phosphorolytic cleavage at pH 9.0 and 40 ◦C for time frames up to 24 h. Outside
of this region, one should act on the assumption that corrections will be necessary not only for the
temperature- and pH-dependence of the kinetic constants but also in the model structure regarding
enzyme inactivation and reactant degradation, especially of deoxyribose-1-phosphate (Figure S3).

4.4. Application of Our Results to Production Processes

In the perspective of process control, our model has the potential to describe reactions in
a time-resolved fashion, integrating knowledge which was previously not put into equations. The
literature is rich in references of successful production processes with nucleoside phosphorylases,
but these are typically focused on transglycosylations [35,46–48]. These processes are coupling two
nucleoside-phosphorylase reactions, using pentose-1-phosphate as an intermediate in situ; however,
for these processes, a prediction of time-resolved process performance was usually not undertaken.

A major advantage of a dynamic model is the ability to optimize processes before or during the run
time. Exemplarily, one might want to minimize the amount of consumed enzyme for a batch-process
with fixed run time. Our model allows for the calculation of the final yield and required enzyme
amount for a fixed run-time, given constraints like, e.g., the solubility of substrate or limiting excess of
phosphate (which, for the synthesis of pentose-1-phosphates, is typically used in 1- to 2.5-fold excess



Processes 2019, 7, 380 11 of 14

to ease down-stream processing). Similarly, one can calculate the run-time required to reach, e.g., 90%
of equilibrium, given an amount of enzyme, substrate, and phosphate. These predictions are the basis
of a cost-efficient production.

5. Conclusions and Outlook

The determination of the deoxythymidine/thymine ratios with UV/Vis spectroscopy is a fast and
cost-effective method for assaying Py-NPase reactions. With this method in hand, we were able to
set-up a model capable of describing the time course of Py-NPase reactions for the biotechnological
production of deoxyribose-1-phosphate under diverse experimental conditions.

From this, we strive for the predictability of multi-step enzymatic reactions to produce nucleic
acid derivatives. Our results pave the way for a significant improvement of production processes
towards the synthesis of pharmaceutically interesting nucleosides.

Whenever available, time-resolved information on reaction progress can be used to parametrize
the presented model structure. We believe that dynamic modelling will enable efficient process
control and reaction engineering, especially when fully parametrized differential–dynamical models
for nucleoside phosphorylation reactions are shared within the community.

Especially in multi-enzyme reactions, it will be necessary to integrate terms for undesired
reactions, e.g., for product degradation or enzyme inactivation. Our model structure allows for an
easy integration of additional terms (“coupling of models”). This would be much less feasible for
traditional representations of enzyme kinetics, e.g., in Michaelis–Menten or Cleland notation.

After all, more studies on equilibrium constants and the relationship of kinetic rates at varying
experimental conditions, e.g., temperatures or pH values, will be necessary to elucidate the mechanisms
of this enzymatically catalyzed reaction further. Dynamic experiments, i.e., varying, for example,
the temperature or concentration of reactants, can be next steps for the evaluation and refinement of
our results.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/7/6/380/s1
and https://doi.org/10.5281/zenodo.3243519, Figure S1: Further mixtures of deoxythymidine/thymine, and
“predicted vs actual” plot, Table S1: Experimental conditions in this study, Figure S2: Degradation progress of
deoxyribose-1-phosphate at elevated temperatures, Figure S3: Fits of all experiments, Figure S4: Comparison of
inter-day controls.
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