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Abstract: Differential Evolution (DE) is one of the prevailing search techniques in the present era
to solve global optimization problems. However, it shows weakness in performing a localized
search, since it is based on mutation strategies that take large steps while searching a local area.
Thus, DE is not a good option for solving local optimization problems. On the other hand, there are
traditional local search (LS) methods, such as Steepest Decent and Davidon–Fletcher–Powell (DFP)
that are good at local searching, but poor in searching global regions. Hence, motivated by the short
comings of existing search techniques, we propose a hybrid algorithm of a DE version, reflected
adaptive differential evolution with two external archives (RJADE/TA) with DFP to benefit from both
search techniques and to alleviate their search disadvantages. In the novel hybrid design, the initial
population is explored by global optimizer, RJADE/TA, and then a few comparatively best solutions
are shifted to the archive and refined there by DFP. Thus, both kinds of searches, global and local,
are incorporated alternatively. Furthermore, a population minimization approach is also proposed.
At each call of DFP, the population is decreased. The algorithm starts with a maximum population
and ends up with a minimum. The proposed technique was tested on a test suite of 28 complex
functions selected from literature to evaluate its merit. The results achieved demonstrate that DE
complemented with LS can further enhance the performance of RJADE/TA.

Keywords: optimization; evolutionary computation; population minimization; hybridization; local
search; global search; adaptive differential evolution; external archives; metaheuristics

1. Introduction

Nonlinear unconstrained optimization is an active research area, since many real-life
challenges/problems can be modeled as a continuous nonlinear optimization problem [1]. To deal
with this kind of optimization problems, various nature-inspired population based search mechanisms
have been developed in the past [2]. A few of those are Differential Evolution (DE) [3,4], Evolution
Strategies (ES) [2,5], Partical Swarm Optimization (PSO) [6–9], Ant Colony Optimization (ACO) [10–13],
Bacterial Foraging Optimization (BFO) [14,15], Genetic Algorithm (GA) [16–18], Genetic Programming
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(GP) [2,19–21], Cuckoo Search (CS) [22,23], Estimation of Distribution Algorithm (EDA) [24–28] and
Grey Wolf Optimization (GWO) [29,30].

DE does not need specific information about the complicated problem at hand [31]. That is
why DE is implemented to solve a wide variety of optimization problems in the past two
decades [30,32–34]. DE has merits over PSO, GA, ES and ACO, as it depends upon few control
parameters. Its implementation is very easy and user friendly, too [2]. Due to these advantages,
we selected DE to perform global search in the suggested hybrid design. In addition, because of its
easy nature, DE is implemented widely [35–42] on practical optimization problems [35–42]. However,
its convergence to known optima is not guaranteed [2,31,43]. Stagnation of DE is another weakness
identified in various studies [31].

Traditional search approaches, such as Nelder–Mead algorithm, Steepest Descent and DFP [44]
may be hybridized with DE to improve its search capability. Implementing LS into a global search
for enhancing the solution quality is called Memetic Algorithms (MAs) [31,45]. Some of the recent
MAs can be found in [1,31]. Very recently, Broyden–Fletcher–Goldfarb–Shanan LS was merged with
an adaptive DE version, JADE [46], which produced the MA, Hybridization of Adaptive Differential
Evolution with an Expensive Local Search Method [47]. In the majority of the established designs, LS is
implemented to the overall best solutions, while in our design it is applied to the migrated elements of
the archive. In addition, the population is adaptively decreased.

In this work, we propose a hybrid algorithm that combines DFP [44,48,49] with a recently
developed algorithm, RJADE/TA [50], to enhance RJADE/TA’s performance in local regions. The main
idea is to operate DFP on the elements that are shifted to archive and record the information from
both solutions, the previously brought forward and the new potential solutions to discourage the
chance of losing the globally best solution. For this purpose, firstly, DFP is implemented to the
archived information. Secondly, a decreasing population mechanism is suggested. The new algorithm
is denoted by RJADE/TA-ADP-LS.

The structure of this work is as follows. Section 2 presents primary DE, DFP, and RJADE/TA
methods. Section 3 describes the literature review. In Section 4, the suggested hybrid algorithm is
outlined. Section 5 is devoted to the validation of results achieved by RJADE/TA-ADP-LS. At the end,
the conclusions are summarized in Section 6.

2. Primary DE, DFP, and RJADE/TA

We reviewed in detail traditional DE and JADE in our previous works [47,50]. Here, we briefly
review primary DE, DFP and RJADE/TA for ready reference.

2.1. Primary DE

DE [3,4] starts with a random population in the given search region. After initialization, a mutation
strategy, where three different individuals from population are randomly selected and the scaled
difference of the two individuals to the third one, target vector is added to produce a mutant vector.
Following mutation, the mutant and the target vectors are combined through a crossover operator to
produce a trial vector. At last, the target and trial vectors are compared based on a fitness function to
select the better one for the next generation (see Lines 7–20 of Algorithm 1).
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Algorithm 1 Outlines of RJADE/TA Procedure.

1: To form the primary population Pp produce N[pop] vectors uniformly and randomly,

w{y}
[j,s1]

, w{y}
[j,s2]

, . . . , w[y]
[j,s

N[pop] ]
;

2: M[ f irst] = M[sec] = ∅;
3: Initialize λCR = λF = 0.5; p = 5%; c = 0.1;
4: Set SCR = SF = ∅;
5: Evaluate Pp;
6: while FEs < MaxFEs do

7: Fj = rand(λF, 0.1);
8: Randomly sample w[p,y]

(best) in 100p% pop;

9: Choose w{y}
[i,s1]
6= w{y}

[i,s] in Pp;

10: Choose w̃{y}
[i,s2]
6= w{y}

[i,s2]
in Pp ∪M[ f irst] do random selection;

11: Produce the mutant vector w{y}
[i,mut] as w{y}

[i,mut] = w{y}
[i,s] + Fj(w

{p,y}
(best) −w{y}

[i,s]) + Fj(w
{y}
[i,s1]
− w̃{y}

[i,s2]
);

12: Produce the trial vector q{y}
[i,j] as follows.

13: for i = 1 to n do

14: if i < irand or rand(0, 1) < CRj then

15: q{y}
[i,j] = w{y}

[i,mutj ]
;

16: else

17: q{y}
[i,j] = w{y}

[i,sj ]
;

18: end if
19: end for
20: Best selection {w{y}

[i,s] , q{y}
[i,s]};

21: if q{y}
[i,s] is the best then

22: w{y}
[i,s] → M[ f irst], CRj → SCR, Fj → SF;

23: end if
24: If size of M[ f irst] > N[pop], delete extra solutions from M[ f irst] randomly;
25: Update M[sec] as follows.
26: if y = κ then

27: w{y}
[j,best] → M[sec];

28: Pp −w{y}
[j,best];

29: Centroid calculation→ w{y}
[j,c] =

1
N[pop]−1 ∑N[pop]

i=2 w{y}
[j,c];

30: Reflection mechanism→ w{y}
[j,r] = w{y}

[j,c] + (w{y}
[j,c] −w{y}

[j,best]);
31: end if
32: λCR = (1− c) · λCR + c ·meanA(SCR);
33: λF = (1− c) · λF + c ·meanL(SF);
34: end while
35: Result: The best solution w{y}

(best) corresponding to minimum function f (w) value from PpUM[sec]

in the optimization.
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2.2. Reflected Adaptive Differential Evolution with Two External Archives (RJADE/TA)

RJADE/TA [50] is an adaptive DE variant. Its main idea is to archive comparatively best solutions
of the population at regular interval of optimization process and reflect the overall poor solutions.
RJADE/TA inserts the following techniques in JADE. The techniques are presented in Table 1.

Table 1. Algorithmic parameters.

M[ f irst] First archive M[Sec] Second archive
Pp Primary population N[pop] Population size

FEs Function evaluations MaxFEs Maximum function evaluations
λ FEs of RJADE/TA κ Gap between two successive updates of M[sec]

λCR Crossover probability λF Mutation scaling factor
SCR Set of successful crossover probabilities SF Set of successful mutation factors
w No. of iterations of DFP r Number of migrated solutions to M[sec]

w{y}
[j,new]

jth New candidate/solution at iteration y w{y}
[j,best] jth Ever best candidate/solution at iteration y

To prevent premature convergence and stagnation, the best solution, w{y}
[j,best] is replaced by its

reflection in RJADE/TA and is then shifted to the second archive M[sec].
The reflected solution replaces w{y}

[j,best] in the population and the ever best candidate w{y}
[j,best]

by itself is migrated to the second archive M[sec]. RJADE/TA maintains two archives, termed as
M[ f irst] and M[sec] for convenience. After half of available resources are utilized (MaxFEs), the first
archive update of the second archive, M[sec], is made. Afterwards, M[sec] is updated adaptively with a
continuing intermission of generations (see Algorithm 1).

The overall best candidates are transferred to M[sec], whereas M[ f irst] records the recently explored
poor solutions. The size of M[ f irst] is fixed, equal to population size N[pop], while the size of M[sec] may
exceed N[pop]. As M[sec] keeps information of all best solutions found, no solution is deleted from it.
M[sec] records only one solution of the current iteration, it may be a child or a parent, whereas M[ f irst]

makes a history of more than one inferior “parent solutions” only. M[ f irst] is updated at every iteration
and M[sec], initialized as ∅, is updated with a gap of κ iterations adaptively. The recorded history
of M[ f irst] is utilized in reproduction later on. In contrast, in M[sec], the recorded best individual is
reflected with a new solution, which is then sent to the population. Once a candidate solution is posted
to M[sec], it remains passive during the whole optimization. When the search procedures are terminated,
then the recoded information contributes towards the selection of the best candidate solution.

2.3. Davidon–Fletcher–Powell (DFP) Method

The DFP method is a variable metric method, which was first proposed by Davidon [51] and then
modified by Powell and Fletcher [52]. It belongs to the class of gradient dependent LS methods. If a
right line search is used in DFP method, it will assure convergence (minimization) [49]. It calculates
the difference between the old and new points, as given in Equation (1). Then, it finds the difference of
the gradients at these points as calculated in Equation (2).

t{w} = w{y}
[j+1] −w[j] (1)

t{g} = ∇ f (w[j+1])−∇ f (w[j]). (2)

It then updates the Hessian matrix H as presented in Equation (3). Afterwards, it locates
the optimal search direction s[j] with the help of the Hessian matrix information as calculated in
Equation (4). Finally, the output solution w[j+1] is computed by Equation (5), where α[j] is calculated
by a line search method; golden section search method is used in this work.

H[j+1] = H[j] +
(t
′
{w}t{w})

t′{w}t{g}
−

(H[j]t
′
{g}t{g}H

[j])

t{g}H[j]t′{g}
(3)
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s[j] = −H[j]∇ f (w[j]) (4)

w[j+1] = w[j] + α[j]s[j] (5)

3. Related Work

To fix the above-mentioned weaknesses of DE, many researchers merged various LS techniques
in DE. Nelder–Mead LS is hybridized with DE [53] to improve the local exploitation of DE. Recently,
two new LS strategies are proposed and hybridized iteratively with DE in [1,31]. These hybrid designs
show performance improvement over the algorithms in comparison. Two LS strategies, Trigonometric
and Interpolated, are inserted in DE to enhance its poor exploration. Two other LS techniques are
merged in DE along with a restart strategy to improve its global exploration [54]. This algorithm is
statistically sound, as the obtained results are better than other algorithms. Furthermore, alopex-based
LS is merged in DE [55] to improve its diversity of population. In another experiment, DE’s slow
convergence is enhanced by combining orthogonal design LS [56] with it. To avert local optima in DE,
random LS is hybridized [57] with it. On the other hand, some researchers borrowed DE’s mutation
and crossover in traditional LS methods (see, e.g., [58,59]).

To the best of our knowledge, none of the reviewed algorithms in this section integrate DFP into
DE’s framework. Further, the proposed work here maintains two archives: the first one stores inferior
solutions and the second one keeps information of best solutions migrated to it by the global search.
Furthermore, the second archive improves the solutions quality further by implementing DFP there.
Hence, our proposed work has the advantage that the second archive keeps complete information
of the solution before and after LS. This way, any good solution found is not lost. It also adopts a
population decreasing mechanism.

4. Developed Algorithm

As discussed in the literature review, LS techniques, due to their demerits, should not be used
alone to solve optimization problems [2]. The global optimality of global evolution techniques is very
high, but they can get stuck in local regions and cannot fine tune the solution at hand. Thus, motivated
by above issues of global/local techniques, we hybridize a global optimizer RJADE/TA with DFP
to enhance the convergence in both regions. The new design is named as RJADE/TA-ADP-LS.
We specifically handle unconstrained, nonlinear, continuous, and single objective optimization
problems in the current work.

RJADE/TA-ADP-LS

The initial population is evolved globally by RJADE/TA [50] until λ% of the function evaluations;
that is, after RJADE/TA’s iterative mutation, crossover, selection and M[ f irst] process, as shown in
Algorithm 1, the population is sorted and the current best solution w[k]

(i,best) is translated to M[sec].
This best solution may be a parent or a child solution. The DFP is applied to the shifted elements for
w iterations. After implementation of DFP, a new improved solution w[k]

(i,new)
is produced from an

old migrant. Then, the previously explored best solution and this new solution are posted to archive
M[sec]. Unlike our perviously proposed archive M[sec] in RJADE/TA, where the archive keeps the
record of best solutions only and no LS is implemented, M[sec], as mentioned above, in this method
maintains information of both solutions, i.e., the migrated best solution and its improved version,
if any, after implementation of DFP.

The archive M[sec] is updated after regular intervals of κ generations (20 here). The migrated
solutions and those explored by DFP remain there during the entire evolution process. When the
evolution process completes, the overall best candidate is selected from PpUM[sec]. The novelty of
RJADE/TA-ADP-LS is that it employs DFP to the archived solutions only, unlike all hybrid designs
reviewed in Section 3.
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In the proposed hybrid mechanism, we implement DFP to the migrated best solution to obtain its
improved form, but without reflection, as displayed in the flowchart given in Figure 1, unlike in our
recently proposed work [60]. Moreover, in this model, we propose adaptively decreasing population
(ADP) mechanism different from the fixed population approach of Khanum et al. [60]. We refer to this
new hybrid as RJADE/TA-ADP-LS throughout this work. The idea of RJADE/TA-ADP-LS is novel in
proposing the ADP approach, because, in the literature, majority of the evolutionary algorithms (as
reviewed in Section 3) maintain a fixed population throughout the searching process.

Generate random
population
of size N [pop]

Implement RJADE/TA with-
out reflection till λ genera-

tions and sort the population

Migrate the best solution to M [sec]

Apply DFP w iterations to
the best solution to produce
an improved best solution

Migrate the improved best solution to
M [sec] and update N [pop] = Npop − 1

Is stopping criterion met?

Output opti-
mal solution

Go back to step 2

yes

no

Figure 1. Flowchart of RJADE/TA-ADP-LS.

In this design, when the first update of M[sec] is made after half of the available resources are
spent, DFP is applied to the archive members. The implementations of DFP and ADP are shown
in Algorithm 2. Both the previously located best solution, w{y}

[j,best], and the one exploited by DFP,

w{y}
[j,new]

, are propagated to M[sec]. No reflection is made here to compensate the decreasing population.
The ADP approach (Algorithm 2, Lines 6–8) is implemented as:

Pp = Pp −w{y}
[j,best]. (6)

Hence,
Pp = {w{y}

[j,s1]
, w{y}

[j,s2]
, . . . , w{y}

[j,s
N[pop]−1

]
} (7)

f (Pp) = { f (w{y}
[j,s1]

), f (w{y}
[j,s2]

), . . . , f (w{y}
[j,s

N[pop]−1
]
)} (8)

Every time M[sec] is updated, the migrated element is removed from the current population Pp

(see Equation (6)), and the population is decreased by one. Thus, after each break of κ generations,
r(= the number of times the κ breaks occur) solutions are removed from N[pop], and the population
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size is updated to N[pop] − r, as demonstrated on Line 11 of Algorithm 2. Furthermore, the function
values are updated accordingly (see Equations (7) and (8)). In ADP approach, the algorithm begins
with a maximum population and terminates with a minimum population.

Algorithm 2 RJADE/TA-ADP-LS.

1: Update M[sec] as follows.
2: if k = κ then

3: w{y}
[j,best] → M[sec];

4: Apply DFP to w{y}
[j,best] to prduce w{y}

[j,new]
;

5: w{y}
[j,new]

→ M[sec];

6: Pp = {w{y}
([j,s1]

, w{y}
[j,s2]

, . . . , w{y}
[j,s

N[pop]−1
]
};

7: f (Pp) = { f (w{y}
[j,s1]

), f (w{y}
[j,s2]

), . . . , f (w{y}
[j,s

N[pop]−1
]
)};

8: N[pop] = N[pop] − 1;
9: end if

10: Terminate the iteration;
11: Repeat the process r number of times and update N[pop] = N[pop] − r.

5. Validation of Results

In this section, first we briefly illustrate the five algorithms used for comparison and then the
experimental results are presented.

5.1. Global Search Algorithms in Comparison

Among the five algorithms for comparison, the first two, RJADE/TA and RJADE/TA-LS,
are our recently proposed hybrid algorithms, while the remaining three, jDE, jDEsoo and jDErpo,
are non-hybrid, but adaptive and popular DE variants.

5.1.1. RJADE/TA

RJADE/TA [50], similar to RJADE/TA-ADP-LS, utilizes two archives for information. One of
the archives stores inferior solutions, while the other keeps a record of superior solutions. However,
in RJADE/TA-ADP-LS, the second archive stores elite solutions, which are then improved by DFP.
Further details of RJADE/TA can be seen in Section 2.2.

5.1.2. RJADE/TA-LS

RJADE/TA-LS [60] is a very recently proposed hybrid version of global and local search.
However, it is different from RJADE/TA-ADP-LS in the sense that it utilizes reflection mechanism and
a fixed population, while RJADE/TA-ADP-LS uses DFP as LS without reflection and a population
decreasing approach.

5.1.3. jDE

jDE [61] is an adaptive version of DE, which is based on self-adaption of control parameters
F and CR. In jDE, the parameters F and CR keep changing during the evolution process, while
the population size N[pop] is kept unchanged. Every solution in jDE has its own F and CR values.
Better individuals are produced due to better values of F and CR. Such parameter values translate
to upcoming generations of jDE. Because of its unique mechanism and simplicity, jDE has gained
popularity among researchers in the field of optimization. Since its establishment, people use it to
compare with their own algorithms.
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5.1.4. jDEsoo and jDErpo

jDEsoo [62] is a new version of DE that deals with single-objective optimization. jDEsoo
subdivides the population and implements more than one DE strategies. To enhance diversity of
population, it removes those individuals from population that remain unchanged in the last few
generations. It was primarily developed for CEC 2013 competition.

jDErpo [61] is an improvement of jDE. It is based on the following mechanisms. Firstly,
it incorporates two mutation strategies, different from jDE, DE and RJADE/TA. Secondly, it uses
adaptively increasing strategy for adjusting the lower bounds of control parameters. Thirdly, it utilizes
two pairs of control parameters for two different mutation strategies in contrast to one pair of
parameters used in jDE, classic DE and RJADE/TA. jDErpo was also specially designed for solving
CEC 2013 competition problems.

5.2. Parameter Settings/Termination Criteria

Experiments were performed on 28 benchmark test problems of CEC 2013 [63]. They are referred
as BMF1–BMF28. The parameters’ settings were kept the same as demanded in [63]. The dimension n
of each problem was set to 10, population size N[pop] to 100, and the MaxFEs to 10, 000× n. The number
of elite solutions r was kept as 1. The iterations number w of DFP was set to 2. The reduction of
population per archive update r was also chosen as 1. The gap κ between successive updates of M[sec]

was kept as 20. The optimization was terminated if either MaxFEs were reached or the difference
between the means of function error values was less than 10−8, as suggested in [50,63].

Table 2. Comparison of RJADE/TA-ADP-LS with Well Established Algorithms.

Bench Marks jDE jDEsoo jDErpo RJADE/TA RJADE/TA-ADP-LS

BMF1 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 0
BMF2 7.6534e− 05− 1.7180e + 03− 0.0000e + 0= 0.0000e + 0= 0.0000e + 00
BMF3 1.3797e + 0+ 1.6071e + 0+ 3.7193e− 05+ 1.2108e + 02+ 2.0350e + 02
BMF4 3.6639e− 08+ 1.2429e− 01+ 0.0000e + 0+ 1.1591e + 02+ 2.9749e + 02
BMF5 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 00
BMF6 8.6581e + 0− 8.4982e + 04− 5.3872e + 0+ 7.8884e + 0− 5.4656e + 00
BMF7 2.7229e− 03+ 9.4791e− 01− 1.6463e− 03+ 1.5927e− 01+ 2.3707e− 01
BMF8 2.0351e + 01= 2.0348e + 01+ 2.0343e + 01+ 2.0366e + 01− 2.0352e + 01
BMF9 2.6082e + 0+ 2.7464e + 0+ 6.4768e− 01+ 4.4593e + 0+ 4.6182e + 00
BMF10 4.5263e− 02− 7.0960e− 02− 6.4469e− 02− 3.5342e− 02− 3.2488e− 02
BMF11 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 0
BMF12 1.2304e + 01− 6.1144e + 0+ 1.3410e + 01− 7.7246e + 0− 7.0574e + 00
BMF13 1.3409e + 01− 7.8102e + 0+ 1.4381e + 01− 6.7571e + 0+ 9.7072e + 00
BMF14 0.0000e + 0+ 5.0208e− 02− 1.9367e + 01− 1.1994e− 02− 5.3105e− 03
BMF15 1.1650e + 03− 8.4017e + 02− 1.1778e + 03− 6.6660e + 02+ 7.3411e + 02
BMF16 1.0715e + 0− 1.0991e + 0− 1.0598e + 0− 1.1336e + 0− 1.0545e + 00
BMF17 1.0122e + 01= 9.9240e + 0+ 1.0997e + 01− 1.0122e + 01= 1.0122e + 01
BMF18 3.2862e + 01− 2.7716e + 01− 3.2577e + 01− 2.2715e + 01+ 2.4399e + 01
BMF19 4.3817e− 01− 3.1993e− 01− 7.4560e− 01− 4.4224e− 01− 4.2674e− 01
BMF20 3.0270e + 0− 2.7178e + 0− 2.5460e + 0+ 2.5317e + 0+ 2.6153e + 00
BMF21 3.7272e + 02+ 3.5113e + 02+ 3.7272e + 02+ 3.9627e + 02+ 4.0019e + 02
BMF22 7.9231e + 01− 9.1879e + 01− 9.7978e + 01− 2.7022e + 01− 1.3178e + 01
BMF23 1.1134e + 03− 8.1116e + 02− 1.1507e + 03− 7.0015e + 02− 4.8553e + 02
BMF24 2.0580e + 02− 2.0851e + 02− 1.8865e + 02− 2.0217e + 02− 1.0823e + 02
BMF25 2.0471e + 02− 2.0955e + 02− 1.9885e + 02− 2.0314e + 02− 1.7732e + 02
BMF26 1.8491e + 02− 1.9301e + 02− 1.1732e + 02+ 1.2670e + 02− 1.2096e + 02
BMF27 4.7470e + 02− 4.9412e + 02− 3.0000e + 02+ 3.0351e + 02+ 3.0514e + 02
BMF28 2.9216e + 02− 2.8824e + 02− 2.9608e + 02− 2.8824e + 02− 2.8500e + 02

− 17 17 14 13
+ 6 8 10 10
= 5 3 4 5

5.3. Comparison of RJADE/TA-ADP-LS against Established Global Optimizers

The mean of function error values, the difference between known and approximated values,
for jDE, jDEsoo, jDErpo, RJADE/TA and RJADE/TA-ADP-LS, are presented in Table 2. In Table 2,
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+ indicates that the algorithm won against our algorithm, RJADE/TA-ADP-LS; − indicates that the
particular algorithm lost against our algorithm; and = indicates that both algorithms obtained the
same statistics. The comparison of RJADE/TA-ADP-LS with other competitors showed its outstanding
performance against all of them. RJADE/TA-ADP-LS achieved higher mean values than jDE and
jDEsoo on 17 out of 28 problems; the many − signs in columns 2 and 3 of Table 2 support this fact.
In contrast, jDE and jDEsoo performed better on six and eight problems, respectively.

RJADE/TA-ADP-LS showed performance improvement against jDErpo and RJADE/TA
algorithms as well. In general, RJADE/TA-ADP-LS performed better than all algorithms in comparison,
especially in the category of multimodal and composite functions. The proposed mechanism is not
only based on LS for local tuning with no reflection, but it also implements an ADP approach, which
could be the reasons for its good performance.

5.4. Performance Evaluation of RJADE/TA-ADP-LS Versus RJADE/TA-LS

We empirically studied the performance of RJADE/TA-ADP-LS against RJADE/TA-LS. Table 3
presents the mean results achieved by both methods in 51 runs. The best results are shown in bold face.
It is very clear from the results in Table 3 that the proposed RJADE/TA-ADP-LS performed higher
than RJADE/TA-LS on 13 out of 28 problems. Furthermore, on five problems, they obtained the same
results. RJADE/TA-LS showed performance improvement on 10 test problems.

Table 3. Comparing RJADE/TA-ADP-LS with RJADE/TA-LS.

BMF1 BMF2 BMF3 BMF4 BMF5 BMF6 BMF7

RJADE/TA-LS 0.0000e+00 0.0000e+00 2.5750e + 02 3.9511e+01 0.0000e+00 6.9264e + 00 2.3707e-01
RJADE/TA-ADP-LS Mean 0.0000e+00 0.0000e+00 2.0350e + 02 2.9749e+02 0.0000e+00 5.4656e+00 2.3707e− 01

BMF8 BMF9 BMF10 BMF11 BMF12 BMF13 BMF14

RJADE/TA-LS 2.0342e+01 4.4888e + 00 3.2488e-02 0.0000e+00 6.8613e+00 7.9039e+00 7.3105e− 003
RJADE/TA-ADP-LS Mean 2.0352e + 01 4.6182e+00 3.2488e-02 0.0000e+00 7.0574e + 00 9.7072e + 00 5.3105e-03

BMF15 BMF16 BMF17 BMF18 BMF19 BMF20 BMF21

RJADE/TA-LS 6.6733e+02 1.0855e + 00 1.0122e+01 1.0122e+01 4.4752e− 01 2.5707e+00 3.9627e+02
RJADE/TA-ADP-LS Mean 7.3411e + 02 1.0545e+00 1.0122e+01 2.4399e + 01 4.2674e-01 2.6153e + 00 4.0019e + 02

BMF22 BMF23 BMF24 BMF25 BMF26 BMF27 BMF28

RJADE/TA-LS 2.0589e + 01 6.7549e + 02 1.9809e + 02 2.0190e + 02 1.3596e + 02 3.0033e+02 3.0000e + 02
RJADE/TA-ADP-LS Mean 1.3178e+01 4.8553e+02 1.0823e+02 1.7732e+02 1.2096e+02 3.0514e + 02 2.8500e+02

It is interesting to note that RJADE/TA-ADP-LS showed outstanding performance in the category
of composite functions, where it solved BMF22–BMF28 better than RJADE/TA-LS. Again, the two
different mechanisms, the ADP approach and the LS search with out reflection, of RJADE/TA-ADP-LS
could be the reasons for its better performance. Among 28 problems, RJADE/TA-LS was better
on 10 functions. Further, Table 4 presents the percentage performance of RJADE/TA-ADP-LS and
RJADE/TA-LS. Since on five test problems, both algorithms showed equal results, thus we compared
the percentage for the remaining 23 problems. As shown in Table 4, RJADE/TA-ADP-LS was able to
solve 57% of problems against 43% of problems solved by RJADE/TA-LS out of 23 test instances.

Table 4. Comparing RJADE/TA-ADP-LS with RJADE/TA-LS.

Algorithms RJADE/TA-ADP-LS RJADE/TA-LS

Number of Problems solved in total of 23 13 of 23 10 of 23
% age 57% 43%

Furthermore, box plots were plotted from all means obtained in 25 runs of RJADE/TA,
RJADE/TA-LS and RJADE/TA-ADP-LS. Figures 2 and 3 plot one function from each three functions.
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Box plots are very good tools to show the spread of the data. Figure 2b–d shows that the boxes obtained
by RJADE/TA-ADP-LS were lower than the other two boxes, indicating its better performance.
Figure 2a presents the plot of BMF3, in which the two boxes in comparison were lower than
RJADE/TA-ADP-LS, thus they were better.

Figure 3b,d,f shows that the boxes obtained by RJADE/TA-ADP-LS on BMF19, BMF25 and
BMF27 were lower than the boxes of RJADE/TA and RJADE/TA-LS, indicating higher performance of
RJADE/TA-ADP-LS. Figure 3a,c,e shows that the two other algorithms were better on the respective
test instances.

5.5. Analysis/Discussion of Various Parameters Used

The number of solutions r to be migrated to archive and undergo DFP was kept as 1, since DFP is
an expensive method due to gradient calculation. Further, its application to more than one solution
might slow down the algorithm. The users may take two, but at most three is suggested. The number
of iteration w of DFP to archive elements was kept as 2. DFP is a very good method; it could fine tune
the solutions in only two iterations. Moreover, the decreasing number r of population per archive
update was also chosen as 1. Since the archive was updated after regular gap of global evolution, each
time population was decreased by one. However, if we reduced it by more than one solutions, then a
stage would come where the diversity of the population would be decreased and the algorithm would
either stop at local optima or converge prematurely. We suggest that the decreasing number be at most
3. In general, these parameters are user defined but should be chosen wisely to compliment the global
and local search together, instead of premature convergence or stagnation.
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Figure 2. Box plots of various algorithms in comparison.
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6. Conclusions

This paper proposed a new hybrid algorithm, RJADE/TA-ADP-LS, where a LS mechanism,
DFP is combined with a DE based global search scheme, RJADE/TA to benefit from their searching
capabilities in local and global regions. Further, a population decreasing mechanism is also adopted.
The key idea is to shift the overall best solution to archive at specified regular intervals of RJADE/TA,
where it undergoes DFP for further improvement. The archive stores both the best solution and its
improved form. Furthermore, the population is decreased by one solution at each archive update.
We evaluated and compared our hybrid method with five established algorithms on test suit of CEC
2013. The results demonstrated that our new algorithm is better than other competing algorithms on
majority of the tested problems, particularly our algorithm showed superior performance on hard
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multimodal and composite problems of CEC 2013. In future, the present work will be extended to
constrained optimization. As a second task, some other gradient free LS methods, global optimizers
and archiving strategies will be tried to design more efficient algorithms for global optimization.
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