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Abstract: A pump is one of the most important machines in the processes and flow systems. The
operation of multistage centrifugal pumps could generate pressure fluctuations and instabilities that
may be detrimental to the performance and integrity of the pump. In this paper, a numerical study of
the influence of pressure fluctuations and unsteady flow patterns was undertaken in the pump flow
channel of three configurations with different diffuser vane numbers. It was found that the amplitude
of pressure fluctuation in the diffuser was increased gradually with the increase in number of diffuser
vanes. The lower number of diffuser vanes was beneficial to obtain a weaker pressure fluctuation
intensity. With the static pressure gradually increasing, the effects of impeller blade passing frequency
attenuated gradually, and the effect of diffuser vanes was increased gradually.

Keywords: centrifugal pump; pressure fluctuation; unsteady flow; numerical simulation

1. Introduction

Centrifugal pumps are of vital importance for a variety of commercial and industrial
applications [1], which could handle a great quantity of liquids at relatively high pressures [2].
For those applications that require extremely high pressures, multistage centrifugal pumps, which
usually have more than two or even up to dozens of stages, are used. Owing to the high reliability
requirements for a long shaft, the hydraulic design of the multistage centrifugal pumps is more
complex than that of the single-stage pumps [3]. Recently, many researchers have conducted both
numerical simulations and experiments on the efficiency of multistage centrifugal pumps to enhance
their hydraulic design [4–6].

The operation process of multi-stage centrifugal pumps is often accompanied by vibration and
noise. When the pump produces static pressure, it also produces dynamic pressure, which is also
named as pressure fluctuation along with the periodic changing features like AC signal. Pressure
fluctuations are inevitable during the operation of a pump, having strong unsteady characteristics that
may lead to strong vibration and noise under some special working conditions [7].

In previous studies, a series of numerical investigations of pressure fluctuations within a complete
single-stage centrifugal pump were undertaken. Khalifa et al. [8] investigated the pressure fluctuations
and vibration in a single-stage centrifugal pump experimentally under different flow conditions.
They found that under different flow rates, the vibrations have a close relationship with the pressure
fluctuations, and the vibration could be controlled by optimizing the gap between the volute tongues
and the impeller. Guelich et al. [9] studied the physical mechanisms behind the pressure fluctuations
under the design flow conditions. They found that the pressure fluctuations mainly depend on
the geometry of the diffuser and the impeller by performing 36 tests with different pump designs.
Spence et al. [10] used the multi-block, structured mesh CFD (Computational Fluid Dynamics) code
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TASC flow to study the pressure fluctuations in a centrifugal pump for three different flow rates.
They found that the volute gap and the arrangement of vanes have the greatest effect on the different
monitored positions. In a previous work of ours [11], we simulated the transient flow field of a
centrifugal pump by employing ANSYS-CFX software based on the frozen rotor technique and
utilizing the Shear Stress Transport (SST) k-ω turbulence model. The results shown that the pressure
fluctuation is mainly affected by the number of impeller blades, but the influence decreased gradually
when the water flowed into the diffuser. Pei et al. [12] focused on the numerical simulation of unsteady
flow under part-load conditions, the results shown that the intensity of pressure fluctuation is larger
than that of design flow condition because of leakage flow. Jiang et al. [13] studied the clocking effect
and unsteady radial force in a centrifugal pump by numerical and experimental methods, they found
that the unsteady flow and pump performance mainly effected by the relative position between the
diffuser the volute. Wang et al. [14] carried out an experimental measurement to study the influence of
rotating speed and flow rate on the pressure fluctuation in a double-suction centrifugal pump. They
found that the pressure fluctuation under zero flow rate is two times that of the pressure fluctuation
under the design flow rate. Posa and Lippolis [15] used Large Eddy Simulations (LES) to investigate the
influence of diffuser setting angle and operating conditions on the pressure fluctuation and unsteady
flow in a centrifugal pump. They found that the larger radial gaps between diffuser and impeller could
lead to lower pressure fluctuations, but the lower flow rate could lead to higher pressure fluctuations.

While numerous studies have investigated the pressure fluctuation and unsteady characteristics
in different kinds of pumps, which includes the effects of working conditions [14,16], inlet guide
vanes [17], tip clearance [18], and volute curvature [19–21], but the influence of the number of diffuser
vanes on the pressure fluctuation in the centrifugal pump is unclear and further investigation is needed.
So, in this paper a numerical approach was adopted in a centrifugal pump with a different number of
diffuser vanes, and the pressure fluctuations are analyzed and compared in detail. The results could
supply a basis for further design improvement of the pump body structure and working reliability.

2. Pump Geometry

In this study, we have chosen a standard Electrical Submersible Pump (ESP) as the research
objective. The main design parameters of this ESP are as follows: design flow rate Qdes = 36 m3/h;
rotating speed n = 2850 r/min; total head H = 75 m; number of stages N = 7; specific speed ns = 175.8;
design efficiency η = 72%; and maximum power P = 11 kW. More details about the parameters of
pump geometry could be found in one of our previous paper [22].

This kind of ESP is usually manufactured with plastic materials, in order to ensure there is enough
space for the unloading of casting, so the impeller was designed with five blades. In most cases, the
number of diffuser vanes is selected to be relative prime number with the number impeller blades.
In order to study the effects of the diffuser vanes number on the unsteady flow and pressure fluctuation,
the same profile was used for the diffuser vanes and their number was adjusted to 6, 7, and 8 for
three different configurations. The solid model of the impeller is shown in Figure 1, and the three
configurations with different diffuser vanes number are shown in Figure 2.
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Substituting Equation (7) from Equation (5) to obtain the expression of pressure
fluctuation equation:

∇
2p′ = −ρ

∂2
(
uiu j

′ + uiu j
)

∂xi∂x j
+

∂2

∂xi∂x j

(
ui
′u j
′
− ui′u j′

). (9)

Equation (6) minus Equation (8) we obtain the expression of pressure fluctuation
continuous equation:

∂ui
′

∂xi
= 0. (10)

Using Equation (10) into Equation (9) we finally get:

∇
2p′ = −ρ

[
2
∂ui
∂x j

∂u j
′

∂xi
+

∂2

∂xi∂x j

(
ui
′u j
′
− ui′u j′

)]
, (11)

where ρ is the density of water, p′ is pressure fluctuation, ui
′ is fluctuating velocity, ui is

time-averaged velocity.
Equation (11) indicates that the pressure fluctuation is mainly caused by the fluctuation of

velocity, the first term on the right-hand side of the equation represents the interaction between mean
velocity and fluctuating velocity, which is the mean velocity field distortion and generally called a
“quick response term” [24,25]. The time-averaged velocity gradient expresses mean shear stress term,
therefore, it is also known as the “turbulence-shear”. The second term on the right side of the equation
is the change of pressure fluctuation caused by the nonlinear effect in the fluctuating velocity field,
commonly known as “turbulence-turbulence”. Equation (11) can be understood as the basic equation
of pressure fluctuation, in which we can see that pressure fluctuation is equal to the comprehensive
effects of the two categories of the effects in brackets of the right side: the first category is the interaction
of “shear-turbulence”, and the second category is the interaction of “turbulence-turbulence”. At the
same time, it can be seen from the Equation (11) that there is no direct relation between the viscosity of
the fluid and the pressure fluctuation. The viscosity of the fluid only plays an indirect role in pressure
fluctuation [25].

4. Numerical Setup

4.1. Computational Domain

The solid models were created and assembled to form the computational domain in Pro/E Wildfire
5.0 software, which include the inlet section, impeller, diffuser, lateral cavity, and outlet section [26].
In order to balance the total grid number of points, calculation time, and the computer capability [27],
only one stage model was chosen in this study, as shown in Figure 3.
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where 𝜌 is the density of water, 𝑝′ is pressure fluctuation, 𝑢௜′ is fluctuating velocity, 𝑢௜ is time-
averaged velocity. 

Equation (11) indicates that the pressure fluctuation is mainly caused by the fluctuation of 
velocity, the first term on the right-hand side of the equation represents the interaction between mean 
velocity and fluctuating velocity, which is the mean velocity field distortion and generally called a 
“quick response term” [24,25]. The time-averaged velocity gradient expresses mean shear stress term, 
therefore, it is also known as the “turbulence-shear”. The second term on the right side of the equation 
is the change of pressure fluctuation caused by the nonlinear effect in the fluctuating velocity field, 
commonly known as “turbulence-turbulence”. Equation (11) can be understood as the basic equation 
of pressure fluctuation, in which we can see that pressure fluctuation is equal to the comprehensive 
effects of the two categories of the effects in brackets of the right side: the first category is the 
interaction of “shear-turbulence”, and the second category is the interaction of “turbulence-
turbulence”. At the same time, it can be seen from the Equation (11) that there is no direct relation 
between the viscosity of the fluid and the pressure fluctuation. The viscosity of the fluid only plays 
an indirect role in pressure fluctuation [25]. 

4. Numerical Setup 

4.1. Computational Domain 

The solid models were created and assembled to form the computational domain in Pro/E 
Wildfire 5.0 software, which include the inlet section, impeller, diffuser, lateral cavity, and outlet 
section [26]. In order to balance the total grid number of points, calculation time, and the computer 
capability [27], only one stage model was chosen in this study, as shown in Figure 3. 

 
Figure 3. Computational domain. 

  

Figure 3. Computational domain.



Processes 2019, 7, 354 5 of 14

4.2. Meshes

ANSYS-ICEM-CFD 14.5 software [28] was used to build the structured meshes associated with
the block topology of Y-type and O-type. The mesh growth rate of boundary layer were considered to
ensure the overall mesh thickness and density. The appropriate mesh density was decided according
to the gird independence test [29,30]. Table 1 summarizes five schemes of different mesh numbers.
By comparing the pump performance predicted by the same numerical methods we found that with the
increase of mesh number, the numerical value of single-stage head, single-stage power, and efficiency
show a stable trend. Between the schemes No. 4 and No. 5, increasing mesh has no influence on the
simulation results, which means that the scheme No. 4 has enough accuracy with enough mesh density.
Therefore, by considering the grid independence test and the computer capability, scheme No. 4 was
selected as the optimal scheme of mesh for the numerical investigation. For the whole single-stage
computational domain, the total of mesh elements is almost 4.9 million. Meanwhile, it was ensured
that the entire computational domain 30 < y+ < 60, which indicates that the near-wall mesh nodes are
in a log-law layer. Figure 4 is the final mesh used for the impeller and the diffuser.

Table 1. Grid independence test.

Cases No.
Grid Number Numerical Results

Impeller Diffuser Single-Stage
Head (m)

Single-Stage
Power (kW) Efficiency (%)

1 43,695 62,564 10.41 1.5739 64.81
2 139,200 316,540 10.54 1.4697 70.29
3 313,750 509,208 10.53 1.4021 73.58
4 516,780 937,440 10.56 1.4033 73.77
5 950,895 1,297,380 10.57 1.4042 73.74
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4.3. Numerical Settings

ANSYS-Fluent 14.5 software [31] was used to run the numerical simulation for this study, in which
the SST k-ω turbulence model, and the SIMPLEC algorithm was used to solve the discrete difference
equations of the second-order upwind scheme. As shown in Figure 5, no-slip boundary conditions
were used on the wall surface, inlet boundary conditions of mass flow were used on the pump inlet,
and outlet boundary conditions of pressure were used on the outlet of the pump. For instance, the
mass flow rate for inlet was set as 10 kg/s at the design flow rate, and the total pressure for the outlet
was set as 10,135 Pa. Using sliding grid technology, the impeller region in the flow channel was
set to be a rotating grid coordinate system provided by ANSYS-Fluent, while the diffuser and other
hydraulic components were set to be a stationary coordinate system. After reaching convergence of
steady calculation based on the fixed rotor coordinate system (Frozen Rotor), the flowfield was used as
the initial value to start the unsteady calculation. The Principle of a Frozen Rotor is to set the impeller
part to be a rotating reference coordinate system, and the static and dynamic interface is coupled by
combing with sliding mesh technology [32,33].
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4.4. Time Step

In general, in the periodic numerical simulation, the time step needs to satisfy the Courant number
criterion [34], which is expressed as:

Co =

∣∣∣v∣∣∣∆t

l
≤ 100. (12)

In the above formula,
∣∣∣v∣∣∣ is the absolute value of the estimated mean velocity, l is the smallest size

of the grid, and Co is required to be no more than 100. When the numerical convergence is not good,
it is appropriate to take smaller values.

According to the requirement of sampling theorem, 2.56–4 times of the signal maximum frequency
is selected generally for the time step. In this study, the impeller has five blades, the rotational speed is
2850 r/min, so the blade passing frequency (BPF) is 332.5 Hz. If there are at least seven points in a BPF
cycle, and the desirable maximum value of the time step is 4.2966 × 10−4 s accordingly.

If the time step size is too large, some minor changes of the pressure will not be captured, but time
steps that are too small will also lead to a significant increase in computing time [35,36]. Therefore,
considering the computer configuration, the time step 4t was chosen as 5.8478 × 10−5 s, the impeller
rotated one degree for one time step, 360 time steps were required for each rotation of the impeller.
For this model, after 3600 time steps, that is, after 10 cycles of impeller rotation, the pressure fluctuation
was periodic and the convergence condition was determined [37,38]. Defining this time as t = 0, and
selecting a whole circle of the impeller rotation (360 time steps) as the analysis period for unsteady flow.

5. Results and Discussion

5.1. Pump Performance Validation

To validate the numerical method, the prototype pump with seven diffuser vanes was
manufactured and measured in an open test bed. The detailed schematic diagram of this test
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bed can be found in our previous paper [22,38]. The comparison of pump performance in terms
of predicted and experimental results are shown in Figure 6. Actually, the model ESP used in the
performance test has seven stages, so the single-stage and power single-stage head were converted by
the total power and total head, and then compared with the CFD predicted performance. As shown
in Figure 6, the experimental results are slightly lower than the CFD results, but they have the same
changing trend under different flow rates. The pump efficiency predicted by CFD has good agreement
with the experimental efficiency. The comparison confirms the precision and accuracy of the numerical
method used in this study. For the sources of error between the CFD and the test, one of the most
important reasons is the one stage computational domain was used by considering the balance of
computer capability and meshes number, while the tested prototype pump had seven stages. Generally
speaking, the flow at the impeller inlet of the first stage is irrotational flow, but the flow at the impeller
inlet of other stages is rotational flow, so in most cases the pump power and head of the first stage is
higher than that of the other stages [22,38]. Another reason is that the leakage flow was not considered
in this study, which means the volume losses caused by leakage flow was neglected. The real pump
model with seven stages could be simulated in a powerful computer in a future study to obtain more
arcuate results.
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5.2. Pressure Fluctuation Analysis

In this study, the pressure coefficient is used to measure the pressure fluctuation. The pressure
coefficient is defined as:

Cp =
p− p
1
2ρu2

, (13)

where p is the static pressure at the location of the monitoring points; u is the circumferential velocity
of impeller outlet; and p is mean static pressure at the monitoring points during the rotation of the
impeller. After 10 cycles of impeller rotation, the pressure fluctuations at the inlet and outlet of the
impeller show the regular periodicity. In the process of the impeller rotating 360 degrees (360 time
steps), the pressure fluctuation at each monitoring point was collected to analyze the unsteady flow in
the flow channel.

To compare the transient pressure fluctuation characteristics in the flow channel of pump, seven
monitoring points were arranged in the same position in three scenarios of space diffuser, 6P7–6P1
represents the pump flow channel of the six-vane configuration, 7P7–7P1 represents the pump flow
channel of the seven-vane configuration, 8P7–8P1 represents the pump flow channel of the eight-vane
configuration. The position of the seven monitoring points in the flow channel is shown in Figure 7.
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Figure 8 presents the pressure fluctuation for each monitoring point in the pump flow channel of
the six-vane configuration. Generally speaking, the pressure fluctuation shows stable periodicity at
the impeller outlet and inlet. During the process of impeller rotating 360 degrees, five peaks and five
troughs are seen, which is equal to the number of impeller blades. The pressure fluctuation amplitude
at P1 located at the impeller inlet is the lowest one. The pressure fluctuation amplitude at P3 is the
most intense one, which is located at the intersection of the diffuser vanes and the impeller blades. The
static pressure changes along with the rotation of the impeller. In particular, when the impeller blade
rotates from the pressure surface to the suction surface, the static pressure changes rapidly from the
smallest value to the largest value. By comparing the amplitude of each monitoring points, we could
find that the pressure fluctuation signal is generated at the impeller outlet, and in the process of its
transfer to the pump outlet, its intensity gradually decays.
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Figures 9 and 10 show time domain diagram of pressure fluctuation at each monitoring point
for the configurations of 7 vanes and 8 vanes, respectively. It can be seen that pressure fluctuation at
the monitoring point in the impeller inlet (P1, P2) and the impeller outlet (P3, P4) is similar to that of
the six-vane configuration, exhibiting again five peaks and five troughs. It shows that at the impeller
outlet and the impeller inlet, the pressure fluctuation is mainly affected by the impeller blade number,
and the diffuser vane number has no effect on the pressure fluctuation at these locations. However,
after entering the diffuser vane, the pressure fluctuations at P5, P6, and P7 change with the increase
of the diffuser vane number and the pulse intensity increases with the increase of the vane number.
Especially for the eight-vane configuration, the pressure fluctuation amplitude at the diffuser outlet is
relatively large.
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5.3. Frequency Domain Analysis

In the rotating coordinate system, the static and dynamic interference between the diffuser vanes
and the impeller blades is similar to the pressure fluctuation of sinusoid and cosine waves. This
transient periodic fluctuation can be decomposed into Fourier series. In this study, we used Fast
Fourier Transform (FFT) to analyze the frequency domain characteristics of the pressure fluctuation
between the pump stages. The fundamental frequency of the internal pressure fluctuation is generally
shaft frequency (f s), so the frequency domain is analyzed by comparing with the shaft frequency f s.
The frequency is divided by the fundamental frequency to get a multiple of the fundamental frequency
as a horizontal coordinate. The rotating speed of the investigated pump is 2850 r/min, so the shaft
frequency is 47.5 Hz.

Figure 11 presents the spectrum of pressure fluctuation at each monitoring point in the pump
flow channel of the six-blade configuration. The frequency distribution at each monitoring point is
basically the same, and fluctuating frequency appears at the double leaf frequency of Blade Passing
Frequency (BPF, f /f s = 5) and its harmonic frequencies. It is further explained that the static and
dynamic interference at the outlet of the impeller is the main cause of the pressure fluctuation, and the
pressure fluctuation signal is gradually fading during the process of transferring at the inlet side of the
impeller and the outlet side of the pump.

Figures 12 and 13 show the spectrum of pressure fluctuation at each monitoring point in the
seven-vane and eight-vane configurations, respectively. Compared to the six-vane configuration, the
frequency domain characteristics of pressure fluctuation are very similar. The closer to the impeller,
the greater the pressure coefficient pulsation amplitude, and the fluctuating amplitude shows an
obvious tendency of obviously increasing. As the number of the diffuser vanes increases, the amplitude
of pressure fluctuation at each monitoring point in the diffuser vane increases gradually, which
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indicates that the velocity of the fluid is converted to pressure energy by the diffuser vanes. With
the increase of static pressure, the influence of BPF decays gradually, and the effect of the diffuser
becomes gradually obvious. The lower number of diffuser vanes is beneficial to obtain a weak pressure
fluctuation intensity.
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5.4. Static Pressure Distributions

Figures 14–16 compare the static pressure distribution on the same diameter section in the pump
flow channel of different blade configurations. It can be seen that the static and dynamic interference
between the diffuser and the impeller makes the pressure field periodically change. At the impeller
outlet, the blade is no longer working on the fluid, the flow rate begins to decline, flow separation
appears gradually, and two different regions appear at the pressure fields of the impeller outlet.
A low-pressure area is located at the outlet of the impeller blades, while the other one is in the
mainstream area downstream from the blade pressure surface, which is also known as the wake-jet, as
shown in Figure 14. Wake changes gradually along with the rotating impeller, while the location of the
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vortex core remains unchanged, and always appears at the exit of the blades. The generation of static
and dynamic interference process can be attributed to the jet and wake flow that then flows into the
diffuser vanes.
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As shown in Figure 15, with the increase of diffuser vane number from six to seven, the flow
channel area of diffuser decreases. Accordingly, the frequency of the dynamic and static interference
between impeller blades and diffuser vanes increases, and the amplitude of pressure fluctuation
increases obviously. Meanwhile, Figure 16 shows that the evolution period of static pressure in the
flow channels of three configurations is about 72 degrees, which is the same as the rotation period
of the impeller blades. When the outlet side of impeller blade converges with the inlet side of the
diffuser vanes, the rotor-stator interaction is the most intense. Simultaneously, there is an obvious
low-pressure zone at the outlet of impeller blade, which is close to the pressure surface. With the
rotation of the impeller, when the outlet side of the impeller blade is gradually close to the inlet side of
the diffuser vanes, the low pressure zone begins to diffuse from the pressure surface of the impeller
blade to the suction surface of the diffuser. Then with the interleaving between the impeller channel
and the diffuser channel, wake, and jet at the impeller outlet flows into the diffuser vanes successively,
the static pressure distribution in the diffuser has a periodic evolution, the area of the low pressure
region also changes with the rotation of the impeller blades. When the inlet of the diffuser vanes
overlaps with the outlet of impeller blade, the area of low-pressure region generated by the wake is the
smallest, and the pressure fluctuation amplitude inside the diffuser is the smallest.

6. Conclusions

This paper introduces the basic theory and research methods of the pressure fluctuation, and
the unsteady numerical simulation under multi-working conditions of three different configurations
of a centrifugal pump corresponding to different numbers of diffuser vanes. The unsteady pressure
fluctuation in the transient flow is obtained, and the frequency domain and the time domain distribution
are analyzed and compared by means of Fast Fourier Transform. With the increase of the number
of diffuser vanes, the amplitude of each monitoring point in the diffuser increases gradually, which
indicates that the velocity of the fluid is converted to pressure due to the operation of diffuser. The
lower number of diffuser vanes is beneficial to obtain the weaker pressure fluctuation intensity. It can be
clearly seen that with the static pressure gradually increasing, the effects of the impeller blade passing
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frequency decay gradually, and the effect of the diffuser vanes increases gradually. The results could
supply a basis for further design improvement of the pump body structure and working reliability.
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