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Abstract: Nonsharp distillation sequences are widely used in industrial separation processes; however,
most current research has not discussed this topic, except in sequences with heat integration under
special operating conditions, including complex columns. The sequence with nonsharp separation
has the features of general distillation sequences, which are usually optimized by adjusting the
separation sequence and the design/operation parameters of each column in the sequence, making
the optimization a mixed integer nonlinear programming (MINLP) problem, which is usually hard
to solve. With inclusion of nonsharp separation columns, the sequence optimization becomes even
more complicated and computationally intensive. This work aimed to optimize the distillation
sequence, including nonsharp distillation alongside simple columns and dividing wall columns.
Inspired by the dynamic programing method for sharp distillation sequence, a framework for
automatic optimization is proposed to decompose the MINLP problem into integer programming (IP)
and nonlinear programming (NLP) problems. The optimization processes of sharp and nonsharp
distillation sequences are compared and the solution space in terms of the possible number of
distillation sequences with nonsharp separation is discussed. Two optimization cases, including an
industrial one, are included to validate the proposed framework.

Keywords: nonsharp distillation sequence; optimization; Aspen

1. Introduction

In industrial processes [1], the nonsharp distillation sequences are widely used for obtaining
nonsharp separated products. Compared to sharp separation sequences, nonsharp sequences are
relatively understudied. Sequences with nonsharp separation have the features of the general distillation
sequences, but with more options in terms of the choice of sequence and columns, which make their
optimization complicated and computationally intensive. The distillation sequence is usually optimized
by adjusting the discrete variables of the separation sequence and the continuous design/operation
parameters of each column in the sequence. Column-associated equations contribute to the nonlinear
part. All these make the problem a nonconvex MINLP problem with a discontinuous feasible region,
making it difficult to find the global optimum.

Optimization algorithms based on numerical searching have been focused on solving the
optimization problem of the distillation sequence. Floquet et al. [2] applied a simulated annealing
algorithm on sequence synthesis, and their attention was focused on the definition and evolution of a
local solution. Henrich et al. [3] combined an evolutionary algorithm with the rigorous modelling
capabilities of Aspen Plus to optimize the distillation sequence. Similarly, Leboreiro et al. [4] combined
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the genetic algorithm with a sequential process simulator. Both Henrich’s and Leboreiro’s research
combined numerical searching with a modelling tool. The convergence rate of numerical searching is
fast, but global optimum solution could not be guaranteed.

Rather than random searching in the solution space, enumeration-like algorithms have been used
to optimize distillation sequences. Xu et al. [5] improved 0–1 matrices into code matrices, but the
information conveyed by code matrices is insufficient to describe the details of columns. Ni et al. [6]
used a process simulation automation server to realize the optimization of heat-integrated sequences
at both the sequence level and the column level. Proios et al. [7] proposed an improved generalized
modular framework that can overcome the structural complexities of thermally-coupled columns,
including dividing wall columns, through systematic and highly detailed structural models. However,
the involved models significantly limit the scope of problems the framework can handle. None of the
above-mentioned studies have considered nonsharp distillation sequences.

Heat exchanging within sequences has also been introduced to the research of distillation
sequence optimization. Jain et al. [8] studied the synthesis of a heat-integrated thermally coupled
distillation sequence with energy-capital economic trade-offs, thus enhancing the economy of
the sequence. Caballero et al. [9] also synthesized the sequence in common with Jain’s via the
Underwood–Fenske–Gilliland equations for column design and used a generalized disjunctive program
(GDP) for model formulation, thus making the model more flexible. Zhang et al. [10] optimized the heat
integrated nonsharp thermally coupled distillation sequence through an improved simulated annealing
algorithm, thus increasing the searching efficiency. The energy is saved by heat integration in the heat
exchanger network of the distillation sequence, but heat integration can only be used when there is a
large pressure difference between the columns in the sequence [10]. Furthermore, thermal coupling
or heat integration increase the complexity and instability of the system. Specific examples of heat
integration and thermal coupling for energy saving were considered in the research of Jain, Caballero
and Zhang, but their work is highly dependent on the corresponding configuration considered.

Optimization including a non-sharp distillation sequence has gradually received the attention
of researchers. Among the relevant studies, Nath et al. [11] proposed a material allocation diagram,
but this was not suitable for the optimization problem when the considered component number is
more than three. Bamopoulos et al. [12,13] improved the material allocation diagram and combined
the empirical rules with a depth-first search strategy, but the physical meaning of each element in the
component recovery matrix is lost as the corresponding vector of each product is normalized every
time the matrix is transformed. Muraki et al. [14] proposed a two-stage evolutionary method based on
the achievements of Nath, but the computational load increases rapidly when this method is used to
handle large-scale problems. The research of Nath, Bamopoulos and Muraki were based on material
distribution diagrams, which are specified for each sequence.

Sargent and Gaminibandara [15] proposed a representation method for superstructures including
nonsharp separation to make the whole MINLP problem for distillation sequence optimization
modelled in a rigorous mathematical expression, and more details of a specific sequence can
be optimized by this method. Compared to the achievements of Sargent and Gaminibandara,
Floudas et al. [16] refined the representation method of the superstructure and proposed the MINLP
model for superstructure optimization. Based on the mature representation of the superstructure,
Yeomans and Grossmann [17,18] proposed two methods, the state task network (STN) and the state
equipment network (SEN), to establish the superstructure; GDP was used to model the superstructure
optimization problem, but structures which cannot be exclusively represented by Boolean variables are
difficult to support in this method, e.g., side rectifiers and side strippers. Gaballero and Grossmann [19]
used GDP to model the STN superstructure, verifying the feasibility of the method proposed by
Yeomans and Grossmann. The methods based on the MINLP model needs complex solving algorithms,
and the existing solving algorithms possibly fall into local optimum.

As distillation sequence optimization based on the superstructure representation method requires
a rigorous mathematical foundation, optimization methods with simplified mathematical operations
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have been applied in distillation sequence optimization research. Rong et al. have proposed a series
of heuristic and mathematically simplified methods for synthesis of sequences including dividing
wall columns [20] and process intensification of sequences with respect to thermal couplings and heat
integration [21–26], promoting optimization efficiency, improving the theoretical foundation of the
optimization method and proposing new energy saving configurations of the sequence. Shah and
Kokossis [27] proposed a method combining knowledge rules with mathematical programming to
construct the search space. However, due to the limitation of empirical rules, some feasible distillation
sequences have not been considered by this method, and the real optimal distillation sequence may
not be obtained. Agrawal et al. [28,29] proposed a systematic mathematical method optimizing
nonsharp distillation sequences with thermal coupling; however, with the increase of component
number, the number of feasible distillation sequences is becoming larger and larger, resulting in
unfeasible calculations.. In addition to the above conventional methods, Ulaganathan et al. [30] used
a sequential minimization algorithm to optimize 3–5 components nonsharp distillation sequence,
including complex columns, but when the component number is more than three, global optimization
is hard to guarantee.

It can be observed that the representation of superstructures, the modelling of problems, the thermal
coupled distillation sequences and the optimization algorithm have been investigated in previous
research, which made the optimization of distillation sequence a very popular topic in process system
engineering area. As Gibran said, we already walked too far, down to we had forgotten why embark.
No matter how complicate the problem can be, the optimization of distillation sequence itself is
still obtained via a good choice of column sequence with all columns optimized. Hendry et al. [31]
proposed dynamic programming to optimize the distillation sequence. Based on the distillation
sequence optimization method of Hendry, dividing wall columns were considered into the sharp
distillation sequence by Zhang et al. [32]. By method used by Hendy, Zhang and Ni, the optimization
problem is divided into two sub-problems at the sequence level and the column level, effectively
separating the superstructure and column optimization. The solution is found by searching possible
subsequences and ruling out the non-optimal ones sequentially to avoid random searching within
non-continuous feasible domain. The optimization of individual columns is easy to obtained with the
wide availability of commercial software such as Aspen Plus, while the ruling out is relatively hard
for nonsharp distillation sequences as there are no unique subsequence in this situation any more,
but the idea of ruling out significantly saves computational load if a proper strategy for ruling out
can be proposed. Both the divide-and-conquer strategy and reliable column model are implied in the
dynamic programing method, inspiring a way for this work.

In this work, the differences of subsequences in both sharp and nonsharp distillation sequences
are illustrated in Section 2. A framework for separating the superstructure of nonsharp distillation
problems is proposed in Section 3, in which modified ruling out is applied to speed up the sequence-level
searching. Two cases are studied in Section 4 and conclusions are drawn at the end.

2. Difference Between Optimizations of Sharp and Nonsharp Distillation Sequences

In a nonsharp distillation column, there is one or more components distributed to both the top
outflow and the bottom outflow. The nonsharp distillation sequence contains at least one nonsharp
distillation column.

2.1. An Example of an Industrial Nonsharp Distillation Sequence

An industrial nonsharp distillation sequence is shown in Figure 1.
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Figure 1. An industrial nonsharp distillation sequence.

As listed in Table 1, the crude oil is separated into several mixture products according to boiling
point ranges by this sequence. In Figure 1, the left column is a prefractionator, the middle one is
an atmospheric column, and the right one is a vacuum column. This kind of nonsharp distillation
sequence is widely applied in petroleum refineries. Obviously, the adjacent products of this example
overlap each other in composition.

Table 1. The composition of products of this example.

Product Name Composition

lights C1–C4
naphtha C5–C7

heavy naphtha (HNAPHTHA) C7–C11
kerosene C9–C17

diesel C10–C22
atmospheric gas oil (AGO) C13–C30

light vacuum gas oil (LVGO) C16–C40
heavy vacuum gas oil (HVGO) C22–C60

residue >C50

2.2. Hybrid Multiway Trees of Solution Space and Distillation Sequences

Rather than the representation of solution space for sharp distillation sequence by ordinary
multiway tree, a hybrid tree illustrated in this section is more suitable to represent nonsharp distillation
sequence solution space because it can store the extra information of nonsharp separation. Both kinds
of hybrid multiway trees are built alternately by subgroup level and sub-problem level. As the solution
space tree is built level by level, the sequence trees included in the solution space tree are also built
level by level. The difference between these two kinds of trees is shown in Figure 2.

The difference between them is that the subgroup node of a solution space tree expands all
its sub-problem child nodes, but that of a sequence tree only expands one sub-problem child node.
The hybrid multiway tree of the solution space contains all hybrid multiway trees for feasible distillation
sequences in a specific split as outlined in this work. As the distillation sequence consisting of simple
columns is the without-integration basic form for other more complex distillation sequences, the split
to generate the solution space is assumed that for every subgroup node in the solution space tree, four
kinds of columns (a sharp simple column (RadFrac module), a dividing wall column (Petlyuk module),
a two-middle-components nonsharp simple column, and an one-middle-component nonsharp simple
column, respectively) are attempted to expand its sub-problem child nodes. As at least one component
must be ensured to be sharp separated at a split, the exception of this split is that the sub-problems like
AB|ABCD or A|ABCD are forbidden. The purpose of the sequence is to get pure-component products.
Using this split, the solution space contains both sharp sequences and nonsharp sequences. As we are
focusing on theordinary situation of the distillation sequence, vacuum or pressurized distillations are
not considered in this work.
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Figure 2. Two kinds of hybrid multiway tree structures for different representation functions are
listed as: (a) A four-component non-sharp solution space with only three levels expanded and
(b) a four-component non-sharp distillation sequence (the letters represent the components and the
underlined ones represent the middle components).

2.3. Differences Between Optimization Direction of Sharp and Nonsharp Distillation Sequences

The sequence tree with only sharp distillations can be illustrated as a line structure, as Figure 3a
shows, but the one with non-sharp distillations includes more possibilities, and therefore amore
complicate structure is required, as Figure 3b shows. In Figure 3a, one end leaf node confirms a sharp
sequence; but in Figure 3b, only one end leaf node is unable to confirm a nonsharp sequence, owing to its
multi-branch structure. Before building the sharp sequence solution space tree, the sub-problems can be
determined in advance, but due to more degrees of freedom in nonsharp separation, the sub-problems
with the same components and the same split points may be slightly different in terms of feed
flowrate and component ratio, such as sub-problem A|BC generated from sub-problem ABC|BCD
and sub-problem A|BC generated from sub-problem ABC|D, as there is only the latter one in sharp
distillation sequences; therefore, the sub-problems in nonsharp distillation sequences cannot be
predicted at the beginning. Thus, the sub-problem calculation of sharp sequence optimization is
conducted from the end leaf nodes to the root node in tree structures of a sharp sequence solution
space, opposite to that of nonsharp sequence optimization. The end leaf nodes are signed in grey color
in Figure 3.
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2.4. The Recurrence of Numbers of Sequence, Subgroup and Sub-Problem in the Assumed Split Described in
Section 2.2

The purpose of the assumed split is to divide the R-components mixture into pure components.
Assuming a simple column is first in the sequence, the component number of the top outflow is set as j,
then the component number of the bottom outflow is R − j. If the sequence number of i-components
mixture is Si for a specific split point, the sequence number is S jSR− j. Following this logic, the sequence
number for a sharp simple column that is first in the sequence is Equation (1).

aR =
R−1∑
j=1

S jSR− j (1)

Assuming that a dividing wall column is first in the sequence, as a dividing wall column has
two splits, for the upper split, there are R − 2 split points to choose, and thus the upper limit of j
in Equation (2) is R − 2. Similarly to the sharp simple column, the component numbers of the top
outflow and middle outflow are set as j and k, then the component number of the bottom outflow is
R − j − k. Therefore, the sequence number for the dividing wall column that is first in the sequence
with a specific upper split point is S j

∑R− j−1
k=1 SkSR− j−k. Then, Equation (2) [32] is obtained by varying

the upper split point.

bR =
R−2∑
j=1

S j

R− j−1∑
k=1

SkSR− j−k (R > 2) (2)

According to the properties of two kinds of nonsharp simple column, Equation (3) for a
two-middle-components nonsharp simple column first in the sequence and Equation (4) for an
one-middle-component nonsharp simple column first in the sequence are similar to the form of
Equation (1).

cR =
R−2∑
j=2

S j+1SR− j+1 (3)

dR =
R−1∑
j=2

S jSR− j+1 (R > 2) (4)

Then the total sequence number is calculated by Equation (5).

SR = aR + bR + cR + dR (5)

The initial values of Equations (1)–(4) are listed below.

a1 = 1, b1 = 0, c1 = 0, d1 = 0

a2 = 1, b2 = 0, c2 = 0, d2 = 0

a3 = 2, b3 = 1, c3 = 0, d3 = 1

a4 = 9, b4 = 3, c4 = 16, d4 = 8

Table 2 is obtained by using recurrence Equations (1)–(5).
Then by using a recurrence program, Table 3 for subgroup number and Table 4 for sub-problem

number are also obtained.
From Tables 3 and 4, the conclusion is drawn that both the subgroup number and sub-problem

number including nonsharp sequences will increase exponentially as the component number increases,
because the subgroup nodes and sub-problem nodes with the same component and split point in the
solution space including nonsharp sequences can not be merged due to the difference in flow rates
of components.
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Table 2. Sequence number.

Component Number (R) Sequence Number (SR, Including
Nonsharp Sequences)

Sequence Number (Not Including
Nonsharp Sequences)

1 1 1
2 1 1
3 4 3
4 36 10
5 471 38
6 7457 154
7 131,379 654
8 2,475,056 2871
9 48,806,969 12,925
10 994,831,083 59,345

Table 3. Subgroup number.

Component Number (R) Subgroup Number (Including
Nonsharp Sequences)

Subgroup Number (Not Including
Nonsharp Sequences)

2 3 3
3 10 6
4 70 10
5 579 15
6 4761 21
7 37,852 28
8 293,580 36
9 2,242,401 45
10 16,971,043 55

Table 4. Sub-problem number.

Component Number (R) Sub-Problem Number (Including
Nonsharp Sequences)

Sub-Problem Number (Not
Including Nonsharp Sequences)

2 1 1
3 8 5
4 56 15
5 397 35
6 2980 70
7 22,736 126
8 172,988 210
9 1,308,324 330
10 9,847,517 495

3. Methodology

Inspired by the dynamic programing method for sharp distillation sequences, a bi-level distillation
sequence optimization algorithm is proposed in this work to decompose the MINLP into an IP problem
in the upper level and NLP problems in the lower level, by which the optimization of the separation
sequence is implemented at the upper level and the single column within the sequence is simulated
and optimized at the lower level.

3.1. The Framework with Aspen

The framework in Figure 4 is divided into three parts. The grey part, where the sequence is
optimized, is edited by Python. The sparse oblique-line part, where column is optimized, is edited by
VB.NET. The dense oblique-line part for the simulation and optimization of the column is the Aspen
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modules running in the background. The relationship among the three parts of the framework is
shown in Figure 5.
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The VB.NET program (column optimization plug-in program) is applied to connect the Python
program and the Aspen Plus background-running modules by manipulating the ActiveX interface
of Aspen Plus. The Python language is an integrated language with many modules and functions
encapsulated into packets, making the coding for sequence-level optimization easier.

There are two options to call and manipulate the Aspen modules automatically through the
ActiveX interface. One is to code in Python language with a packet; the other is to code in VB.NET
language. The later one is adopted in this work, because the Aspen help file [33] illustrates only the
formats of VB.NET codes for manipulating the ActiveX interface, making coding in VB.NET rather
than Python to operate Aspen modules more user-friendly.

The modules of Aspen used in this work can be divided into two categories. For simple columns
and dividing wall columns (three outflows) respectively, as shown in the grey part of Figure 3, one
includes the DSTWU (distillation-Winn-Underwood) module and RadFrac module, a module for
rigorous distillation design, while another includes the DSTWU module, RadFrac module and Petlyuk
module. The DSTWU module uses the Winn–Underwood–Gilliland (WUG) method for a short-cut.
The Winn equations are cited as Equations (6) and (7).

Nmin =
ln

[
xLK,D
xLK,B

(
xHK,B
xHK,D

)
]

ln βLK/HK
(6)

βLK/HK =
KLK

KHKθLK
(7)
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where subscripts D, B, LK, HK and x represent the top product, bottom product, light key component,
heavy key component and liquid mole fraction, respectively. The minimum stage number Nmin can be
obtained by using Winn equations. The Underwood equations are cited as Equations (8) and (9).

N∑
j=1

α j f j

α j −ϕ
= F(1− q) (8)

N∑
j=1

α jξ j f j

α j −ϕ
= D(Rmin + 1) = Vmin (9)

where αj, fj, ϕ, F, q, ξj and D represent the relative volatility of component j, flow rate of component j,
the root of Underwood equations, the feed flow rate, the feed thermal state, the recovery of component
j at the top of the column and the distillate flow rate, respectively. The minimum reflux ratio Rmin can
be obtained by using Underwood equations. The Gilliland correlation is cited as Equation (10).

Nt −Nmin

Nt + 1
= 0.75

[
1−

(R−Rmin

R + 1

)0.5668]
(10)

The theoretical stage number Nt can be obtained by using the Gilliland correlation.
Many distillation sequence optimization works depend on using only the WUG method to

simulate a single column. Based on the WUG method, a more rigorous module called RadFrac is
used in this work to improve the simulation of a single column. The RadFrac module solves material
balance, energy balance and phase equilibrium simultaneously by using two nested iteration loops
and the Newton algorithm to converge.

The Petlyuk module can be regarded as a three-columns module with complete thermal coupling
and it converges in the same way as the RadFrac module does. The prefractionator of the Petlyuk
module is a nonsharp column, but the whole Petlyuk module is designed only for sharp separation.
As the Petlyuk module is thermodynamically equivalent to the ideal dividing wall column, the dividing
wall column is also for sharp separation only.

The Aspen Plus ActiveX automation server is used in this work as an interface to connect
theVB.NET program and the Aspen Plus modules. This server exposes objects of Aspen Plus through
the COM (component object model), and the vast majority of parameters are stored in a tree structure.
Using VB.NET code in a specific format can navigate this tree structure and change the data on
it. With this interface, the inputs and the results of Aspen Plus simulations can be connected to
other applications.

In addition, this program framework can be further expanded to optimize distillation sequences
with more complex structures.

3.2. The Search Space and the Pruning Operation

The scale of the solution space tree can be huge, and expanding the whole solution space tree
consumes too much computing resource, therefore, a pruning method is proposed. The method can be
implemented in two basic steps: first, once a subgroup level is finished, whether completed sequence
trees are contained in the current incomplete solution space tree is determined; second, if there are
completed sequence trees in the current incomplete solution space tree, the best one of them will be
selected. All sequence trees contained in the current incomplete solution space tree will be compared
with the best completed sequence tree while the ones worse than this one will not be expanded by
deleting the nodes of the newest subgroup levels of them. In this method, the search space is generated.
If the solution space tree is not pruned, the search space is equivalent to the solution space.
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In Figure 6, after finishing the second subgroup level of the solution space tree, the black nodes
make up a completed sequence tree earliest. If the cost of sequence tree ABC//AB|C//AB/C is greater
than that of the black-nodes tree, the subgroup nodes AB and C of this sequence tree will be removed.
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4. Results and Discussion

Using framework illustrated in Section 3, two cases including an industrial one were optimized in
this section and their results were discussed. The sequences’ TACs of the two cases are all calculated
according to Appendix A.

4.1. Four-Component Alkane Case

The original inflow composition of this case is listed in Table 5.

Table 5. The original inflow of the four-component alkane case.

Component Flow Rate (kmol/h)

n-Hexane 200
n-Heptane 200
n-Octane 200
n-Nonane 200

The components n-Hexane, n-Heptane, n-Octane and n-Nonane are represented by the letters A,
B, C and D respectively in this section. The costs of sharp and non-sharp sequences of this case are
shown in Tables 6 and 7 respectively.

The optimal one of the 36 sequences is shown as Figure 7.
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Table 6. The costs of sharp sequences of the four-component alkane case. TAC = total annual cost.

Number TAC (Dollar) Containing Dividing Wall Column or Not

1 17,857,006 yes
2 22,639,012 no
3 22,057,879 yes
4 18,258,990 yes
5 18,613,382 yes
6 18,274,174 yes
7 22,199,609 no
8 23,752,499 no
9 25,522,719 no

10 26,919,693 no
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Table 7. The costs of nonsharp sequences of the four-component alkane case.

Number TAC (Dollar) Containing Dividing Wall Column or Not

1 20,643,115 yes
2 19,645,301 yes
3 26,352,487 yes
4 25,823,053 no
5 25,314,930 no
6 26,053,113 no
7 28,598,757 no
8 28,090,634 no
9 28,828,817 no

10 23,960,076 yes
11 23,451,953 yes
12 22,506,092 yes
13 25,281,796 yes
14 25,989,749 yes
15 24,190,136 yes
16 29,306,710 no
17 28,798,587 no
18 29,536,771 no
19 24,814,920 no
20 29,052,332 no
21 23,895,168 no
22 24,144,968 no
23 24,599,039 no
24 28,781,709 no
25 31,205,129 no
26 31,941,852 no

The four-components case has 36 sequences (including 10 sharp ones) according to the split in
Section 2.2. From Table 7, it can be concluded that most of the nonsharp sequences with relatively
small costs contain dividing wall columns. Thus, thermal coupling is the most important factor for
energy savings.

From Table 8, it can be noticed that after pruning, 12 of the 36 sequences remain. As concluded
from Table 9, the scale of the search space tree is smaller than that of the solution space tree. Part of the
possible sequences of this case are shown in Figure 8.

Table 8. Remaining sequences’ costs of the four-component alkane case after pruning.

Number TAC (Dollar) Sharp or Not

1 17,857,006 yes
2 22,639,012 yes
3 22,057,879 yes
4 18,258,990 yes
5 18,613,382 yes
6 18,274,174 yes
7 20,643,115 no
8 19,645,301 no
9 26,352,487 no

10 22,199,609 yes
11 23,752,499 yes
12 24,814,920 no
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Table 9. Comparison of node numbers between the solution space tree (before pruning) and the search
space tree (after pruning) of the four-component alkane case.

Level Solution Space Tree Search Space Tree

1 1 1
2 9 9
3 21 21
4 31 31
5 68 17
6 24 10
7 48 14
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From the four-component alkane case, it can be concluded that in this case, only one nonsharp
sequence (enclosed in thick frame) with a smaller distillation rate nonsharp simple column and a
dividing wall column is better than all sharp sequences without dividing wall columns (enclosed in
slim frame). The cost of a smaller-distillation-rate simple column is less than that of the ones with larger
distillation rates and same feeds, so as summarized from sequences enclosed in slim frame, the total
distillation rate of the sequence is positively correlated to its TAC, showing that total distillation rate
is an influencing factor of distillation sequence TAC. Energy can be saved by using dividing wall
columns. Using nonsharp simple columns without any integration in the sequence to get all products
finally sharp separated is ineffective (more nonsharp simple columns, more ineffective). Using a
rigorous distillation model is so computationally intensive that only WUG equations are employed
in other optimization methods based on MINLP problem solving. However, in this framework,
the optimization efficiency is improved so that the rigorous model is used for computational efficiency.

Assuming that the component number of the origin mixture is R. According to the conclusion
above, the split for the nonsharp separation requirement is proposed as follows.

1. Using sharp distillation columns (simple column and dividing wall column) for sharp split points.
2. Using nonsharp simple column for nonsharp split points.

The solution space generated by this split is a subset of that generated by the split in Section 2.2.
Then the recurrence formula for sequence number SR is Equation (11), similar to that of sharp distillation
sequences [34].

SR(δ) =



1(R = 1)
R−1∑
j=1

S jSR− j(R = 2)

R−1∑
j=1

S j(δS j)SR− j(δSR− j) +
R−r(δ)−2∑

j=1
S j(δS j)

R−r(δ)− j−1∑
k=1

Sk(δSk)SR−r(δ)− j−k(δSR−r(δ)− j−k
)(R > 2, r(δ) ≤ R)

(11)
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where δ is the split-point set of sequence number SR(δ), and r(δ) is the number of nonsharp split points
in δ.

4.2. Petroleum Refinery Case

This distillation sequence case is a part of a process in which a mixture containing mixed diesel
oil, straight-run diesel oil, FCC (fluid catalytic cracking) diesel oil and diesel oil produced by residue
hydrogenation is hydrogenated, then high-pressure-separation gas is separated from the product of
the hydrogenation reaction as recycled hydrogen. Finally, the crude diesel oil after hydrogenation is
fractionated to produce naphtha and diesel oil. In this distillation sequence case, a mixture is divided
into four products by three nonsharp splits. The four products are gas mixtures containing hydrogen,
non-condensing gas mixtures, naphtha, and diesel respectively. The purpose of this case is to get
all products nonsharp separated. According to the conclusion of the four-component alkane case,
the nonsharp simple column should only be employed for nonsharp separation requirement. In this
way a nonsharp simple column can work effectively, and the solution space tree obtained is shown in
Figure 9.
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The pruning operation is used to downsize this solution space tree. The pruning process is
depicted below. The sequence 2\6\7 is the shortest completed sequence, and sequences 1\4, 1\5, 3\8
and 3\9 are compared with sequence 2\6\7. The costs of sequences 3\8 and 3\9 are more than that
of sequence 2\6\7, so the child subgroup nodes of sub-problem nodes 8 and 9, sub-problem nodes
12 and 13 and child subgroup nodes of sub-problem nodes 12 and 13 are removed. The remaining
sub-problem nodes’ costs and the remaining sequences’ costs of this case after pruning are shown in
Tables 10 and 11 respectively.

Table 10. Remaining sub-problem nodes’ costs of the petroleum refinery case after pruning.

Sub-Problem Node TAC (Dollar)

1 42,927,499
2 66,525,092
3 104,910,383
4 37,352,492
5 66,867,845
6 6,954,837
7 39,054,059
8 32,594,510
9 69,679,308

10 41,435,554
11 9,448,464
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Table 11. Remaining sequences’ costs of the petroleum refinery case after pruning.

Sequence TAC (Dollar)

1\4\10 121,715,546
1\5\11 119,243,810
2\6\7 112,533,989

Obviously, the optimal sequence of the petroleum refinery case is the sequence 2\6\7. The actual
sequence of the petroleum refinery case is 1\4\10. The optimal sequence saves 7.5% of the cost
compared to the actual sequence. After pruning, 11 of the 13 sub-problem nodes remain and three of
the five sequences remain. By this pruning result, we have shown that the pruning way is effective to
reduce the computational load.

5. Conclusions

Under the same separation requirement, the scale of the solution space including both sharp and
nonsharp distillation sequences is much larger than that of the solution space only including sharp
distillation sequences. The optimization direction in the solution space tree structure of nonsharp
distillation sequences is from the root node to the end leaf nodes, opposite to that of sharp distillation
sequences. In nonsharp distillation sequences, nonsharp simple columns should be used to fit nonsharp
separation requirements or form the thermal coupling column (like the Petlyuk module). The pruning
method can reduce the computation required in both sharp and nonsharp distillation sequence
optimization. The program framework proposed in this work is verified for automatic and effective
optimization of distillation sequences including nonsharp separation.
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Appendix A

TAC (total annual cost) is the sum of the annual capital cost and the annual operating cost of a
distillation sequence. The annual depreciation coefficient β is set to 0.1. The capital cost Ccapital includes
the equipment investment of all the columns, condensers and reboilers. The annual operating cost
Cannual operating is simplified to energy cost of all the condensers and reboilers. TAC is calculated by
Equation (A1) [10].

TAC = β ·Ccapital + Cannual operating (A1)

The column height HC is calculated by Equation (A2) [35].

Hc = 0.6N + 4.27 (A2)

The column equipment investment Ccolumn is calculated by Equation (A3) [35], herein, Dc is the
column diameter.

Ccolumn = (101.9Dc
1.066Hc

0.802
· 3.18 + 4.7Dc

1.55Hc)
(803

274

)
(A3)

The condenser equipment investment Ccon is calculated based on Equations (A4) and (A5) [36],
herein, Acon, Qc, Uc and ∆T are the condenser heat transfer area, the condenser heat duty, the condenser
overall heat transfer coefficient and the temperature difference, respectively.

Acon = Qc/(3600Uc∆T) (A4)
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Ccon = 101.3Acon
0.65
· 3.29 ·

(803
274

)
(A5)

The reboiler equipment investment Creb is calculated based on Equations (A6) and (A7) [36],
herein, Areb, Qr and Ur are the reboiler heat transfer area, the reboiler heat duty and the reboiler overall
heat transfer coefficient, respectively.

Areb = Qr/(3600Ur∆T) (A6)

Creb = 101.3Areb
0.65
· 3.29 ·

(803
274

)
(A7)

In conclusion, TAC is calculated by Equation (A8).

TAC = β(
∑

Ccolumn +
∑

Ccon +
∑

Creb) + Cannual operating (A8)
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