
An Improved Compact Genetic Algorithm for Scheduling Problems in a
Flexible Flow Shop with a Multi-Queue Buffer

Authors:

Zhonghua Han, Quan Zhang, Haibo Shi, Jingyuan Zhang

Date Submitted: 2019-07-31

Keywords: probability density function of the Gaussian distribution, improved compact genetic algorithm, multi-queue limited buffers, flexible
flow shop scheduling

Abstract:

Flow shop scheduling optimization is one important topic of applying artificial intelligence to modern bus manufacture. The scheduling
method is essential for the production efficiency and thus the economic profit. In this paper, we investigate the scheduling problems in
a flexible flow shop with setup times. Particularly, the practical constraints of the multi-queue limited buffer are considered in the
proposed model. To solve the complex optimization problem, we propose an improved compact genetic algorithm (ICGA) with local
dispatching rules. The global optimization adopts the ICGA, and the capability of the algorithm evaluation is improved by mapping the
probability model of the compact genetic algorithm to a new one through the probability density function of the Gaussian distribution. In
addition, multiple heuristic rules are used to guide the assignment process. Specifically, the rules include max queue buffer capacity
remaining (MQBCR) and shortest setup time (SST), which can improve the local dispatching process for the multi-queue limited buffer.
We evaluate our method through the real data from a bus manufacture production line. The results show that the proposed ICGA with
local dispatching rules and is very efficient and outperforms other existing methods.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2019.0875
Citation (this specific file, latest version): LAPSE:2019.0875-1
Citation (this specific file, this version): LAPSE:2019.0875-1v1

DOI of Published Version: https://doi.org/10.3390/pr7050302

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)

processes

Article

An Improved Compact Genetic Algorithm for
Scheduling Problems in a Flexible Flow Shop with a
Multi-Queue Buffer

Zhonghua Han 1,2,3,4, Quan Zhang 2,*, Haibo Shi 1,3,4 and Jingyuan Zhang 2

1 Department of Digital Factory, Shenyang Institute of Automation, the Chinese Academy of Sciences (CAS),
Shenyang 110016, China; xiaozhonghua1977@163.com (Z.H.); hbshi@sia.cn (H.S.)

2 Faculty of Information and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
Nlnlznl_0307@163.com

3 Key Laboratory of Network Control System, Chinese Academy of Sciences, Shenyang 110016, China
4 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
* Correspondence: zhangq0716@163.com; Tel.: +86-24-24690045

Received: 3 April 2019; Accepted: 15 May 2019; Published: 21 May 2019
����������
�������

Abstract: Flow shop scheduling optimization is one important topic of applying artificial intelligence
to modern bus manufacture. The scheduling method is essential for the production efficiency and thus
the economic profit. In this paper, we investigate the scheduling problems in a flexible flow shop with
setup times. Particularly, the practical constraints of the multi-queue limited buffer are considered
in the proposed model. To solve the complex optimization problem, we propose an improved
compact genetic algorithm (ICGA) with local dispatching rules. The global optimization adopts
the ICGA, and the capability of the algorithm evaluation is improved by mapping the probability
model of the compact genetic algorithm to a new one through the probability density function of
the Gaussian distribution. In addition, multiple heuristic rules are used to guide the assignment
process. Specifically, the rules include max queue buffer capacity remaining (MQBCR) and shortest
setup time (SST), which can improve the local dispatching process for the multi-queue limited buffer.
We evaluate our method through the real data from a bus manufacture production line. The results
show that the proposed ICGA with local dispatching rules and is very efficient and outperforms other
existing methods.

Keywords: flexible flow shop scheduling; multi-queue limited buffers; improved compact genetic
algorithm; probability density function of the Gaussian distribution

1. Introduction

The body shop and paint shop for the bus manufacturers are flexible flow shops. The processing
flow is divided into multiple stages, and there are multiple parallel machines to process jobs in each
stage. Due to the large volume of the buses and the long production cycle, only buffers with a limited
number of spaces can be deployed in the production line. At the same time, the bus is not equipped
with a chassis for starting the engine in the installation workshop, and they can only be carried on the
skids. Therefore, there is usually a buffer between the body shop and paint shop, and the buffer is
usually divided into multiple lanes for the ease of scheduling and operation. Each lane has an equal
number of spaces for the bus bodies. The bus enters the lane from one side and exits the lane from
the other side. The bus body which is waiting for processing will form a waiting queue in each lane.
Thus, for multiple lanes, there could exist multiple waiting queues. These waiting queues together are
called a multi-queue limited buffer in this paper. When the bus completes the processing in the body
shop, it needs to select one of the lanes in the multi-queue limited buffer and enter the corresponding

Processes 2019, 7, 302; doi:10.3390/pr7050302 www.mdpi.com/journal/processes

Processes 2019, 7, 302 2 of 24

waiting queue, and the bus is carried by an electric flat carriage to move in the queue. When there is an
idle machine in the paint shop, one bus in the multiple waiting queues can be moved out of the buffer
to the paint shop for processing. In the actual production line, if the properties such as the model
and color are different from those of the previous bus processed by the machine, the cleaning and
adjustment of the equipment also have to be done on the machine before proceeding to the next, which
results in an extra setup time in addition to the standard processing time. Therefore, these scheduling
problems in a bus manufacturer can be characterized as the multi-queue limited buffer scheduling
problems in a flexible flow shop with setup times.

The research status of the limited buffers scheduling problem and the research status of the
scheduling problem considering the setup times are described below. The scheduling problem with
limited buffers is of significant value for practical production scenarios, but is also very challenging
in theory. In recent years, the scheduling problem with limited buffers has gained the immense
attention of researchers. Zhao et al. [1] designed an improved particle swarm optimization (LDPSO)
with a linearly decreasing disturbance term for flow shop scheduling with limited buffers. Ventura
and Yoon [2] studied the lot-streaming flow shop scheduling problem with limited capacity buffers
and proposed a new genetic algorithm (NGA) to solve the problem. Han et al. [3] studied the
hybrid flow shop scheduling problem with limited buffers and used a novel self-adaptive differential
evolution algorithm to effectively improve the production efficiency of the hybrid flow shop. Zeng
et al. [4] proposed an adaptive cellular automata variation particles warm optimization algorithm
with better optimization and robustness to solve the problems of flexible flow shop batch scheduling.
Zhang et al. [5] presented a hybrid artificial bee colony algorithm combined with the weighted profile
fitting based on Nawaz–Enscore–Ham (WPFE) heuristic algorithm which effectively solved the flow
shop scheduling problem with limited buffers.

In recent years, due to the awareness of both the importance of production preparation and the
necessity of separating the setup time and processing time, the scheduling problem considering the
setup time has gained a lot of attention from the academic and industrial circles. Zhang et al. [6]
employed an enhanced version of ant colony optimization (E-ACO) algorithm to solve flow shop
scheduling problems with setup times. Shen et al. [7] presented a Tabu search algorithm with specific
neighborhood functions and a diversification structure to solve the job shop scheduling problem
with limited buffers. Tran et al. [8] studied the unrelated parallel machine scheduling problem with
setup times and proposed a branch-and-check hybrid algorithm. Vallada and Ruiz [9] studied the
unrelated parallel machine scheduling problem with sequence dependent setup times and proposed a
genetic algorithm to solve the problem. Benkalai et al. [10] studied the problem of scheduling a set
of jobs with setup times on a set of machines in a permutation flow shop environment, proposing
an improved migrating bird optimization algorithm to solve the problem. An et al. [11] studied the
two-machine scheduling problem with setup times and proposed a branch and bound algorithm to
solve this problem.

The related work in recent years showed that the current research on the limited buffers
scheduling problem mainly addressed the shop scheduling problems under a given buffer capacity and
mainly highlighted global optimization algorithms. By improving algorithms or combining different
algorithms, researchers proposed algorithms with more accuracy in terms of optimization. However,
few scholars systematically studied one specific type of limited buffer. At present, the research on
scheduling problems with setup times mainly focus on the impact of setup times under the single
condition on the processing time. The current studies mainly focus on the improvement in traditional
algorithms, while few scholars study the scheduling problems with setup times under the conditions of
a dynamic combination of multiple properties (in actual production, setup times are affected by quite a
few factors and the combination of multiple factors will produce multiple setup times). Thus, there is
no further exploration of the scheduling problem with setup times under the production constraints.
The multi-queue limited buffers scheduling problem studied in this paper is more complex than the
general limited buffers scheduling problem. This problem requires not only the consideration of the

Processes 2019, 7, 302 3 of 24

capacity for limited buffers but also the investigation of (1) the distribution problem when the job
enters the lane in the multi-queue limited buffers and (2) the problem of selecting a job from multiple
lanes in the multi-queue limited buffers to enter the next stage. On this basis, the research in this paper
also considers the influence of setup times on the scheduling process under the dynamic combination
of multiple properties, which can greatly increase the complexity of scheduling problems and the
uncertainty of scheduling results. The scheduling problems in a flexible flow shop have long proved to
be a non-deterministic polynomial hard (NP-hard) problem [12], and thus the multi-queue limited
buffers scheduling problem in a flexible flow shop with setup times studied in this paper is also of the
NP-hard nature.

As the situations become complicated, more efficient optimization methods needed to be further
explored. The compact genetic algorithm (CGA) is a distribution estimation algorithm proposed by
Harik [13]. It has great advantages in regard to computational complexity and evolutionary speed,
but still the search range is smaller, and it is easy to fall into the local extremum. The scholars
overcame its deficiencies mainly by using multiple population and probability distributions [14].
These two approaches, however, could not significantly improve the algorithm’s optimization and
might lose the advantage of the CGA in the fast search. The probabilistic model and the process of
generating new individuals in a probabilistic model are explored to prevent the CGA from being
premature and improve the quality and diversity of new individuals. This study proposes an improved
compact genetic algorithm (ICGA) that maps the original probabilistic model to a new one through
the probability density function of the Gaussian distribution to enhance the algorithm’s evolutionary
vigor and its ability to jump out of the local extremum, which can better solve the multi-queue limited
buffers scheduling problems in a flexible flow shop with setup times.

2. Mathematical Model

2.1. Problem Description

Figure 1 illustrates the scheduling problem in which n jobs are required to be processed in m
stages [15]. At least one stage in the m stages includes multiple parallel machines. Each job is needed
to be assigned one machine at each stage. Also, buffers with given capacity exist between stages.
The completed job enters the buffer and waits for the availability of the next stage. If the buffer is full,
the completed job of the previous stage will stay on its current machine. In this situation, the machine
is unavailable and cannot process other jobs until the buffer has available spaces. The buffers contains
multiple lanes, and each lane has a limited number of spaces. The job enters the lane from one side and
exits the lane from the other side. The jobs that wait for processing form a waiting queue in each lane.
When the job enters this buffer, it needs to select one of the lanes and enter its waiting queue. When
there is an idle machine in the next stage, it is necessary to select one bus in multiple waiting queues to
move out of the buffer for processing. When all the lanes of this buffer reach the upper limit of the
capacity, there will also be cases where the job is blocked at the machine of the previous stage. When
the job is assigned to the machine, the setup time should also be added besides the standard processing
time if the property of the job did not match that of the previous job. The standard processing time of
the job at each stage, the online sequence of the job in the production process and the job’s setup times,
start time, and completion time at each stage can be obtained through the scheduling, so as to achieve
better scheduling results.

Processes 2019, 7, 302 4 of 24
Processes 2019, 7, x FOR PEER REVIEW 4 of 24

Figure 1. Model for the multi-queue limited buffers scheduling problems in a flexible flow shop.

2.2. Parameters in the Model

The parameters used in this paper are as follows:

n : number of jobs to be scheduled;

m : number of stages;

iJ : job i , {1,..., }i n ;

jOper : stage j , 1,...,j m ;

jM : number of machines in each stage, 1,...,j m ;

,j lWS : machine l of stage jOper , 1,...,j m , 1,..., jl M ;

jBu : the buffer of stage jOper , 2,...,j m ;

jA : number of waiting queue in the buffer of stage jOper , 2,...,j m ;

,j aBs : the ath lane of buffer jBu at stage jOper , 2,...,j m , 1,..., ja A ;

,j aK : number of spaces in lane ,j aBs of buffer jBu at stage jOper , 2,...,j m , 1,..., ja A ;

, ,j a kb : space k in lane ,j aBs of buffer jBu , 2,...,j m , 1,..., ja A , ,1,..., j ak K ;

 ,j aWA t : at time t , the waiting queue in the ath lane ,j aBs of buffer jBu , 2,...,j m , 1,..., ja A

;

,i jS : the start time to process job iJ at stage jOper ;

,i jC : the completion time to process job iJ at stage jOper ;

,i jTb : the standard processing time of job iJ at stage jOper , 1,...,j m ;

,i jTe : the entry time of job iJ into buffer jBu , 2,...,j m ;

,i jTl : the departure time of job iJ out of buffer jBu , 2,...,j m ;

,i jTo : the departure time of job iJ on its machine after job iJ is processed at stage jOper , 1,...,j m ;

,i jTw : the waiting time of job iJ in buffer jBu , 2,...,j m ;

, ,i j lTs : the setup time of machine ,j lWS when job iJ is processed on machine ,j lWS , 2,...,j m ;

' '', ,

l

x i i
Nsrv : the relationship between properties of job continuously processed on machine ,j lWS ,

 ' '', 1,...,i i n and ' ''i i .

2.3. Constraints

2.3.1. Assumptions

The variables used in this paper are as follows:

Figure 1. Model for the multi-queue limited buffers scheduling problems in a flexible flow shop.

2.2. Parameters in the Model

The parameters used in this paper are as follows:

n: number of jobs to be scheduled;
m: number of stages;
Ji: job i, i ∈ {1, . . . , n};
Oper j: stage j, j ∈ {1, . . . , m};
M j: number of machines in each stage, j ∈ {1, . . . , m};

WS j,l: machine l of stage Oper j, j ∈ {1, . . . , m}, l ∈
{
1, . . . , M j

}
;

Bu j: the buffer of stage Oper j, j ∈ {2, . . . , m};
A j: number of waiting queue in the buffer of stage Oper j, j ∈ {2, . . . , m};

Bs j,a: the ath lane of buffer Bu j at stage Oper j, j ∈ {2, . . . , m}, a ∈
{
1, . . . , A j

}
;

K j,a: number of spaces in lane Bs j,a of buffer Bu j at stage Oper j, j ∈ {2, . . . , m}, a ∈
{
1, . . . , A j

}
;

b j,a,k: space k in lane Bs j,a of buffer Bu j, j ∈ {2, . . . , m}, a ∈
{
1, . . . , A j

}
, k ∈

{
1, . . . , K j,a

}
;

WA j,a(t): at time t, the waiting queue in the ath lane Bs j,a of buffer Bu j, j ∈ {2, . . . , m}, a ∈
{
1, . . . , A j

}
;

Si, j: the start time to process job Ji at stage Oper j;
Ci, j: the completion time to process job Ji at stage Oper j;
Tbi, j: the standard processing time of job Ji at stage Oper j, j ∈ {1, . . . , m};
Tei, j: the entry time of job Ji into buffer Bu j, j ∈ {2, . . . , m};
Tli, j: the departure time of job Ji out of buffer Bu j, j ∈ {2, . . . , m};
Toi, j: the departure time of job Ji on its machine after job Ji is processed at stage Oper j, j ∈ {1, . . . , m};
Twi, j: the waiting time of job Ji in buffer Bu j, j ∈ {2, . . . , m};
Tsi, j,l: the setup time of machine WS j,l when job Ji is processed on machine WS j,l, j ∈ {2, . . . , m};

Nsrvl
x,i′,i′′ : the relationship between properties of job continuously processed on machine WS j,l,

i′, i′′ ∈ {1, . . . n} and i′ , i′′ .

Processes 2019, 7, 302 5 of 24

2.3. Constraints

2.3.1. Assumptions

The variables used in this paper are as follows:

Ati, j,l =

1,

Job Ji is assigned to be processed

on machine WS j,l at stage Oper j

0,
Job Ji isn′t assigned to be processed

on machine WS j,l at stage Oper j

(1)

OAi, j,a(t) =

1,

At time t, job Ji is in waiting
processing queue WA j,a(t) at stage Oper j

0,
At time t, job Ji isn′t in waiting

processing queue WA j,a(t) at stage Oper j

(2)

QBC j,a(t) =

1,

At time t, the number of jobs in lane Bs j,a at stage
Oper j is greater than zero, namely, card

(
WA j,a(t)

)
> 0

0,
At time t, the number of jobs in lane Bs j,a at stage
Oper j is equal to zero, namely, card

(
WA j,a(t)

)
= 0

(3)

2.3.2. General Constraint of Flexible Flow Shops Scheduling

The general constraint of flexible flow shops scheduling are as follows:

M j∑
l=1

Ati, j,l = 1 (4)

Ci, j = Si, j + Tbi, j, i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · , m} (5)

Ci, j−1 ≤ Si, j, i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · , m} (6)

Equation (4) indicates job Ji at stage Oper j can only be processed on one machine. Equation (5)
constrains the relationship between the start time and completion time for job Ji at stage Oper j.
Equation (6) represents that job Ji needs to complete the current stage before proceeding to the next
stage. The general constraints of flexible flow shops are still valid for the multi-queue limited buffers
scheduling problem in a flexible flow shop with setup times.

2.3.3. Constraints of Limited Buffers

The constraints of limited buffers are as follows:

Toi, j =

Tei, j+1 j = {1, . . . , m− 1}

Ci, j j = m
. (7)

In Equation (7), when the job is at stage Oper j (i = {1, . . . , m− 1}), the departure time of the job on
the machine is equal to the entry time of the job into the buffer. When the job is at stage Operm, the
departure time of the job on the machine equals the completion time.

Tei, j ≥ Ci, j−1, j ∈ {2, . . . , m}. (8)

Processes 2019, 7, 302 6 of 24

Equation (8) indicates that the entry time of the job into the buffer is greater than or equal to the
completion time of the job in the previous stage. If the limited buffers are blocked, the job will be
retained on the machine after completing the previous stage.

WA j,a(t) =
{
Ji
∣∣∣OAi, j,a(t) = 1

}
. (9)

Equation (9) shows all jobs contained in the waiting queue of limited buffers at time t.

card
(
WA j,a(t)

)
≤ K j,a. (10)

Equation (10) denotes that at any time, the number of jobs in the waiting queue WA j,a is less than
or equal to the maximum number of spaces (K j,a) in the lane where WA j,a is located.

2.3.4. Constraints of Multi-Queue Limited Buffers

Two new constraints of Equations (11) and (12) are added based on the constraints of Equations
(8) and (10).

A j∑
a=1

n∑
i=1

OAi, j,a(t) ≤ n. (11)

In Equation (11), when A j > 1, at any time, the number of jobs to be processed in the waiting
queue of multi-queue limited buffers is less than or equal to the number of jobs n.

A j∑
a=1

QBC j,a(t) ≤ n. (12)

In Equation (12), when A j > 1, at any time, the number of jobs, which can proceed to the machine
of stage Oper j, in the waiting queue of multi-queue limited buffers is less than or equal to the number
of jobs n.

If ∃i′, i′′ ∈
{
i
∣∣∣OAi, j,a(t) = 1

}
, Tei′, j ≤ Tei′′ , j, Tli′, j and Tli′′ , j will satisfy the following relationship

Tli′, j ≤ Tli′′ , j. (13)

In Equation (13), when A j > 1, the job of the ath lane must meet the requirement that the job
entering the queue first should depart from the queue first.

2.3.5. Constraints of Setup Times

The constraints of setup times are as follows:

M j∑
l=1

(
Tsi, j,l·Ati, j,l

)
+ Ci, j−1 ≤ Si, j, i ∈ {1, . . . , n}, l ∈

{
1, . . . , M j

}
, j ∈ {2, . . . , m}. (14)

Equation (14) extends the basic constraint of Equation (6) of a flexible flow shop to obtain the
relationship between setup times and start time as well as completion time. Equation (14) indicates
that the start time of the current stage is greater than or equal to the completion time of the previous
stage plus setup times.

X denotes the number of job’s properties. propx,i represents the property of job Ji. Propi =
{
propx,i

}
represents the collection of properties of job Ji, and x ∈ {1, . . . , X}.

Nsrvl
x,i′,i′′ =

1 propx,i′ , propx,i′′

0 propx,i′ = propx,i′′
. (15)

Processes 2019, 7, 302 7 of 24

Ji′ and Ji′′ (i′, i′′ ∈ {1, . . . , n}) are jobs continuously processed on machine WS j,l. When Nsrvl
x,i′,i′′ =

0, it means that when property propx,i′ of job Ji′ and property propx,i′′ of job Ji′′ are the same, no setup
time is required to process the latter job on the machine. When Nsrvl

x,i′,i′′ = 1, it represents that when
property propx,i′ of job Ji′ and property propx,i′′ of job Ji′′ are different, the setup time is required to
process the latter job on the machine.

Tsi′, j,l =
X∑

x=1

Tsp j,x·Nsrvl
x,i′,i′′ , i′, i′′ ∈ {1, . . . , n}, j ∈ {2, . . . , m}, l ∈

{
1, . . . , M j

}
. (16)

In Equation (16), at stage Oper j, Tsp j,x represents the required setup times when there is a change in
one property propx,i of two consecutively processed jobs. TSP j =

{
Tsp j,x

}
denotes the collection of setup

times when there is a change in the property of two consecutively processed jobs at stage Oper j, and
x ∈ {1, . . . , X}. Tsi′, j,l is the required setup time when several properties of job Ji′ processed on machine
WS j,l at stage Oper j are different from those of the previous job processed on the same machine.

Other constraints are as follows. Uninterruptible constraint: if the job has been started on
the machine, it cannot be interrupted until the production process on the machine is completed.
Machine availability constraint: all machines in the scheduling are available at production time. Time
simplification constraint: not to consider the time of jobs transferred among spaces in the multi-queue
limited buffers, and the time of jobs transferred between machines in front and back stages, that is to
say, only consider the processing time of the job processed in each stage and setup times when the
property of jobs processed successively on the machine is changed.

2.4. Evaluation Index of the Scheduling Result

• Makespan
Cmax = max

{
Ci,m

}
, i ∈ {1, 2, . . . , n}. (17)

In Equation (17), Cmax indicates the maximum completion time of all jobs processed at the last
stage, which is also the time for all jobs to complete the process.

• Waiting processing time for total job

TWIP =
m∑

j=2

n∑
i=1

(
Si j −Ci, j−1

)
. (18)

In Equation (18), the waiting time of the job is from the completion moment Ci, j−1 of job Ji at stage
Oper j−1 to the start moment Si j at the next stage Oper j. TWIP represents the sum of the waiting times
of all jobs processed in the entire production. In the production shop of limited buffers, the waiting
time of each job between stages is equal to the sum of time for the job staying on the buffer (Tli, j − Tei, j),

blocking time of the job on the machine (Tei, j −Ci, j−1), and setup times (
M j∑
l=1

(
Tsi, j,l·Ati, j,l

)
).

• Idle time for total machine

TWT =
m∑

j=1

M j∑
l=1

(max
{
Toi, j ·Ati, j,l

}
−min

{
Si, j ·Ati, j,l

})
−

n∑
i=1

(
Tbi, j ·Ati, j,l

). (19)

The idle time for the machine in Equation (19) represents the time between the start time of the first
job and completion time of the last job on each machine. TWT is the sum of idle time for all machines.

Processes 2019, 7, 302 8 of 24

• Total device availability

FUR =

m∑
j=1

n∑
i=1

(
Tbi, j

)
m∑

j=1

M j∑
l=1

(
max

{
Toi, j ·Ati, j,l

}
−min

{
Si, j ·Ati, j,l

}) . (20)

In Equation (20), FUR represents the total device availability of all machines in a flexible flow
shop, which is the ratio of the effective processing time of all machines to the occupied time span of
the machine. This time span starts from the first job processed on the machine to the last job that is
finished and has left the machine.

• Total machine setup times

TS =
n∑

i=1

m∑
j=1

M j∑
l=1

(
Tsi, j,l·Ati, j,l

)
. (21)

In Equation (21), TS is the sum of all stages’ setup times in a flexible flow shop.

• Total job blocking time

TPB =
n∑

i=1

m∑
j=2

(
Tei, j −Ci, j−1

)
. (22)

In Equation (22), TPB is the sum of blocking time of all jobs stuck on the machine due to the
buffers being full after all jobs finish the processing in a flexible flow shop.

3. Improved Compact Genetic Algorithm

In the evolution of standard CGA, new individuals are generated based on probability distribution
of the probabilistic model, and individuals conforming to the evolutionary trend are selected to update
the distribution probability. The elements in the model, namely the probability values, represent
the distribution of feasible solutions. The continuously accumulated optimization information in
the evolution is reflected in the probability values of the probabilistic model. The CGA adopts the
single individual to update the probabilistic model in each generation, and the new individual of
each generation is also generated in the model. After several generations, if one of the probability
values on the model’s column (or row), which controlled the generation of individual gene fragments,
is extremely large, it leads to similar genes appearing in the same position of new individuals generated
in later evolutions, decreasing the diversity of new individuals. As the individuals generated from
the probabilistic model will update the model conversely, the probability values will further increase.
When elements (probability values) in the probabilistic model all become 0 or 1, the CGA will terminate
the evolution process. Therefore, it is difficult for the CGA to jump out of the local extremum once it
falls into this situation. Afterward, the overall trend for evolution is irreversible, leading to a premature
convergence of the algorithm. As such, if only an expanding the number of new individuals generated
by the model is considered, the optimization effect of the algorithm cannot be significantly improved,
and the advantage of the CGA in the fast search will be lost. The probabilistic model and the process
of generating new individuals from the model were explored to prevent the prematurity of the CGA
and improve the quality and diversity of new individuals. First, the distribution of probability values
in a column (or a row) that were related to gene fragments of new individuals in the probabilistic
model were determined, and then the probability density function of the Gaussian distribution was
introduced to map the probabilistic model from the original one to the new one. Under the premise of
keeping the probability values’ distribution of the original probabilistic model unchanged, the search
ability of feasible solutions could be expanded, thereby developing the diversity of new individuals.

Processes 2019, 7, 302 9 of 24

3.1. Establishing and Initializing the Probabilistic Model

The probabilistic model was responsible for counting and recording the distribution of genes in the
individual after the evolution of the algorithm. According to the individual coding information, namely
online sequence and machine assignment, the n × n matrix PL was established as the online-sequence
probabilistic model of the CGA to optimize the scheduling online sequence. In the probabilistic model,
the 1st to nth rows corresponded to jobs J1 to Ji, and the 1st to nth columns corresponded to individuals
1 to n. P1

i,s indicated the probability of job Ji appearing at position s of the online processing queue.
The probabilistic model was initialized by a uniform assignment. This method directly set the

equal probability of each job appearing at each position, providing a more balanced optimization
starting point for the algorithm. It used the uniform assignment to initialize the probabilistic model P,
namely ∀(i, s), P1

i,s = 1/n, which could expand the search range of the algorithm’s feasible solution.

In addition, it was restricted by the constraint that ∀(s),
n∑

i=1
P1

i,s = 1.

3.2. Mapping the Original Probabilistic Model to the New Probabilistic Model

Some scholars used information entropy to evaluate the distribution of probability values in the
probabilistic model [16]. This approach is not quite sensitive to the distribution of probability values.
This study adopted the method of calculating the standard deviation of probability values in the
probabilistic model to assess the probability distribution in the original probabilistic model so as to
judge and evaluate the ability of the current model to search for feasible solutions.

The ICGA consisted of two models: the original probabilistic model PL and the new probabilistic
model FL. The element PL

i,s in the probabilistic model referred to the probability of job Ji appearing at
position s in online processing queue.

The probability value distribution in PL was judged by calculating each column of standard
deviation σs

L in the original probability model PL. Meanwhile, the standard deviation-based threshold
value σT which started the mapping operation was set to judge whether the probability density function
of the Gaussian distribution can be started to map PL to the new probability model FL. When σs

L > σT,
mapping the PL to the FL using the probability density function of the Gaussian distribution shown
in Equation (23). Then, a new feasible solution IL (new individual) of the problem was generated in
accordance with the FL. The original probability model PL was updated through this new feasible
solution. After that, this new feasible solution was applied to update the PL. The scope of searching a
feasible solution was magnified through expanding the ability of the PL to select new feasible solutions.

f (x
∣∣∣µL

s ,σL
s) =

1

σL
s ·
√

2π
e
−

(x−µL
s)

2

2σL
s

2 . (23)

Equation (23) is the probability density function of the Gaussian distribution, where µL
s is the

expectation value of the sth column in the probabilistic model PL, and the calculation formula is shown
in Equation (24). σs

L is the standard deviation of the sth column in the probabilistic model PL, and
the calculation formula is shown in Equation (25). The size of the standard deviation determines the
degree of steepness or flatness of the Gaussian distribution curve. The smaller the σ, the steeper the
curve; and the larger the σ, the flatter the curve. With the evolution of the CGA, the distribution of
probability values in the probabilistic model decreases, and the value of σ becomes larger (a probability
value is dominant, while others are small and far from the average value). Further, the selection range
after the mapping will become larger.

µL
s =

n∑
i=1

PL
i,s·i (24)

Processes 2019, 7, 302 10 of 24

σs
L =

√√√
1
n
·

n∑
s=1

(
PL

i,s −
1
n

)2

. (25)

At the beginning of evolution PL
i,s = 1/n, and the initial value of σs

L is 0. If the value of σs
L is too

small, the Gaussian distribution curve is too steep, the probability value after mapping is smaller. As
such, the standard deviation adjustment parameter ξ is added to Equation (25) to obtain the standard
deviation σs

ξL after adjustment in Equation (26).

σs
ξL = ξ·

√√√
1
n
·

n∑
s=1

(
PL

i,s −
1
n

)2

(26)

ξ =
n·max

{
PL

i,s

}
n∑

i=1
PL

i,s −max
{
PL

i,s

} . (27)

In Equation (27), the standard deviation adjustment parameter ξ satisfies the constraints: when

max
{
PL

i,s

}
= 1 or

n∑
i=1

PL
i,s −max

{
PL

i,s

}
= 0, ξ =

√
n.

After determining the probability density function of the Gaussian distribution corresponding
to each column element in the PL, this function was used to obtain the corresponding probability
value GPL

i,s of each probability value PL
i,s in this column in the new probabilistic model FL. The specific

operations were: first, determine the range [X1, X2] for each probability value PL
i,s on the X axis, where

X1 =
i−1∑
h=1

PL
h,s, X2 =

i∑
h=1

PL
h,s. Then, determine the position of expectation value µL

s on the X axis.

Finally, the corresponding probability value GPL
i,s of probability value PL

i,s in the FL is obtained by using
Equation (28)

GPL
i,s =

∣∣∣ f (X1) − f (X2)

∣∣∣ µL
s < [X1, X2]

2· f (µL
s) − f (X1) − f (X2) µL

s ∈ [X1, X2]
. (28)

After all the columns in the PL have been mapped, the probability values in each column of the
new probabilistic model FL were normalized to ensure that the sum of the probability values in each
column was 1. Then, the roulette was used to choose the positions of jobs which were arranged in the
processing queue based on the FL, so as to generate new individuals in more diversities. The superior
individual among new individuals was chosen to update the original probabilistic model PL through
Equation (29).

PL+1
i,s =

(
1−

β

n

)
·PL

i,s +
β

n
·St, St =

1 Genes = i

0 Genes , i
(29)

where St is the learning coefficient; n is the number of jobs to be processed; and β is the adjustment
override of the learning rate. In each generation, the superior individual is selected to update the
probabilistic model. The genetic value Genes in the individual represents the sequential position of job
Ji in online processing queue. Equation (29) shows that when the value of Genes is i, the probability
value P1

i,s in the sth column of the model which combines with learning coefficient St further increases
the probability of job Ji being chosen on the position s in the online processing queue. In addition,
other probability values of this column subtract βn ·P

L
i,s.

3.3. Encoding and Decoding of New Individuals

Based on the probabilistic model, NP new individuals were generated. The process of generating
each new individual was: in the probabilistic model PL, based on the probability Pi,s, the genetic value
of individual from the 1st to nth referred to the probability Pi,s of the job Ji which appeared on the

Processes 2019, 7, 302 11 of 24

sth position. The job numbers were chosen on the basis of roulette in turn, that is, the job online
order. In the process of individual decoding, the individual genetic value was decoded into the online
processing sequence of n jobs in the first stage.

3.4. Procedure of the ICGA

Step 1: Initialize probabilistic model PL. According to the principle of the maximum entropy, the
probabilistic model PL is initialized, where ∀(i, s)PL

i,s = 1/n. Meanwhile, the evolutionary generation
is set as L = 0.

Step 2: Map the probability value PL
i,s in the original probabilistic model PL to the new probabilistic

model FL. Calculate the standard deviation σs
L of the probability value of the sth column in the original

probabilistic model PL, and judge whether σs
L is larger than the threshold value σT for initiating the

mapping operation. If σs
L
≤ σT, the probability value of the sth column in the PL is taken as the sth

column probability value in the new probabilistic model FL. If σs
L > σT, execute Step 3.

Step 3: Calculate the expectation value µL
s of the probability value of the sth column in the original

probabilistic model PL. Determine its corresponding probability density function of the Gaussian
distribution, and calculate the probability value GPL

i,s in the new probabilistic model FL corresponding
to each probability value PL

i,s in the sth column.
Step 4: Repeat Step 2 until all the columns in the original probabilistic model PL are all mapped

into the new probabilistic model FL.
Step 5: Generate new individuals based on the new probabilistic model FL. Through the roulette,

the individual genetic sampling values are selected in turn according to the probability values of each
column in the FL, and these genetic values represent the positions of the jobs to be machined in the
online queue. Once a job is selected, it no longer participates in the subsequent selection, while the
unselected jobs go on to take part in the selection process until all jobs are arranged so as to generate a
new individual. After that, NP new individuals I1, I2, . . . , INP are generated.

Step 6: NP new individuals are decoded and the fitness function value for each new individual
can be calculated.

Step 7: Compare the fitness function values of NP new individuals, and select the optimal
individual Ibetter among them, and its fitness function value is fbetter.

Step 8: Judge whether fbetter is better than the fitness function value fbest of the historically optimal
individual Ibest. If fbetter is better than fbest, replace Ibest with Ibetter and replace fbest with fbetter.

Step 9: The historically optimal individual Ibest is used to update the probabilistic model PL,
and the update operation is performed according to Equation (29). At the same time, evolutionary
generation L is processed as L = L + 1.

Step 10: Judge whether the updated original probabilistic model PL converges, that is, whether all
probability values of model PL are 1 or 0. If the convergence is met, the historically optimal individual
Ibest is output and the evolution process ends. Otherwise, execute Step 11.

Step 11: Judge whether the evolutionary generation L reaches the set maximum evolutionary
generation Lmax. If L = Lmax, the historically optimal individual Ibest is output and the evolution
process ends. Otherwise, Step 2 is performed again.

The flowchart of the ICGA is shown in Figure 2.

Processes 2019, 7, 302 12 of 24

Processes 2019, 7, x FOR PEER REVIEW 12 of 24

Start

Set S=1

Calculate the standard deviation of the probability value of the Sth in the L
s LP

Calculate the expectation value of the probability value of the Sth in the L
s LP

Determine the probability density function of the Gaussian distribution of the
Sth column, and use this function to map the probability value of the Sth column

in to the corresponding position inLP LF

 the probability value of the
Sth column in the is
taken as the Sth column
probability value in the

LP

LF

No> the threshold value
for initiating the mapping operation

L

s T

Yes

Whether S is equal to the
 number of columns in

Yes

LP

Initialize probabilistic model and set the evolutionary generation L=0LP

Generate NP new individuals based on the new probabilistic model LF

S=S+1

No

NP new individuals are decoded and the fitness function value for each new individual can be calculated

 Select the optimal individual Ibetter among NP new individuals, and its fitness function value is fbetter

whether fbetter is better than the fitness value fbest
of the historically optimal individual Ibest

Update probability model with Ibest and process L=L+1LP

No

replace Ibest with Ibetter and

replace fbest with fbetter

Yes

Whether all probability values
in are 1 or 0LP

Whether L is equal to the set maximum
evolutionary generation Lmax

No

End

Yes

Yes

No

Figure 2. The flowchart of ICGA.

4. Local Scheduling Rules for Multi-Queue Limited Buffers

In order to reduce the setup times and reduce the impact of setup times on the scheduling

process, this paper has developed a variety of local scheduling rules to guide the distribution of jobs

for the process of entering and exiting multi-queue limited buffers. When the job enters the multi-

queue limited buffer, the local scheduling rules employ the remaining capacity of max queue buffer

(RCMQB) rule. When the job leaves the multi-queue limited buffer, the local scheduling rules use the

shortest setup time (SST) rule, the first available machine (FAM) rule, and the first-come first-served

(FCFS) rule, of which the SST rule is a priority [17].

4.1. Rules for Jobs Entering Multi-Queue Limited Buffers

 Max queue buffer capacity remaining rule

When , 1 i jC
 and , 1 i jt C

,

Figure 2. The flowchart of ICGA.

4. Local Scheduling Rules for Multi-Queue Limited Buffers

In order to reduce the setup times and reduce the impact of setup times on the scheduling process,
this paper has developed a variety of local scheduling rules to guide the distribution of jobs for the
process of entering and exiting multi-queue limited buffers. When the job enters the multi-queue
limited buffer, the local scheduling rules employ the remaining capacity of max queue buffer (RCMQB)
rule. When the job leaves the multi-queue limited buffer, the local scheduling rules use the shortest
setup time (SST) rule, the first available machine (FAM) rule, and the first-come first-served (FCFS)
rule, of which the SST rule is a priority [17].

4.1. Rules for Jobs Entering Multi-Queue Limited Buffers

• Max queue buffer capacity remaining rule
When ∃Ci, j−1 and t = Ci, j−1,

Processes 2019, 7, 302 13 of 24

Mcai, j(t) =
{
Bs j,a

∣∣∣∣∣max
{
K j,a − card

(
WA j,a(t)

)∣∣∣∣(K j,a − card
(
WA j,a(t)

)
> 0

)}}
j ∈ {2, . . . , m}

(30)

where Mcai, j(t) is the set of lane Bs j,a that the job in the previous stage Oper j−1 can access. The difference
between the maximum number of spaces (K j,a) of each lane Bs j,a and the number of jobs in the waiting
queue WA j,a in this lane is the remaining capacity (available space) of lane Bs j,a at the current stage.
When the job finishes the previous stage, namely when t = Ci, j−1, the job enters the lane with the
largest remaining capacity. When card

(
Mca j(t)

)
= 0, it indicates there is no remaining space in the

current lane. When card
(
Mca j(t)

)
> 1, it illustrates that multiple lanes can be entered.

4.2. Rules for Jobs Leaving Multi-Queue Limited Buffers

When the job exits the buffer and is assigned to the machine, in the case of an available machine
WS j,l and several jobs are waiting in the buffer, that is, the number of the selectable jobs to be processed

in the multi-queue limited buffers is greater than 1 (
A j∑

a=1
QBC j,a(t) > 1). In the course of assigning

jobs, the job with the minimum setup time (
{

Ji

∣∣∣∣min
(
Tsi′, j,l

)}
) is processed according to the SST rule.

If the number of jobs with the minimum setup time is greater than 2, the job with the longest waiting

time in the buffer (
{

Ji

∣∣∣∣∣max
{(

t− Tei, j
)∣∣∣∣{i∣∣∣OAi, j,a(t) = 1

}}}
) is selected for processing in accordance with

the first in first out (FIFO) rule. In the case of available machines and only one job waiting to be
processed, that is, the number of selectable jobs to be processed in the multi-queue limited buffers is

equal to 1 (
A j∑

a=1
QBC j,a(t) = 1), the SST rule is used to select the machine with the minimum setup time

in the course of assigning machines. If the number of selectable machines is greater than 2, the job is
machined on the basis of the FAM rule. The multimachine-and-multi-job case is a combination of the
aforementioned conditions.

5. Simulation Experiment

The ICGA was implemented using MATLAB 2016a simulation software, running on the PC with
Windows 10 operating system, Core i5 processor, 2.30 GHz Central Processing Unit (CPU), and 6 GB
memory. The multi-queue limited buffers scheduling problems in a flexible flow shop with setup
times originate from the production practice of bus manufacturers. It is a complex scheduling problem.
As standard examples are not available at present, the standard data of a flexible flow shop scheduling
problem (FFSP) was employed to discuss and analyze the parameters in the improved compact genetic
algorithm, so as to determine the optimal parameter [18]. In addition, multiple groups of large-scale
and small-scale data were used to test the effect of the improved method on the optimization ability
of the standard CGA. Furthermore, the instance data of multi-queue limited buffers scheduling in
a flexible flow shop with setup times were used to verify the optimal performance of the ICGA for
solving such problems.

5.1. Analysis of Algorithm Parameters

The parameter values of the algorithm had a significant effect on the algorithm’s optimization
performance. The ICGA has three key parameters: threshold value σT that started the mapping
operation, adjustment override of the learning rate β, and thr number of new individuals generated
in each generation NP. The FFSP standard examples of a d-class problem with five stages and 15
jobs in the 98 standard examples proposed by Carlier and Neron were applied to test each parameter.
The example j15c5d3 was used to illustrate the orthogonal experiment. Three parameters, each with
four levels (see Table 1), were taken for orthogonal experiments with the scale of L16 (43) [19]. The

Processes 2019, 7, 302 14 of 24

algorithm ran 20 times in each group of experiments. The average time of makespan (Cmax) was used
as an evaluation index.

Table 1. Level of each parameter.

Parameter
Level

1 2 3 4

σT 5 10 15 20
β 1.0 1.5 2.0 2.5

NP 2 3 4 5

Through experiments, we can see that the influence of the change of each parameter on the
performance of the algorithm is shown in Figure 3. From the figure we can see that β and NP had a
greater impact on the performance of the algorithm, and σT had the least impact on the performance of
the algorithm. The best combination of parameters was: σT = 10, β = 1.5, NP = 4.

Processes 2019, 7, x FOR PEER REVIEW 14 of 24

levels (see Table 1), were taken for orthogonal experiments with the scale of L16 (43) [19]. The
algorithm ran 20 times in each group of experiments. The average time of makespan (maxC) was used
as an evaluation index.

Through experiments, we can see that the influence of the change of each parameter on the
performance of the algorithm is shown in Figure 3. From the figure we can see that β and NP had

a greater impact on the performance of the algorithm, and Tσ had the least impact on the

performance of the algorithm. The best combination of parameters was: Tσ = 10, β = 1.5, NP =
4.

Figure 3. Trend chart of the algorithm’s performance impacted by each parameter.

Table 1. Level of each parameter.

Parameter
Level

1 2 3 4
Tσ 5 10 15 20

β 1.0 1.5 2.0 2.5
NP 2 3 4 5

5.2. Optimization Performance Testing on the ICGA

In order to study the impact of the improved method (which is based on the probability density
function of the Gaussian distribution mapping) on the optimization performance of the CGA, the
ICGA was compared with CGA, bat algorithm (BA) [20] and whale optimization algorithm (WOA)
[21]. These algorithms are the currently emerging intelligent optimization algorithms and are widely
used in the field of optimization and scheduling [22–24]. In the BA, the number of individuals in the
population NP = 30, pulse rate γ = 0.9, search pulse frequency range [Fmin, Fmax] = [0, 2]. In the WOA,
the number of individuals in the population NP = 30. Each algorithm ran 30 times on each group
of data. The maximum evolutionary generation of four algorithms was set to 500 generations. The
average makespan maxC and the average running time cpuT were used as the evaluation metrics.

5.2.1. Small-Scale Data Testing

The test data are from the 98 standard examples proposed by Carlier and Neron based on the
standard FFSP. The set of examples was divided into five classes. According to the difficulty of
solving the examples, the set of examples was divided into two categories by Neron et al. [25]: easy
to solve and difficult to solve. Four groups of easy examples (j15c5a1, j15c5a2, j15c5b1, and j15c5b2)
and four groups of difficult examples (j15c10c3, j15c10c4, j15c5d4, and j15c5d5) were chosen to test
the ICGA so as to better evaluate the optimization performance of the ICGA for small-scale data. The
test results are shown in Table 2.

Table 2. Small-scale data test results.

Standard Example LB
BA WOA CGA ICGA

maxC cpuT (s) maxC cpuT (s) maxC cpuT (s) maxC cpuT (s)

j15c5a1 178 178 16.324 178 4.018 178 0.652 178 0.671

Figure 3. Trend chart of the algorithm’s performance impacted by each parameter.

5.2. Optimization Performance Testing on the ICGA

In order to study the impact of the improved method (which is based on the probability density
function of the Gaussian distribution mapping) on the optimization performance of the CGA, the ICGA
was compared with CGA, bat algorithm (BA) [20] and whale optimization algorithm (WOA) [21].
These algorithms are the currently emerging intelligent optimization algorithms and are widely used
in the field of optimization and scheduling [22–24]. In the BA, the number of individuals in the
population NP = 30, pulse rate γ = 0.9, search pulse frequency range [Fmin, Fmax] = [0, 2]. In the WOA,
the number of individuals in the population NP = 30. Each algorithm ran 30 times on each group
of data. The maximum evolutionary generation of four algorithms was set to 500 generations. The
average makespan Cmax and the average running time Tcpu were used as the evaluation metrics.

5.2.1. Small-Scale Data Testing

The test data are from the 98 standard examples proposed by Carlier and Neron based on the
standard FFSP. The set of examples was divided into five classes. According to the difficulty of solving
the examples, the set of examples was divided into two categories by Neron et al. [25]: easy to solve
and difficult to solve. Four groups of easy examples (j15c5a1, j15c5a2, j15c5b1, and j15c5b2) and four
groups of difficult examples (j15c10c3, j15c10c4, j15c5d4, and j15c5d5) were chosen to test the ICGA so
as to better evaluate the optimization performance of the ICGA for small-scale data. The test results
are shown in Table 2.

Processes 2019, 7, 302 15 of 24

Table 2. Small-scale data test results.

Standard
Example LB

BA WOA CGA ICGA

Cmax Tcpu(s) Cmax Tcpu(s) Cmax Tcpu(s) Cmax Tcpu(s)

j15c5a1 178 178 16.324 178 4.018 178 0.652 178 0.671
j15c5a2 165 165 16.474 165 4.029 165 0.738 165 0.754
j15c5b1 170 170 15.585 170 3.887 170 0.669 170 0.682
j15c5b2 152 152 15.767 152 3.863 152 0.636 152 0.710
j15c10c3 141 148.14 31.722 148.77 8.008 150.30 0.768 147.56 1.007
j15c10c4 124 132.86 48.289 133.28 8.056 135.65 0.764 132.26 1.121
j15c5d4 61 87.16 17.679 87.02 4.267 89.57 0.471 86.13 0.758
j15c5d5 67 82.03 17.368 82.28 4.296 84.65 0.435 81.72 0.756

In the table, LB represents the lower bound of makespan for the examples, whose optimal value
was given by Santos and Neron [25,26]. It can be seen from Table 2 that even if the data size was
small, the average running time of the CGA and ICGA under each group of data was significantly
shorter than that of the BA and WOA. This indicates that CGA and ICGA have the advantages of the
convergence speed of optimization. In terms of the optimization performance of small-scale data, the
four algorithms did not have significant differences. But overall, the optimization effect of the ICGA on
small-scale data was still the best among the four algorithms. The ICGA has achieved better solutions
than the other three algorithms when solving all four groups of difficult examples (the four algorithms
all reached the lower bound of makespan when solving the easy examples). Especially, compared with
the CGA, when solving two groups of examples of the j15c5d class, the average relative error obtained
by the ICGA was reduced by 5.64% and 4.37%, respectively. This shows that the optimization effect of
the ICGA is greatly improved from the CGA when solving small-scale data.

5.2.2. Large-Scale Data Testing

Six groups of data, including 80 jobs with four stages, 80 jobs with eight stages, and 120 jobs with
four stages, were used to test the optimization performance of the ICGA in solving large-scale complex
problems. The test results are shown in Table 3.

Table 3. Large-scale data test results.

Instance
Number

BA WOA CGA ICGA

Cmax Tcpu(s) Cmax Tcpu(s) Cmax Tcpu(s) Cmax Tcpu(s)

j80c4d1 1459.84 49.351 1465.12 17.485 1477.56 11.722 1455.44 13.731
j80c4d2 1367.44 49.735 1372.40 18.549 1385.16 12.595 1364.48 14.717
j80c8d1 1811.68 106.187 1813.88 51.967 1842.56 16.174 1814.28 19.078
j80c8d2 1822.56 104.954 1830.48 51.485 1851.92 16.079 1828.96 19.767

j120c4d1 2132.08 78.779 2138.04 38.171 2196.92 23.859 2139.88 28.942
j120c4d2 2243.52 79.821 2250.41 39.275 2306.52 24.221 2246.04 29.642

As can be seen from the table, when solving the problem of large-scale data, the advantages of the
CGA and ICGA in the speed of optimization were more obvious. Especially when solving two groups
of examples of j80c8d class, the average running time of CGA and ICGA was significantly smaller than
the BA and WOA. It can be seen from the test results of the first four groups of examples that when the
number of processes was increased from four to eight, the average running time of the BA and the
WOA was greatly increased. On the other hand, although the average running time of the CGA and
the ICGA was also increased, the rate of increase was small. This indicates that CGA and ICGA are
suitable for solving the problem of scheduling optimization with large data scale with many processes.
In general, when solving the problem of large-scale data, the optimization performance of the BA and

Processes 2019, 7, 302 16 of 24

ICGA was better than that of the WOA and CGA. As for the aspect of optimization speed, the average
running time of the BA was much larger than the other three algorithms under every group of data.

It can also be seen from the table that although the CGA had the fastest optimization speed
under each group of large-scale data, its optimization performance was also the worst among the
four algorithms. And as the size of the data increased, the gap between the CGA and the other three
algorithms was getting larger. This is mainly because the CGA uses roulette to select gene fragments in
the probabilistic model when generating new individuals. In the initial stage of the probabilistic model,
the probability of each gene fragment being selected is 1/n. When the size of the data is large (n = 80
and n = 120), the initial probability value of each gene fragment in the probability matrix becomes
small (1/8 and 1/120). Further, in the process of evolution, the probability value of the unselected
gene fragment will be reduced again, and the probability value of the selected gene fragment will
be increased. This will lead to the probability values of certain gene fragments that are much larger
than the probability values at other locations after several generations of evolution. Although this
will make the evolution speed of the algorithm faster, it will also lead to a decline in the diversity of
new individuals generated by the probabilistic model, which means the premature convergence of the
algorithm. Compared with the CGA, when solving the problems of each group of large-scale data, the
optimization effect of the ICGA was greatly improved. This indicates that the ICGA, to some extent,
overcame the problem that the CGA was easy to prematurely converge.

By testing the four algorithms using large-scale and small-scale data, we can conclude that
compared with the CGA, the ICGA has stronger capability to continuously evolve and jump out of
the local extremum while maintaining the characteristic of fast convergence of the CGA. The ICGA,
to some extent, overcomes the problem that the CGA is easy to prematurely converge. At the same
time, compared with the BA and the WOA, for either small-scale data or large-scale data, the ICGA has
an obvious advantage in optimization speed. Thus, the ICGA is suitable for solving the complicated
problem of scheduling optimization with many processes.

5.3. Instance Test on Multi-Queue Limited Buffers in Flexible Flow Shops with Setup Times

5.3.1. Establishing Simulation Data

The simulation data of the production operations in the body shop and paint shop of the bus
manufacturer were established as follows.

1. Parameters in the shop model

The body shop of the bus manufacturer is a rigid flow shop with multiple production lines, which
can be simplified into one production stage. The production of the paint shop is simplified to three
stages [27]. The simulation data for scheduling include four stages, namely

{
Oper1, Oper2, Oper3, Oper4

}
,

whose parallel machine
{
M j

}
is {3, 2, 3, 2}. The buffer between the body shop and the paint shop is a

multi-queue limited buffer. As such, the buffer of stage Oper2 in the scheduling simulation data is set to
the multi-queue limited buffer. The number of lanes in buffer Bu2 of stage Oper2 is equal to 2, namely
A2 = 2. The number of spaces in lane Bs2,1 is 2, namely K2,1 = 2, and that of buffer Bs2,2 is 2, namely
K2,2 = 2. That is to say, the multi-queue limited buffers have two lanes and each lane has two spaces.

In the production of the paint shop, it is necessary to clean the machine and adjust production
equipment if the model and color of the buses that are successively processed on the machine are
different. Therefore, the simulation process uses the changes in the model and color as the basis for
calculating setup times. Table 4 shows that the setup times parameters are set when the model and
color of the buses that are processed successively on the machine changed. When the bus is assigned
to the machine of the next stage from the buffer, the setup times of the machine is calculated using
Equation (16).

Processes 2019, 7, 302 17 of 24

Table 4. Model parameters.

Parameter Description Value

Parameters of
limited buffers

A2 Number of lanes in buffer Bu2 of stage Oper2 2

K2,1 Capacity of lane Bs2,1 2

K2,2 Capacity of lane Bs2,2 2

K3,1 Capacity of limited buffer Bu3 of stage Oper3 1

K4,1 Capacity of limited buffer Bu4 of stage Oper4 1

Parameters of
setups times

Tsp2,1
Setup times when the model of buses processed
successively on a parallel machine of stage Oper2 changes 4

Tsp2,2
Setup times when the color of buses processed
successively on a parallel machine of stage Oper2 changes 4

Tsp3,1
Setup times when the model of buses processed
successively on a parallel machine of stage Oper3 changes 5

Tsp3,2
Setup times when the color of buses processed
successively on a parallel machine of stage Oper3 changes 5

Tsp4,1
Setup times when the model of buses processed
successively on a parallel machine of stage Oper4 changes 3

Tsp4,2
Setup times when the color of buses processed
successively on a parallel machine of stage Oper4 changes 3

2. Parameters of processing the object
The information of the bus model and color properties is shown in Table 5. The sum of bus

properties is 2, namely X = 2. Prop1 represented the model property of the bus, while Prop2 denoted the
color property of the bus. The value of model property (PropValue1) is

{
BusType1, BusType2, BusType3

}
,

and the value of color property (PropValue2) is {BusColor1, BusColor2, BusColor3}. It is assumed that two
successively processed buses on machine of stage WS2,1 are buses J1 and J5. If model properties were
as follows: prop1,1 = BusType1 and prop1,5 = BusType1, and color properties are as follows: prop2,1 =

BusColor1 and prop2,5 = BusColor3, then prop1,1 = prop1,5, prop2,1 , prop2,5. Hence, Nsrv2
2,1,5 = 1. Using

Equation (16), the setup time can be obtained as follows: Ts5,2,2 = Tsp2,2 = 4. And the Table 6 shows
the standard processing time for bus production.

Table 5. Information of bus model and color properties.

Bus Property J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

Model Prop1 Type1 Type2 Type3 Type2 Type1 Type3 Type1 Type2 Type3 Type1 Type2 Type3
Color Prop2 Color1 Color1 Color2 Color2 Color3 Color3 Color1 Color1 Color2 Color3 Color2 Color3

Table 6. Standard processing time for bus production.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

Oper1 8 11 15 19 10 16 12 21 22 13 20 14
Oper2 30 38 28 25 26 36 20 24 22 32 35 34
Oper3 34 38 44 42 52 40 46 48 35 36 45 50
Oper4 42 36 26 24 34 30 28 32 38 40 44 22

5.3.2. Simulation Scheme

The scheduling problem of the bus manufacturer was investigated by using the ICGA, BA, WOA,
and standard CGA as the global optimization algorithm, combined with local dispatching rules in
the multi-queue limited buffers. This study further analyzed the optimization performance of the

Processes 2019, 7, 302 18 of 24

ICGA combined with local dispatching rules in solving the multi-queue limited buffers scheduling
problems in a flexible flow shop with setup times. A total of eight groups of simulation schemes were
designed, in which schemes 1–4 employed the FIFO rule as their local dispatching rules, and schemes
5–8 adopted the RCMQB rule when entering the buffer and used the SST rule, FAM rule, and FCFS
rule as local dispatching rules when leaving the buffer. Among them, the SST rule was the priority.
The information of the eight sets of simulation schemes is shown in Table 7.

Table 7. The eight groups of the simulation program.

Simulation Scheme Global Optimization Algorithm Local Dispatching Rules

Scheme 1 BA FIFO
Scheme 2 WOA FIFO
Scheme 3 CGA FIFO
Scheme 4 ICGA FIFO
Scheme 5 BA RCMQB; SST, FAM, FCFS
Scheme 6 WOA RCMQB; SST, FAM, FCFS
Scheme 7 CGA RCMQB; SST, FAM, FCFS
Scheme 8 ICGA RCMQB; SST, FAM, FCFS

5.3.3. Simulation Results and Analysis

1. Evaluation index of scheduling results

In the optimization process, makespan Cmax was used as the fitness function value of the global
optimization algorithm. Meanwhile, a number of evaluation indexes related to the actual production
line were established, including Tcpu, TWIP, TWT, FUR, TS and TPB. Except FUR, the smaller the
values, the better the remaining evaluation indexes.

Eight sets of simulation schemes were run 30 times. The average of 30 simulation results is
presented in Table 8. As shown in the table, under the principle of adopting the same global optimization
algorithm, compared with schemes 1–4, each metric of schemes 5–8 has been improved to some extent,
except the Tcpu. Among the metrics, the optimization improvement of TWIP, TS and TPB is obvious.
This is mainly because schemes 5–8 adopted RCMQB rules when entering multi-queue limited buffers,
which can allocate resources of multi-queue limited buffers more reasonably and reduce the occurrence
of blocking. The SST rule, the FAM rule and the FCFS rule were adopted when leaving the buffer,
which can more effectively control the jobs to select the machine with the least change of properties
among multiple machines for processing. This was beneficial to reduce the setup times. Further, TWIP
is equal to the sum of the time for the job staying on the buffer, the blocking time of the job and setup
times, so these three evaluation indexes were significantly improved. The reduction in blocking time
and setup times will lead to the reduction in the makespan of the whole process and the reduction
of the idle time for machines. Therefore, Cmax, TWT and FUR of schemes 5–8 were also optimized to
some extent. From the table we can also see that compared with the schemes 1–4, although the Tcpu of
the schemes 5–8 had all increased, the rate of increase was small. This indicates that the complicated
local rules adopted in schemes 5–8 can made full use of the capacity of the multi-queue limited buffers
and effectively reduced the blocking time and setup times. At the same time, the running time costs
were small and did not have much impact on the speed of the algorithm.

Processes 2019, 7, 302 19 of 24

Table 8. Evaluation index comparison of scheduling results of eight schemes.

Evaluation Index Scheme
1

Scheme
2

Scheme
3

Scheme
4

Scheme
5

Scheme
6

Scheme
7

Scheme
8

Cmax

Optimum 296 295 297 295 288 288 290 286
Worst 307 305 309 304 303 300 302 300

Average 301.12 303.16 305.76 300.56 293.56 295.60 299.84 292.32
variance 18.56 8.96 11.74 9.06 12.48 5.07 8.69 6.86

Tcpu

Optimum 529.15 103.35 14.30 15.29 503.83 113.27 14.264 15.64
Worst 587.99 144.61 15.23 16.24 600.83 149.73 15.39 16.77

Average 551.61 122.57 14.32 15.08 559.48 134.35 14.62 15.32
variance 325.24 339.50 0.041 0.06 425.57 81.53 0.05 0.18

TWIP

Optimum 630 642 623 623 625 605 613 611
Worst 768 730 745 750 734 707 718 713

Average 691.52 689.72 698.32 681.96 660.88 656.48 672.64 647.44
variance 824.88 550.12 958.45 764.27 781.56 421.86 795.19 635.52

TWT

Optimum 229 253 250 251 202 202 204 203
Worst 358 321 347 343 282 278 309 302

Average 282.81 282.96 287.56 285.60 240.36 235.48 255.40 248.04
variance 673.44 428.41 514.16 564 543.59 276.83 493.68 517.95

FUR

Optimum 86.26% 85.03% 85.18% 85.43% 87.67% 87.62% 87.56% 87.59%
Worst 80.36% 80.17% 80.54% 80.25% 83.59% 83.79% 82.91% 83.16%

Average 83.58% 83.41% 83.14% 83.34% 85.68% 85.93% 84.94% 85.88%
variance 0.05% 0.01% 0.02% 0.02% 0.02% 0.00% 0.01% 0.01%

TS

Optimum 110 121 126 115 105 108 108 98
Worst 153 164 167 160 141 137 151 144

Average 137.64 139.12 148.52 138.43 121.36 119.76 125.60 120.76
variance 123.31 103.59 130.24 114.40 66.15 45.86 91.08 73.62

TPB

Optimum 73 73 77 74 70 72 75 72
Worst 122 109 118 113 118 99 110 104

Average 94.42 93.04 94.88 93.28 87.8 85.16 87.64 95.21
variance 165.12 71.55 97.82 99.16 129.44 48.21 69.59 74.36

The comparison among schemes 1–4 or schemes 5–8 show that the running speed of the CGA
and ICGA was significantly faster than that of the BA and WOA. The average running time of the
BA reached 555.56 s, which is obviously not suitable for solving practical problems. In terms of
optimization performance, under two different local dispatching rules, the optimization effect of ICGA
for Cmax was the best among the four algorithms. Specially, compared with the CGA, the optimization
effect of the ICGA was significantly improved. The above results show that the ICGA, to some extent,
overcame the problem that the CGA was easy to prematurely converge while maintaining the fast
running speed of the CGA. This is mainly because in the early stage of evolution, there is no large
probability value in the probabilistic model. Thus, the ICGA was still evolving as the procedure of
the CGA. In this way, the ICGA maintained the advantage that the CGA can converge quickly in the
early stage of evolution. In the later stage of evolution, when falling into the local extremum, the ICGA
mapped the original probabilistic model to the new probabilistic model through the probability density
function of the Gaussian distribution. In this way, while keeping probability values’ distribution of the
original probabilistic model unchanged, ICGA’s searching ability of feasible solutions was expanded,
and the diversity of population individuals was improved. Therefore, the algorithm could jump out of
the local extremum and continued to evolve.

Through the above analysis, it can be concluded that compared with the other seven schemes, the
combination of the ICGA and local dispatching rules adopted in scheme 8 was the best for reducing
setup times of the machine, and it effectively decreased the blocking effect of the limited buffers, more
reasonably arranged the jobs in and out of the multi-queue limited buffer, and orderly assigned the

Processes 2019, 7, 302 20 of 24

processing tasks. Various evaluation metrics were improved, and the problem of multi-queue limited
buffers scheduling problems in a flexible flow shop with setup times was more effectively solved.

2. Gantt chart analysis of scheduling result

Figure 4 is the Gantt chart of the scheduling result of scheme 8, with time axis as the abscissa and
machine of each stage as the ordinate. The green part indicates the residence time of the bus in the
buffer. The red part indicates the setup times when the successively-processed buses are with different
properties. The blue part denotes the blocking time of the bus on the machine after the completion of the
process. The processing route of J3 was

{
WS1,1, b2,2,1, b2,2,2, WS2,2, b3,1,1, WS3,1, b4,1,1, WS4,1

}
. In Figure 4,

we can see that at time t = 44, J3 completed the processing on machine WS1,1 of stage Oper1 (the
competition time of J3 was 44, namely C3, 1 = 44). At this time, the first lane Bs2,1 of buffer Bu2 had
two jobs waiting to be processed (J8 and J4), that is to say, WA2,1(t) = {J8, J4}, card(WA2,1(t)) = 2. The
second lane Bs2,2 of buffer Bu2 had one job waiting to be processed (J9), that is to say, WA2,2(t) = {J9},
card(WA2,2(t)) = 1. The capacity of lane Bs2,1 was 2 (K2,1 = 2), card(WA2,1(t)) ≤ K2,1. And the capacity
of lane Bs2,2 was 2 (K2,2 = 2), card(WA2,2(t)) ≤ K2,2. Both of them satisfy the constraint of Equation (10)
of the limited buffers. At this time, based on the RCMQB rule which regulates the job’s access to the
buffer, we can obtain Mca3,2(t) =

{
Bs2,2

}
from Equation (26). The J3 was assigned to space b2,2,1 in lane

Bs2,2 of stage Oper2, waiting to be processed at stage Oper2. The entry time of the bus into the buffer
(Te3,2) was equal to C3, 1, which satisfied the constraint of Equation (8) of limited buffers.

Processes 2019, 7, x FOR PEER REVIEW 20 of 24

Average 94.42 93.04 94.88 93.28 87.8 85.16 87.64 95.21
variance 165.12 71.55 97.82 99.16 129.44 48.21 69.59 74.36

2. Gantt chart analysis of scheduling result

Figure 4 is the Gantt chart of the scheduling result of scheme 8, with time axis as the abscissa
and machine of each stage as the ordinate. The green part indicates the residence time of the bus in
the buffer. The red part indicates the setup times when the successively-processed buses are with
different properties. The blue part denotes the blocking time of the bus on the machine after the
completion of the process. The processing route of 3J was { }1,1 2,2, 2,2 2 2,2 3,1, 3,1 4,1, 4,1, , , , , , ,WS b b WS b WS b WS1 ， 1 1 .

In Figure 4, we can see that at time t = 44, 3J completed the processing on machine 1,1WS of stage

1Oper (the competition time of 3J was 44, namely 3,1C = 44). At this time, the first lane 2,1Bs of

buffer 2Bu had two jobs waiting to be processed (8J and 4J), that is to say, () { }2,1 8 4,WA t J J= ,

()()2,1card WA t = 2. The second lane 2,2Bs of buffer 2Bu had one job waiting to be processed (9J), that

is to say, () { }2,2 9WA t J= , ()()2,2card WA t = 1. The capacity of lane 2,1Bs was 2 (2,1K = 2),

()()2,1 2,1card WA t K≤ . And the capacity of lane 2,2Bs was 2 (2,2K = 2), ()()2,2 2,2card WA t K≤ . Both of them
satisfy the constraint of Equation (10) of the limited buffers. At this time, based on the RCMQB rule
which regulates the job’s access to the buffer, we can obtain () { }3,2 2,2Mca t Bs= from Equation (26). The

3J was assigned to space 2,2,1b in lane 2,2Bs of stage 2Oper , waiting to be processed at stage 2Oper .

The entry time of the bus into the buffer (3,2Te) was equal to 3,1C , which satisfied the constraint of
Equation (8) of limited buffers.

Figure 4. Gantt chart of the scheduling result of the ICGA.

At time t = 68, 9J left the space 2,2 2b ， in lane 2,2Bs , and the departure time out of the buffer (

9,2Tl) was 68. At the same time, 3J was assigned to the space 2,2 2b ， , waiting to be processed on the

machine of stage 2Oper . At time t = 98, 3,2Tl = 98, 3J also departed from the buffer, and 9,2 3,2Tl Tl< ,
satisfying the constraint of Equation (13). From the Gantt chart drawn from scheduling results, it can
be seen that the constraint of Equation (12) was always met during the use of multi-queue limited
buffers.

Further analysis of the process that 3J left the buffer is as follows. When t = 98, machine 2,2WS

completed the processing of 9J , so that machine 2,2WS was available. At this time, 12J on space 2,1 2b ，

in lane 2,2Bs was waiting for processing, and 3J on space 2,2 2b ， was also waiting for processing.

According to the bus’s property information in Table 3, in regard to machine 2,2WS , if we choose to

Figure 4. Gantt chart of the scheduling result of the ICGA.

At time t = 68, J9 left the space b2,2,2 in lane Bs2,2, and the departure time out of the buffer (Tl9,2)
was 68. At the same time, J3 was assigned to the space b2,2,2, waiting to be processed on the machine of
stage Oper2. At time t = 98, Tl3,2 = 98, J3 also departed from the buffer, and Tl9,2 < Tl3,2, satisfying the
constraint of Equation (13). From the Gantt chart drawn from scheduling results, it can be seen that the
constraint of Equation (12) was always met during the use of multi-queue limited buffers.

Further analysis of the process that J3 left the buffer is as follows. When t = 98, machine WS2,2

completed the processing of J9, so that machine WS2,2 was available. At this time, J12 on space b2,1,2 in
lane Bs2,2 was waiting for processing, and J3 on space b2,2,2 was also waiting for processing. According
to the bus’s property information in Table 3, in regard to machine WS2,2, if we choose to process J12,
the setup time (Ts12,2,2) will be equal to Tsp2,2, namely Ts12,2,2 = Tsp2,2 = 4; if we choose to process J3,
the setup time (Ts3,2,2) will be 0, namely Ts3,2,2 = 0. In accordance with the SST rule that controls the
job leaving the buffer, J3 was chosen to process.

Processes 2019, 7, 302 21 of 24

3. Analysis of scheduling evolution

Figure 5 shows the relationship between fitness value and training iterations of schemes 5–8.
As can be seen, the BA and WOA converged quickly at the initial stage of the evolution. This is mainly
due to the fact that the initial numbers of population of the BA and WOAs (NP = 30) were much larger
than that of the CGA and ICGAs (NP = 4). This means a relatively strong ability for searching the
solution space. However, with the increase in evolutional iterations, the search ability of the BA and the
WOA gradually deterioratesdand they fell into the local extremum in the 135th and 139th generations,
respectively. Although the CGA should be good at fast search, the distribution of probability values
in the probabilistic model all decreased with evolution, and thus and the search performance on the
solution space decreased. The algorithm stopped evolving at the 87th generation, falling into the local
extremum. On the other hand, the ICGA had the similar fast search performance as the CGA during
the initial stage and encountered evolutionary stagnation at the 94th generation. But as evolution
continues, the ICGA started the mapping operation to reactivate the algorithm’s evolutionary ability
and found for the optimal solution in the 263th generation.

Processes 2019, 7, x FOR PEER REVIEW 21 of 24

process 12J , the setup time (12,2,2Ts) will be equal to 2,2Tsp , namely 12,2,2Ts = 2,2Tsp = 4; if we choose to

process 3J , the setup time (3,2,2Ts) will be 0, namely 3,2,2Ts = 0. In accordance with the SST rule that

controls the job leaving the buffer, 3J was chosen to process.

3. Analysis of scheduling evolution

Figure 5 shows the relationship between fitness value and training iterations of schemes 5–8. As
can be seen, the BA and WOA converged quickly at the initial stage of the evolution. This is mainly
due to the fact that the initial numbers of population of the BA and WOAs (NP = 30) were much
larger than that of the CGA and ICGAs (NP = 4). This means a relatively strong ability for searching
the solution space. However, with the increase in evolutional iterations, the search ability of the BA
and the WOA gradually deterioratesdand they fell into the local extremum in the 135th and 139th
generations, respectively. Although the CGA should be good at fast search, the distribution of
probability values in the probabilistic model all decreased with evolution, and thus and the search
performance on the solution space decreased. The algorithm stopped evolving at the 87th generation,
falling into the local extremum. On the other hand, the ICGA had the similar fast search performance
as the CGA during the initial stage and encountered evolutionary stagnation at the 94th generation.
But as evolution continues, the ICGA started the mapping operation to reactivate the algorithm’s
evolutionary ability and found for the optimal solution in the 263th generation.

Figure 6 shows the relationship between fitness value and running time of schemes 5–8. As can
be seen from the figure, the running speed of CGA and ICGA was very fast, but the CGA fell into the
local extremum at 4 s. The optimization speed of the BA was the slowest among the four algorithms,
and its optimal solution was 299 during the 35 s running time. From the figure, we can also see that
the fitness value of the ICGA was the best among the four algorithms at the same CPU time. And the
time used by the ICGA to get the same fitness value was the least among the four algorithms. The
ICGA maintained the advantage that the CGA can converge quickly in the early stage of evolution.
In the later stage of evolution, when falling into the local extremum, the ICGA improved the diversity
of individuals in the population by mapping the original probabilistic model to a new probabilistic
model, so that the algorithm could jump out of the local extremum and continue to evolve.

Figure 5. Relationship between fitness value and training iterations of schemes 5–8.

Figure 6. Relationship between fitness value and Running time of schemes 5–8.

Figure 5. Relationship between fitness value and training iterations of schemes 5–8.

Figure 6 shows the relationship between fitness value and running time of schemes 5–8. As can
be seen from the figure, the running speed of CGA and ICGA was very fast, but the CGA fell into the
local extremum at 4 s. The optimization speed of the BA was the slowest among the four algorithms,
and its optimal solution was 299 during the 35 s running time. From the figure, we can also see that
the fitness value of the ICGA was the best among the four algorithms at the same CPU time. And
the time used by the ICGA to get the same fitness value was the least among the four algorithms.
The ICGA maintained the advantage that the CGA can converge quickly in the early stage of evolution.
In the later stage of evolution, when falling into the local extremum, the ICGA improved the diversity
of individuals in the population by mapping the original probabilistic model to a new probabilistic
model, so that the algorithm could jump out of the local extremum and continue to evolve.

Processes 2019, 7, x FOR PEER REVIEW 21 of 24

process 12J , the setup time (12,2,2Ts) will be equal to 2,2Tsp , namely 12,2,2Ts = 2,2Tsp = 4; if we choose to

process 3J , the setup time (3,2,2Ts) will be 0, namely 3,2,2Ts = 0. In accordance with the SST rule that

controls the job leaving the buffer, 3J was chosen to process.

3. Analysis of scheduling evolution

Figure 5 shows the relationship between fitness value and training iterations of schemes 5–8. As
can be seen, the BA and WOA converged quickly at the initial stage of the evolution. This is mainly
due to the fact that the initial numbers of population of the BA and WOAs (NP = 30) were much
larger than that of the CGA and ICGAs (NP = 4). This means a relatively strong ability for searching
the solution space. However, with the increase in evolutional iterations, the search ability of the BA
and the WOA gradually deterioratesdand they fell into the local extremum in the 135th and 139th
generations, respectively. Although the CGA should be good at fast search, the distribution of
probability values in the probabilistic model all decreased with evolution, and thus and the search
performance on the solution space decreased. The algorithm stopped evolving at the 87th generation,
falling into the local extremum. On the other hand, the ICGA had the similar fast search performance
as the CGA during the initial stage and encountered evolutionary stagnation at the 94th generation.
But as evolution continues, the ICGA started the mapping operation to reactivate the algorithm’s
evolutionary ability and found for the optimal solution in the 263th generation.

Figure 6 shows the relationship between fitness value and running time of schemes 5–8. As can
be seen from the figure, the running speed of CGA and ICGA was very fast, but the CGA fell into the
local extremum at 4 s. The optimization speed of the BA was the slowest among the four algorithms,
and its optimal solution was 299 during the 35 s running time. From the figure, we can also see that
the fitness value of the ICGA was the best among the four algorithms at the same CPU time. And the
time used by the ICGA to get the same fitness value was the least among the four algorithms. The
ICGA maintained the advantage that the CGA can converge quickly in the early stage of evolution.
In the later stage of evolution, when falling into the local extremum, the ICGA improved the diversity
of individuals in the population by mapping the original probabilistic model to a new probabilistic
model, so that the algorithm could jump out of the local extremum and continue to evolve.

Figure 5. Relationship between fitness value and training iterations of schemes 5–8.

Figure 6. Relationship between fitness value and Running time of schemes 5–8. Figure 6. Relationship between fitness value and Running time of schemes 5–8.

Processes 2019, 7, 302 22 of 24

4. Statistical analysis of scheduling results

Figure 7 shows the makespan Cmax of schemes 5–8 running 10 times separately. For scheme 7,
the average value of makespan Cmax in 10 tests was 298.1, which was the worst among the four schemes.
Although scheme 5 could sometimes obtain better results, the results obtained in 10 tests were not
stable enough and were with large fluctuations, easily falling into the local extremum sometimes.
Its average value of 10 tests was 295.2. Compared with the other three schemes, the results obtained
by the scheme 6 were relatively stable. However, its average result was poor, at 296.3. The average
value of the test results of scheme 8 was 292.3, which was the best of all the schemes. The fluctuations
of the curve indicate that the magnitude of the change in the results of scheme 8 in 10 tests is small.
This shows that when solving multi-queue limited buffers scheduling problems in a flexible flow shop
with setup times, compared with the CGA, the ICGA has not only greatly improved the optimization
performance, but also improved the stability of the optimization results.

Processes 2019, 7, x FOR PEER REVIEW 22 of 24

4. Statistical analysis of scheduling results

Figure 7 shows the makespan maxC of schemes 5–8 running 10 times separately. For scheme 7,
the average value of makespan maxC in 10 tests was 298.1, which was the worst among the four
schemes. Although scheme 5 could sometimes obtain better results, the results obtained in 10 tests
were not stable enough and were with large fluctuations, easily falling into the local extremum
sometimes. Its average value of 10 tests was 295.2. Compared with the other three schemes, the results
obtained by the scheme 6 were relatively stable. However, its average result was poor, at 296.3. The
average value of the test results of scheme 8 was 292.3, which was the best of all the schemes. The
fluctuations of the curve indicate that the magnitude of the change in the results of scheme 8 in 10
tests is small. This shows that when solving multi-queue limited buffers scheduling problems in a
flexible flow shop with setup times, compared with the CGA, the ICGA has not only greatly
improved the optimization performance, but also improved the stability of the optimization results.

Figure 7. Results of 10 instance tests.

6. Conclusions

This study explored the multi-queue limited buffers scheduling problems in a flexible flow shop
with setup times in a bus manufacturer. The study proposed an ICGA for global optimization to
better improve the global optimization results, aiming at the shortcomings of the CGA that it is easy
to fall into the local extremum and rapidly stops evolving. This algorithm employed the probability
density function of the Gaussian distribution to map the original probabilistic model to a new
probabilistic model so as to enhance the evolutionary vigor of the CGA. The job was processed on
the specified online sequence in accordance with the individual decoding. Considering the impact of
multi-queue limited buffers, the problems of the job into and out of the buffer during the subsequent
scheduling were emphasized. When the job enters the buffer, the remaining capacity of buffers
should be taken into account to reduce machining blocking and stagnation. When the job leaves the
buffer and is assigned to the machine at the next stage, it is influenced by the setup times. In this
study, the setup time of the machine was calculated based on the change in the properties of
successively processed jobs. The SST rule was used to reduce the setup times. Finally, the findings of
simulation experiments proved that combining the ICGA with local dispatching rules could better
solve the multi-queue limited buffers scheduling problems in a flexible flow shop with setup times.

Author Contributions: Z.H. conceived and designed the research; Q.Z. performed the experiment and wrote
the manuscript；H.S. and J.Z. checked the results of the whole manuscript.

Funding: This research was funded by the Liaoning Provincial Science Foundation, China (grant number:
2018106008), the Natural Science Foundation of China (grant number: 61873174), Project of Liaoning Province
Education Department, China (grant number: LJZ2017015) and Shenyang Municipal Science and Technology
Project, China (grant number: Z18-5-102).

Conflicts of Interest: The authors declare no conflict of interest.

Figure 7. Results of 10 instance tests.

6. Conclusions

This study explored the multi-queue limited buffers scheduling problems in a flexible flow shop
with setup times in a bus manufacturer. The study proposed an ICGA for global optimization to better
improve the global optimization results, aiming at the shortcomings of the CGA that it is easy to fall
into the local extremum and rapidly stops evolving. This algorithm employed the probability density
function of the Gaussian distribution to map the original probabilistic model to a new probabilistic
model so as to enhance the evolutionary vigor of the CGA. The job was processed on the specified
online sequence in accordance with the individual decoding. Considering the impact of multi-queue
limited buffers, the problems of the job into and out of the buffer during the subsequent scheduling
were emphasized. When the job enters the buffer, the remaining capacity of buffers should be taken into
account to reduce machining blocking and stagnation. When the job leaves the buffer and is assigned
to the machine at the next stage, it is influenced by the setup times. In this study, the setup time of the
machine was calculated based on the change in the properties of successively processed jobs. The SST
rule was used to reduce the setup times. Finally, the findings of simulation experiments proved that
combining the ICGA with local dispatching rules could better solve the multi-queue limited buffers
scheduling problems in a flexible flow shop with setup times.

Author Contributions: Z.H. conceived and designed the research; Q.Z. performed the experiment and wrote the
manuscript; H.S. and J.Z. checked the results of the whole manuscript.

Funding: This research was funded by the Liaoning Provincial Science Foundation, China (grant number:
2018106008), the Natural Science Foundation of China (grant number: 61873174), Project of Liaoning Province
Education Department, China (grant number: LJZ2017015) and Shenyang Municipal Science and Technology
Project, China (grant number: Z18-5-102).

Conflicts of Interest: The authors declare no conflict of interest.

Processes 2019, 7, 302 23 of 24

References

1. Zhao, F.Q.; Tang, J.X.; Wang, J.B.; Jonrinaldi, J. An improved particle swarm optimization with a linearly
decreasing disturbance term for flow shop scheduling with limited buffers. Int. J. Comput. Integr. Manuf.
2014, 27, 488–499. [CrossRef]

2. Ventura, J.A.; Yoon, S.H. A new genetic algorithm for lot-streaming flow shop scheduling with limited
capacity buffers. J. Intell. Manuf. 2013, 24, 1185–1196.

3. Han, Z.H.; Sun, Y.; Ma, X.F.; Lv, Z. Hybrid flow shop scheduling with finite buffers. Int. J. Simul. Process
Model. 2018, 13, 156–166.

4. Zeng, M.; Long, Q.Y.; Liu, Q.M. Cellular automata variation particles warm optimization algorithm for batch
scheduling. In Proceedings of the 2012 Second International Conference on Intelligent System Design and
Engineering Application, Sanya, Hainan, China, 6–7 January 2012; IEEE: New York, NY, USA, 2012.

5. Zhang, P.W.; Pan, Q.K.; Liu, J.Q.; Duan, J.H. Hybrid artificial bee colony algorithms for flowshop scheduling
problem with limited buffers. Comput. Integr. Manuf. Syst. 2013, 19, 2510–2511.

6. Zhang, S.C.; Wong, T.N. Studying the impact of sequence-dependent set-up times in integrated process
planning and scheduling with E-ACO heuristic. Int. J. Prod. Res. 2016, 54, 4815–4838. [CrossRef]

7. Shen, L.; Dsuzere, P.; Neufeld, J.S. Solving the flexible job shop scheduling problem with sequence-dependent
setup times. Eur. J. Oper. Res. 2018, 265, 503–516. [CrossRef]

8. Tran, T.T.; Araujo, A.; Bech, J.C. Decomposition methods for the parallel machine scheduling problem with
setups. INFORMS J. Comput. 2016, 28, 83–95. [CrossRef]

9. Vallada, E.; Ruiz, R. A genetic algorithm for the unrelated parallel machine scheduling problem with sequence
dependent setup times. Eur. J. Oper. Res. 2011, 211, 612–622. [CrossRef]

10. Benkalai, I.; Rebaine, D.; Gagné, C.; Baptiste, P. Improving the migrating birds optimization metaheuristic
for the permutation flow shop with sequence-dependent set-up times. Int. J. Prod. Res. 2017, 55, 6145–6157.
[CrossRef]

11. An, Y.J.; Kim, Y.D.; Choi, S.W. Minimizing makespan in a two-machine flowshop with a limited waiting time
constraint and sequence-dependent setup times. Comput. Oper. Res. 2016, 71, 127–136.

12. Lenstra, J.K.; Kan, A.; Brucker, P. Complexity of machine scheduling problems. Stud. Integer Program. 1977,
1, 343–362.

13. Harik, G.R.; Lobo, F.G.; Goldberg, D.E. The compact genetic algorithm. IEEE Trans. Evol. Comput. 1999, 3,
287–297. [CrossRef]

14. Rafael, D.S.; Carlos, E.L.; Heitor, L. Template matching in digital images using a compact genetic algorithm
with elitism and mutation. J. Circuits Syst. Comput. 2010, 19, 91–106.

15. Sharifi, R.; Anvari-Moghaddam, A. A Flexible Responsive Load Economic Model for Industrial Demands.
Processes 2019, 7, 147. [CrossRef]

16. Tran, V.; Ramkrishna, D. Simulating Stochastic Populations. Direct Averaging Methods. Processes 2019, 7,
132. [CrossRef]

17. Gao, Z.W.; Saxen, H.; Gao, C.H. Data-Driven Approaches for Complex Industrial Systems. IEEE Trans.
Ind. Inform. 2013, 9, 2210–2212. [CrossRef]

18. Gao, Z.W.; Ding, S.X.; Cecati, C. Real-time Fault Diagnosis and Fault Tolerant. IEEE Trans. Ind. Electron.
2015, 62, 3752–3756. [CrossRef]

19. Han, Z.H.; Zhu, Y.H.; Ma, X.F.; Chen, Z.L. Multiple rules with game theoretic analysis for flexible flow shop
scheduling problem with component altering times. Int. J. Model. Identif. Control 2016, 26, 1–18. [CrossRef]

20. Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization;
Springer: Berlin, Germany, 2010; pp. 65–74.

21. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
22. Luo, Q.F.; Zhou, Y.Q.; Xie, J.; Ma, M.; Li, L.L. Discrete bat algorithm for optimal problem of permutation flow

shop scheduling. Sci. World J. 2014, 2014. [CrossRef]
23. Zhang, J.J.; Li, Y.G. An improved bat algorithm and its application in permutation flow shop scheduling

problem. Adv. Mater. Res. 2014, 1049, 1359–1362. [CrossRef]
24. Jiang, T.H.; Zhang, C.; Zhu, H.Q.; Gu, J.C.; Deng, G.L. Energy-efficient scheduling for a job shop using an

improved whale optimization algorithm. Mathematics 2018, 6, 220. [CrossRef]

Processes 2019, 7, 302 24 of 24

25. Neron, E.; Baptiste, P.; Gupta, J. Solving hybrid flow shop problem using energetic reasoning and global
operations. Omega 2001, 29, 501–511. [CrossRef]

26. Santos, D.L.; Hunsucker, J.L.; Deal, D.E. Global lower bounds for flow shop with multiple processors. Eur. J.
Oper. Res. 1995, 80, 112–120. [CrossRef]

27. Kim, M.K.; Narasimhan, R. Designing Supply Networks in Automobile and Electronics Manufacturing
Industries: A Multiplex Analysis. Processes 2019, 7, 176. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

