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Abstract: As of today, industrial process development for liquid-liquid extraction and scale-up
of extraction columns is based on an experimental procedure that requires tests in pilot-scale.
This methodology consumes large amounts of material and time and the utilized scale-up equations
are crude estimates including considerable safety margins. This approach is practical for well-known
systems or low-value products coupled with high production scale, where such a scale-up methodology
has less impact on the overall profitability. However, for new high-value products in biologics
manufacturing, a process development based on process understanding and the use of validated
process models is imperative. Therefore, a distinct and quantitative validation workflow for
liquid-liquid extraction modeling is presented on the example of two complex feed mixtures.
Monte-Carlo simulations based on the presented model parameter determination concept result for
both examples in prediction accuracy comparable to the experiments and prediction precision within
the deviation of the respective experiments. Identification of statistically significant parameters is
demonstrated. The presented methodology for model validation will support the implementation
of liquid-liquid extraction in the manufacturing of new high value biological products in regulated
industries by providing a workflow to derive a Quality-by-Design compatible process model.

Keywords: liquid-liquid extraction; atpe; modeling; simulation; validation; verification; monte-carlo;
design-of-experiments; quality-by-design; biologics

1. Introduction

The application of liquid-liquid extraction (LLE) is widespread in the chemical industry. It is often
applied in areas, where distillation is not feasible. Prominent examples are the separation of organic
compounds from aqueous feeds, e.g., phenoles from waste water, or the separation of non-volatile
components, e.g., metal ion extraction in hydrometallurgy, the recovery of caprolactam from nylon
manufacturing and the wet purification of phosphoric acid [1,2]. However, especially in biologics
manufacturing and in regulated industries in general, LLE is rarely part of the process chain, although
it was shown in numerous cases to offer decisive advantages in terms of capacity, ease of scale-up,
continuous operation and costs [3–8]. This is mainly due to a lack of knowledge regarding the practical
aspects of this technology. This includes multistage operation and scale-up. Multistage operation
in extraction columns is the common approach to maximize efficiency. How to perform the process
development and especially the scale-up aspects of this technology are not widely known, except
for supplier industry and some parts of academia, mainly institutes that conduct research in the
field of process engineering with a focus on modeling. Furthermore, the current industrial practice
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of scaling-up extraction columns is heavily reliant on pilot-scale experiments, which are time and
material consuming [2,9,10]. While this alone is already a challenge to be overcome, for biologics
manufacturing the more critical outcome is, that those methods are by nature empirical. Thus far,
no prediction is possible due to the lack of process understanding, and therefore, no link between
process and quality aspects can be made. This prevents current industrial process development practice
for Quality-by-Design (QbD).

QbD-based process development is becoming the standard for new pharmaceutical products,
such as virus-like-particles, plasmid DNA, fragments, etc., since it ensures quality through the whole
lifecycle and allows, even demands, changes to the process after filing when optimization potentials
occur, and because no comparable platform processes exist, as for monoclonal antibodies [11–14].

The application of QbD-principles for process development however requires a validated design
space that guarantees constant quality, which can either be developed by experiments or by process
understanding. Neither the pilot-based experimental method nor common scale-up equations are
applicable for this purpose of resource efficient design space validation. Hence, there is a need for
predictive LLE process models as wells as a reliable workflow that distinctively and quantitatively
validates prediction precision and accuracy. Sixt et al. [15] demonstrated the concept with an example
of solid-liquid extraction (SLE). Here, we demonstrate it using an example of LLE.

The overall development workflow for a QbD-derived process is shown in Figure 1. In the
beginning, a quality target product profile (QTPP) must be derived. This is necessary to define
what is critical for product quality. Characteristics for biologics are for example sterility and purity,
but also certain therapeutic effects, bioactivity and dosage. Depending on the QTPP critical quality
attributes (CQAs) are to be defined, which is a property or characteristic that ensures desired product
quality when controlled within a defined limit, range, or distribution [12,16]. In accordance with the
QbD-philosophy, CQAs are dynamic rather than static and have to be updated during the lifecycle of
products, when newly developed product and process knowledge suggest so. CQAs guide the further
process development and are derived by risk management and experimentation.

Processes 2019, 7, x FOR PEER REVIEW 2 of 21 

 

practice of scaling-up extraction columns is heavily reliant on pilot-scale experiments, which are time 
and material consuming [2,9,10]. While this alone is already a challenge to be overcome, for biologics 
manufacturing the more critical outcome is, that those methods are by nature empirical. Thus far, no 
prediction is possible due to the lack of process understanding, and therefore, no link between 
process and quality aspects can be made. This prevents current industrial process development 
practice for Quality-by-Design (QbD). 

QbD-based process development is becoming the standard for new pharmaceutical products, 
such as virus-like-particles, plasmid DNA, fragments, etc., since it ensures quality through the whole 
lifecycle and allows, even demands, changes to the process after filing when optimization potentials 
occur, and because no comparable platform processes exist, as for monoclonal antibodies [11–14]. 

The application of QbD-principles for process development however requires a validated design 
space that guarantees constant quality, which can either be developed by experiments or by process 
understanding. Neither the pilot-based experimental method nor common scale-up equations are 
applicable for this purpose of resource efficient design space validation. Hence, there is a need for 
predictive LLE process models as wells as a reliable workflow that distinctively and quantitatively 
validates prediction precision and accuracy. Sixt et al. [15] demonstrated the concept with an example 
of solid-liquid extraction (SLE). Here, we demonstrate it using an example of LLE. 

The overall development workflow for a QbD-derived process is shown in Figure 1. In the 
beginning, a quality target product profile (QTPP) must be derived. This is necessary to define what 
is critical for product quality. Characteristics for biologics are for example sterility and purity, but 
also certain therapeutic effects, bioactivity and dosage. Depending on the QTPP critical quality 
attributes (CQAs) are to be defined, which is a property or characteristic that ensures desired product 
quality when controlled within a defined limit, range, or distribution [12,16]. In accordance with the 
QbD-philosophy, CQAs are dynamic rather than static and have to be updated during the lifecycle 
of products, when newly developed product and process knowledge suggest so. CQAs guide the 
further process development and are derived by risk management and experimentation. 

 

Figure 1. Process model validation workflow and its position in the overall Quality-by-Design (QbD)-
based process development strategy. Adapted from [13]. After the definition of the quality target 
product profile and determination of critical quality attributes, risk assessment and design space 
identification can either be obtained by experiments or by modeling. 

Risk assessment is part of the risk management and should be performed early in process 
development. Its purpose is to establish known and hypothetical links between material, equipment 
and process parameters and CQAs, setting the range of the further process design. Common tools for 
this, that are also suggested by the FDA (U.S. Food and Drug Administration), EMA (European 
Medicines Agency), PDA (Parenteral Drug Association) and ICH (International Council for 
Harmonisation of Technical Requirements for Pharmaceuticals for Human Use), are the construction 
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Figure 1. Process model validation workflow and its position in the overall Quality-by-Design
(QbD)-based process development strategy. Adapted from [13]. After the definition of the quality
target product profile and determination of critical quality attributes, risk assessment and design space
identification can either be obtained by experiments or by modeling.

Risk assessment is part of the risk management and should be performed early in process
development. Its purpose is to establish known and hypothetical links between material, equipment and
process parameters and CQAs, setting the range of the further process design. Common tools for this,
that are also suggested by the FDA (U.S. Food and Drug Administration), EMA (European Medicines
Agency), PDA (Parenteral Drug Association) and ICH (International Council for Harmonisation
of Technical Requirements for Pharmaceuticals for Human Use), are the construction of Ishikawa
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diagrams, also known as fishbone diagram, and the performance of a failure-mode-effect-analysis
(FMEA) [17]. Both are shown in Figure 2. The Ishikawa diagram basically summarizes different groups
of effects, e.g., properties of materials, equipment design and process parameters that can represent a
risk to certain CQAs, such as yield, purity or processability in general. The major branches are fanned
out into minor branches, which reveal a more detailed causality between potential cause and risk.
The degree of detail is only dependent on the amount of prior knowledge that the process development
team has gathered. This diagram can already reveal critical process parameters (CPPs) that must be
kept within a certain range during the process, and therefore should be part of process control strategy
and might be needed to be investigated in more detail.

Processes 2019, 7, x FOR PEER REVIEW 3 of 21 

 

analysis (FMEA) [17]. Both are shown in Figure 2. The Ishikawa diagram basically summarizes 
different groups of effects, e.g., properties of materials, equipment design and process parameters 
that can represent a risk to certain CQAs, such as yield, purity or processability in general. The major 
branches are fanned out into minor branches, which reveal a more detailed causality between 
potential cause and risk. The degree of detail is only dependent on the amount of prior knowledge 
that the process development team has gathered. This diagram can already reveal critical process 
parameters (CPPs) that must be kept within a certain range during the process, and therefore should 
be part of process control strategy and might be needed to be investigated in more detail. 

 
Figure 2. Construction of Ishikawa diagram and corresponding FMEA (failure-mode-effect- analysis) 
visualization are key-steps in risk assessment in a Quality-by-Design based process development. 

A more quantitative tool during risk assessment is the FMEA. It is summarized in Table 1, 
graphically represented in Figure 2 and is derived by scoring the range of possible CPPs, identified 
in the Ishikawa diagram, regarding the possible impact that an occurring risk will have on quality 
attributes and the possibility that the risk will occur in the process of a stirred extraction column. It 
may be useful to include the chance of detecting the occurrence into the score. It is also possible to 
link certain parameters to each other, to also score potential interactions; however, this requires an 
even vaster prior knowledge about the system properties, which is seldom the case and therefore not 
shown here. Regarding LLE stirring intensity, in agitated columns, and the amount and presence of 
unwanted particles both can have a significant effect on process performance. While higher specific 
energy input causes an increase in hold-up, particles often hinder the coalescence of small droplets 
[18]. If not controlled and kept within a certain range, both can lead to column flooding, and therefore 
pose a high risk to the process stability. However, while the range of energy input is efficiently 
controlled by operating only at certain stirring rates, the occurrence of unwanted particles can easily 
be missed, if turbidity measurement of the feed or robust filtration is not part of the process and 
control strategy. This early risk management also offers guidance for the general process 
development, as for this example it already highlights settling-properties as key aspects during 
solvent selection. 

Table 1. The failure-mode-effect-analysis (FMEA) for the process development of a stirred extraction 
column is derived by scoring the range of possible critical process parameters (CPPs), identified in 
the Ishikawa diagram, regarding the possible impact that an occurring risk will have on quality 
attributes and the possibility that the risk will occur. 

Risk Severity 
Occurrenc

e Comment 

Surfactants 4 6 
Depending on type, can hinder coalescence. Is expected to 
be well controlled, once characterized in feed. 

Temperature 1 1 
Only affects coalescence, equilibrium and mass transfer 
beyond limits that will not occur in the process. 

Figure 2. Construction of Ishikawa diagram and corresponding FMEA (failure-mode-effect- analysis)
visualization are key-steps in risk assessment in a Quality-by-Design based process development.

A more quantitative tool during risk assessment is the FMEA. It is summarized in Table 1,
graphically represented in Figure 2 and is derived by scoring the range of possible CPPs, identified
in the Ishikawa diagram, regarding the possible impact that an occurring risk will have on quality
attributes and the possibility that the risk will occur in the process of a stirred extraction column.
It may be useful to include the chance of detecting the occurrence into the score. It is also possible to
link certain parameters to each other, to also score potential interactions; however, this requires an
even vaster prior knowledge about the system properties, which is seldom the case and therefore not
shown here. Regarding LLE stirring intensity, in agitated columns, and the amount and presence of
unwanted particles both can have a significant effect on process performance. While higher specific
energy input causes an increase in hold-up, particles often hinder the coalescence of small droplets [18].
If not controlled and kept within a certain range, both can lead to column flooding, and therefore pose
a high risk to the process stability. However, while the range of energy input is efficiently controlled
by operating only at certain stirring rates, the occurrence of unwanted particles can easily be missed,
if turbidity measurement of the feed or robust filtration is not part of the process and control strategy.
This early risk management also offers guidance for the general process development, as for this
example it already highlights settling-properties as key aspects during solvent selection.
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Table 1. The failure-mode-effect-analysis (FMEA) for the process development of a stirred extraction
column is derived by scoring the range of possible critical process parameters (CPPs), identified in the
Ishikawa diagram, regarding the possible impact that an occurring risk will have on quality attributes
and the possibility that the risk will occur.

Risk Severity Occurrence Comment

Surfactants 4 6 Depending on type, can hinder coalescence. Is expected to
be well controlled, once characterized in feed.

Temperature 1 1 Only affects coalescence, equilibrium and mass transfer
beyond limits that will not occur in the process.

Particles 8 6
Occur very often. Depending on prior unit operations and
control strategy. Can even be formed during extraction and
hinder coalescence. Can cause flooding.

Target Component
Concentration 5 5

Is expected to be in good control, once characterized in feed.
However, it is a subject of natural feed variability and must
be controlled to avoid oversaturation or yield loss.

Side Component
Concentration 6 6

Is expected to be well controlled, once characterized in feed.
However, it is a subject of natural feed variability and must
be controlled to avoid inefficient purification or
underperformance of following separation steps.

Stirring Intensity 8 1

Can easily lead to flooding if set too high or
underperformance if set too low, since it is mainly
responsible for hold-up and column efficiency. However,
stirring can be very well controlled.

Flow Rate 9 1

Can easily lead to flooding if set too high or
underperformance if set too low, since the solvent ratio
besides power input is responsible for hold-up and column
efficiency. However, flow rates can be very well controlled.

Looking back at the overall QbD-based process development strategy (Figure 1) reveals that
the next steps are focused on determining the design space. Traditionally this is done solely based
on experiments. To reduce the huge experimental effort, Design-of-Experiments (DoE) methods are
usually applied. Even then, the amount of raw feed material necessary in the early process development
stage might already be a criterion not to choose extraction technology for high-value products or lead to
an experimental design that is limited to the fewest number of experiments possible or even eliminates
the possibly more efficient unit-operation altogether, since there simply is not enough material at this
stage to run the necessary tests. The development of a process-analytical-technology (PAT) supported
control strategy and the continual improvement are the last steps in process development strategy,
but they are beyond the scope of this work. More details regarding PAT-supported control strategies
and continual improvement can be found in Kornecki et al. [19].

Predictive process models are the key-enabling tool to find a quantitatively defined and
knowledge-based process optimum and design-space. They accelerate process development and at the
same time generate process knowledge. They help to reduce the experimental effort and their validity
does not end in the filed design space due to the physico-chemical nature of predictive process models.
Each model that is to be utilized in this manner must be proven to be at least as accurate and precise as
the respective experiments it ought to substitute. This requirement leads to the workflow for process
development and validation as shown in Figure 3. First introduced by Sixt et al. [15], it is based on
four distinct decision criteria for each development and validation phase [14,15].

First, the model task and its application must be defined. In case of LLE, the concentration
profile in the extraction column must be correctly predicted by taking all effects (fluid dynamics,
phase equilibrium and mass transfer kinetics) into account. Combining prior knowledge and studying
existing literature results in the derivation of the appropriate model approach and depth. Simply,
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mass and energy balance checks on the example of simplified case-studies are sufficient to decide, if
the conceptual model is verified.

Second, the sensitivity of the model must be investigated. Therefore, one-parameter-at-a-time
studies can reveal if the model behaves in a way to be expected by an experienced process engineer.
Therefore, step size of variable change should be rather large to exemplify parameter effects. However,
multi-parameter-at-a-time studies are more suitable to quantify sensitivity. By applying DoE-principles
a screening design can serve as plan for simulation studies. The investigated space should in contrast
to one-parameter-at-a-time-studies be within the system specific boundaries, e.g., the solvent ratio in
an extraction column is limited by the mutual solubility, as is the maximum loading limited by the
density difference between both phases. Details on the sensitivity analysis are given in Section 4.1.

Third, field experiments at specific points of the DoE simulation must be done, in order to compare
precision and accuracy of the model at different operating points to the experiment. Last statistical
evaluation such as PLS (partial-least-squares) loading plots help to quantify the results from the
simulation studies.

The objective of this article is to present the complete walkthrough using an example of a
monoclonal antibody and Artemisinin, both representing products from highly non-ideal complex
multicomponent mixtures for regulated industries.
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2. Modeling Liquid-Liquid Extraction

The use of LLE as a separation process was already known before the 19th century to produce
dyes, fragrances and pigments. The basic theories of equilibrium distribution were laid by Berthelot
and Jungfleisch [20] as well as Nernst [21]. These findings were soon followed by the first industrial
applications, such as countercurrent configuration, and technical developments, such as stirred
extraction columns [22].

The methods developed for the design of processes in the first half of the 20th century still exist
today in industrial practice. Major milestones before 1950 were the introduction of mass transfer
coefficients by Lewis [23], stage construction and graphical methods in equilibrium representations
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by McCabe and Thiele [24], Kremser [25] and Hunter and Nash [26], as well as the concept of solute
transfer units introduced by Colburn [27].

In the 1950s, progress was made in identifying fluid dynamics as a major contributor to the effects
that are crucial in predicting LLE in technical applications. The fact that there is a large deviation
from plug-flow regime in extraction columns, and therefore a diminished efficiency, was made
by Geankoplis and Hixson [28], Burger and Swift, Sege and Woodfield [29] and Thornton and
Logsdail [30]. Danckwerts [31] introduced theaxial dispersion model (ADM) as a mathematical
description of plug-flow overlapped by backmixing. Alongside with other researchers Levenspiel and
Smith [32], Sleicher [33] and Stemerding and Zuiderweg [34] were on the forefront in contributing to
this model concept, developing methods to determine the dispersion coefficient and to quantify the
effect of axial dispersion on separation efficiency.

In the 1960s, Miyauchi and Vermeulen [35] were among the first to apply the DPF model and
calculate concentration profiles in extraction columns. Additionally, limitations of this model approach
were discussed, among others by Rod [36], who introduced the term “forward-mixing”, partially
caused by so-called channeling.

From the 1970s to the 1980s, many working groups discussed if deviation from plug flow,
caused by different convective velocities of drop size distributions, can be represented by the axial
dispersion model. A summary of available model approaches developed during this period was
done by Steiner and Hartland [37]. While some researchers found good agreement with axial
dispersion model predictions and experimental data like Reissinger [38], the development of models
that specifically account for coalescence and breakage of drops by population balance models (PBM)
began. Jirnicy et al. [39,40], Cassamata and Vogelpohl [41], Haverland et al. [42], Al Khani et al. [43],
Cruz-Pinto and Korchinsky [44], Coulaloglou and Tavlarides [45], Tavlaritis and Bapat [46] and
Hamilton and Pratt [47] were the major contributors to develop and expand on this model type.
The three major modeling approaches to LLE in extraction columns at this point in time and their
respective system boundaries are shown in Figure 4.
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In the 1990s, computational capacities increased significantly, and thus, many research groups
focused their research development on PBM and more sophisticated kernels to calculate coalescence
and breakage in more detail. Major contributions were made by the research groups of Bart and
Pfennig, for example in the work of Kronberger et al. [48] and Henschke et al. [49].

More recently, research began to focus on the fact that the increase in model depth had to
be supplemented by parameter determination concepts in order to be predictive. Among others,
Hoting [50] published model prediction for the EFCE (European Federation of Chemical Engineering)
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standard test system water, butyl acetate, acetone in packed extraction columns. The project “from
single-drop to extraction column” focused on PBM approaches and could show for packed and agitated
columns scale-up was possible on the example of the EFCE standard test systems [51–53].

Franke et al. [54], Leistner [55], Eggersglüß [5–7] and Wellsandt [56] from the research group of
Strube worked on parameter determination concepts for complex feed mixtures and demonstrated
the feasibility of model based process development Since then, some research dives even deeper into
modeling depths by combining CFD with PBM [57]. However, for industrial use and the prediction of
processes including complex feed mixtures, the axial dispersion model still is the approach of choice,
due to accounting for all relevant effects and also the availability of more precise and efficient model
parameter determination concepts.

Axial Dispersion Model

The fundamental equations of the axial dispersion-model are based on the transport equations for
the continuous (see Equation (1)) and the dispersed phase (see Equation (2)). They describe the mass
balance around the system boundary as shown in Figure 4 (middle). The accumulation term on the
left hand side of the equations is the sum of the change in concentration due to the convective mass
flow, mainly characterized by the velocity u, the dispersed mass flow, mainly characterized by Dax,
and the mass transfer between both liquid phases depend on the effective mass transfer coefficient ke f f ,
hold-up, sauter diameter d and equilibrium concentration ci,Eq:

∂ci
c

∂t
= −uc·

∂ci
c

∂z
+ Dax

c
·
∂2ci

c

∂z2 + ke f f ·
Φ

(1−Φ)
·
6
d
·

(
ci

d
− ci,Eq

d
)

(1)

∂ci
d
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= ud·

∂ci
d

∂z
+ Dax

d
·
∂2ci

d

∂z2 − ke f f ·
6
d
·

(
ci

d
− ci,Eq

d
)

(2)

In the extraction columns, there is a deviation from the ideal plug flow due to back-mixing.
This leads to a deviation from the ideal residence time distribution and thus to different contact times
between the dispersed and the continuous phase. The result is a decreased separation efficiency [6,7].
This so-called dispersion can be characterized by the axial dispersion coefficient Dax, which is
either experimentally determined for the continuous and the dispersed phase by tracer tests or
by corresponding empirical correlations. Depending on the column type and internals different
correlations are published. For the continuous phase, the approach in Equation (3) is often applied:

Dax
c = uc·Hc·

(
C1 + C2·

(DR·N
uc

)
·C3

)
(3)

In addition to the stirrer diameter (DR) and the stirrer speed (N), the Equation also contains
the constants (C1, C2 and C3), which account for different geometries of stirrer and column.
Therefore, the coefficients are selected according to the column type, its diameter and overall stirrer
geometry [58–61]. A modified correlation from Rod and Misek for the axial dispersion coefficient
of the dispersed phase for Kühni columns can be seen in Equation (4) [62]. As for the continuous
phase, there are several correlations published that are determined for specific column scales and
geometry [63–65].

Dax
d =

1
Bo

= 0.056 + 1.19·10−2
·

(
dR·N

ud

)3.45

(4)

The cross-sectional column loading (L) is another important parameter for the characterization of
column efficiency. It is defined as the sum of the volume flows of the continuous (VC) and the disperse
phase (VD) divided by the column cross-sectional area (AC):

L =
VD + VC

AC
(5)
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The corresponding differential equations can be solved by the implementation of two boundary
conditions for the continuous and dispersed phase, which are shown in Equations (6) and (7):

∂c(z = L)
∂z

= 0 (6)

Dax·
∂c(z = 0)

∂z
= u·(c(z = 0) − cin) (7)

3. Model-Parameter Determination

For the application of the axial dispersion model in process design, the determination of a set of
model parameters is necessary as described in the section before. Ideally, the complete set of parameters
can be determined with as few experiments as possible and thus with as little material and time as
possible. However, this requires a standardized and effect oriented model parameter determination
concept. The workflow to determine model parameters, which are needed for the DPF-model, is shown
schematically in Figure 5.
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The sequence to determine these parameters are ordered according to their importance and effect
on the process:

1. Fluid dynamics (red): the fluid dynamic behavior of the system is dependent on the axial
dispersion of the system, as well as on the hold-up (Figure 5, 1.1), characterized by drop rise velocity,
droplet sauter diameter and column loading. The axial dispersion coefficient must be determined by
tracer experiments (Figure 5, 1.2) if it is not to be determined by correlations. Since this parameter is
primarily geometry-dependent, the actual feed solution does not have to be used. Around 2–5 L of
total system volume, depending on the investigated scale, is required for the determination of axial
dispersion behavior. A qualified person can perform this experiment within 1 day.

A droplet measurement cell can be used for the quantification of the drop size and drop rise
velocity (Figure 5, 1.3), which is dependent on the sauter diameter. Few milliliters, up to 50 mL,
are required to determine this parameter within 1 to 5 days. Batch-settling experiments to determine the
settling time and properties of the system can add additional information regarding which solvent to
choose for the process (Figure 5, 1.4); however, they are not mandatory for the parameter determination.
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2. Phase equilibrium (blue): shaking flask experiments must be performed to determine the
binodale, tie-lines and distribution coefficients of target and main side components. Up to five points
evenly spread around the phase diagram can typically deliver the necessary information. Between 5
and 10 mL are usually enough per shaking flask experiment to determine these parameters. However,
if interfacial tension, viscosities and densities for both phases are not known or accessible by reliable
database or correlation, the volume should be increased to obtain these data also from the shaking flask
experiments. If determined in triplicates, 75 (3 × 5 × 5 mL) up to 150 (3 × 5 × 10 mL) mL of system
volume are needed for the quantification. Up to 2 days are sufficient for execution.

3. Kinectics (green): the effective mass transfer coefficient is necessary to correctly describe the
kinetic of the extraction process. Lower values of this parameter result in more time necessary for
component separation. This parameter can also be quantified by droplet measurements, and thus,
should be determined parallel to the drop measurements during the 1 to 2 days period.

The time and material resources necessary for a complete model parameter determination as
described above requires around 3 days up to 1 week and only 200 up 300 mL feed material. More detail
for each model parameter experiment can be found in [66].

4. Model Validation

In the following subsections, we show the decisive steps during the model validation. First,
syntax, mass and energy balance must be checked. It is advisable to also test if the principle model
behavior is logical, e.g., that mass transfer direction is correct. Exemplary case studies, either from
in-house data or from literature can help to identify a suitable reference point and to show that the
model is not obviously wrong.

4.1. Sensitivity Analysis

As described in the introduction, the next steps are one-parameter-at-a-time sensitivity studies.
Here, data from Hoting [67] were used as point of reference. The parameters for the sensitivity analysis
are shown in Table 2. It was investigated how big the influence of each parameter is, when the others
are kept at their default value. Figure 6 shows the result for the first sensitivity study. The mass flow of
the dispersed and continuous phase affects the concentration profile the most. This is to be expected,
as they determine the solvent ratio and whether the feed stream is depleted from the solute by the
solvent stream or whether the solute quickly reaches equilibrium concentration in the solvent stream.
The distribution coefficient has a default value of approximately 1. Thus, a variation of this parameter
of 30% is enough to induce a change of the concentration profile similar to the effects of the solvent
ratio. The other parameters, such as hold-up, sauter diameter and axial dispersion, only show small
influences on the concentration profile when kept within reasonable values (see Table 2).

Table 2. Axial dispersion model parameters for the one-parameter-at-a-time sensitivity analysis.

Model Parameter Unit Deviation

Mass flow continuous phase kg/h 58–109 (±30%)
Mass flow dispersed phase kg/h 63–118 (±30%)

Distribution coefficient - 0.84–1.18 (±30%)
Mass transfer coefficient m/s 7.5 × 10−6

− 1.2 × 10−4

Axial dispersion continuous phase m2/s 3 × 10−7
− 1.2 × 10−4

Axial dispersion dispersed phase m2/s 3 × 10−7
− 1.2 × 10−4

Sauter diameter mm 1–7 (±75%)
Hold-up - 0.045–0.36 (±75%)
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profile is achieved by altering the mass flow of the continuous, the dispersed phase and the distribution
coefficient of acetone. (B,D) On the right hand side are insets of (A,C).

The next step during sensitivity analysis is the performance of multi-parameter-at-a-time studies.
This reveals parameter combinations that have a significant effect on a CPP such as purity or
concentration. Therefore, it is recommendable to apply a DoE-derived simulation plan, which mimics
the experiments plan otherwise necessary for optimal operation space identification. This will be
shown in the following using as an example the purification of Artemisinin.

Table 3 summarizes the Plackett-Burman-Design for the simulation studies, which is typically
used in the early process development stage to screen for the most important factors that influence the
process outcome [68]. The combined mass flow of the continuous and dispersed phase are limited
by the flooding point of the system, which was determined to be around 12 m3/m2/h, the minimum
solvent ratio. The concentration of Artemisinin and the side components are variable due to the natural
raw feed material variability. The other parameters are set within the range of what can occur during
the process.
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Table 3. Axial dispersion model parameters for the multi-parameter-at-a-time sensitivity analysis.

Parameter Unit Min Center Max

Mass flow continuous phase kg/hr 3 3.58 4.2
Mass flow dispersed phase kg/hr 0.5 1.13 1.9
Concentration Artemisinin kg/m3 0.7 0.84 1
Concentration side components kg/m3 1.2 1.53 1.85
Dispersion coefficient m2/s 8.50× 10−5 1.08× 10−4 1.30× 10−4

Distribution coefficient acetone - 1 1.3 1.6
Distribution coefficient Artemisinin - 30 90 150
Distribution coefficient side components - 0.1 1.3 2.5
Effective mass transfer coefficient m/s 2.00× 10−5 2.50× 10−5 3.00× 10−5

Hold-Up - 0.16 0.18 0.2
Sauter diameter mm 3.5 4.5 5.5

Figure 7 shows the Pareto chart of standardized effects obtained from the simulation runs.
The statistical criterion of significance here is the p-value. If the model parameters are evaluated by the
increase in Artemisinin concentration; then, it becomes clear that the massflow of the continuous and
dispersed phase are the most significant factors. Since the distribution coefficient of Artemisinin is
comparably high, mass transfer is fast and equilibrium composition is reached very quickly. Larger
deviations of other parameters that influence mass transfer, such as the effective mass transfer coefficient,
sauter diameter and hold-up become therefore non-significant. Thus, the concentration of Artemisinin
is mostly determined by the solvent ratio. The third significant parameter is the distribution coefficient
of acetone. This is also easy to understand, since acetone is also a solute that is extracted, however in
much larger quantities. The more acetone is extracted, the larger the extract volume gets and the more
diluted the Artemisinin concentration becomes.
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4.2. Statistical Evaluation

The last steps in the model validation workflow presented here include the statistical evaluation
of different operating points of the previously simulated DoE. First, the center point of the statistical
simulation plan is established; second, selected optimized operating point is evaluated with regard
to precision and accuracy. Finally, the simulation of an aqueous two-phase extraction in a packed
extraction column serves to present the robustness of the model, which explicitly includes the secondary
component profile.
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Figure 8 shows the results of the center point simulation (left) and the simulation of the optimized
operating point (right) compared to the experiment. Data represent experimental duplicates as well
as the standard deviation. Since all model parameter determinations are subject to statistical and
methodological error, these must be taken into account in the simulation to enable a reliable comparison
to the experiments. This is achieved by the random, evenly distributed variation of the model parameter
values in a Monte-Carlo simulation. The default values are the results obtained from the model
parameter determination. The range of deviation is determined from the error calculation for each
model parameter. The default values and the range of deviation for the simulation are summarized in
Tables 4 and 5. All process information in detail can be found in our previously published work [69].
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Figure 8. Comparison of experimental and simulated column profiles. Center-point is shown on the
left side (A), the optimized operating point is shown on the right hand side (B). The enveloped curves
represent the minimum and maximum values of 100 Monte-Carlo simulation runs. Also shown are the
phase diagrams including mixing point, extract and raffinate composition for each operating point.

Table 4. Axial dispersion model parameters for the center point study. The default values of the
simulation equal the experimental process parameters.

Parameter Center Point Unit Default Deviation

Mass flow continuous phase kg/h 3.58 ±0.0252
Mass flow dispersed phase kg/h 1.13 ±0.0546
Concentration Artemisinin kg/m3 0.84 ±0.02

Dispersion coefficient m2/s 1.08× 10−4
−9.80× 10−5/+1.08 × 10−4

Distribution coefficient acetone - 1.3 ±0.13
Distribution coefficient Artemisinin - 90 ±9

Effective mass transfer coefficient m/s 2.50× 10−5
±1.25× 10−6

Hold-Up - 0.18 ±0.045
Sauter diameter mm 4.5 ±1.5
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Table 5. Axial dispersion model parameters for optimized operating point study. The default values of
the simulation equal the experimental process parameters.

Parameter Operating Point 2 Unit Default Deviation

Mass flow continuous phase kg/h 3.6 ±0.006
Mass flow dispersed phase kg/h 0.64 ±0.0168
Concentration Artemisinin kg/m3 0.87 ±0.01

Dispersion coefficient m2/s 1.08× 10−4
−9.80× 10−5/+1.08× 10−4

Distribution coefficient acetone - 1.3 ±0.13
Distribution coefficient Artemisinin - 30 ±3

Effective mass transfer coefficient m/s 2.50× 10−5
±1.25× 10−6

Hold-Up - 0.18 ±0.045
Sauter diameter mm 4.5 ±1.5

Both operating points are characterized by a high utilization of the column in the upper area.
This fits with the previously discussed findings that the distribution coefficient of Artemisinin is so
large that it is fully extracted at a very early stage in the process. Therefore, the resulting concentration
value at the head is only significantly dependent on the set solvent ratio, which is specified as a process
parameter and can thus be optimized, and the distribution coefficient of acetone underlying the system,
which determines the volume of the extract phase. An example with a more evenly spread column
profile is presented later.

The simplex (enveloped curves) represents the minimum and maximum values of 100 Monte-Carlo
simulation runs. As can be seen the derived model precision is within the experimental deviations.
If the accuracy of the model is compared to the experiments, the center point concentration can be
very well predicted (left diagram (A) in Figure 8). The optimized operating point is derived from
our previous work, that showed that the concentration can be increased by decreasing dispersed
solvent mass flow towards the minimum solvent ratio, which is around 1/6 [69]. Herein, the increased
concentration (experiment and simulation) can be easily observed, which underlines the correct
parameter implementation. Furthermore, a larger deviation of the simulated and experimental
head-concentration can be observed in the column height of 3.5 to 4.5 m. The model inherently closes
the mass balance, which is due to error in analytics, experimental procedure and product instability not
necessarily reflected in the experiment. The simplex is within the experimental deviation, and therefore
the necessary model accuracy is given.

Since for the model purpose of replacing experiments specified in the introduction a sufficient
precision and accuracy are given, model parameter influence can now be statistically evaluated.
Figure 9 shows the partial-least-squares regression loading plot. The inner circle includes all model
parameters (predictors, blue) that explain up to 50% of the observed variance. The area between the
inner and outer circle contains the predictors that explain the remaining variance. Model parameters
that are positively correlated to the here evaluated target component concentration (response, red) are
located in the same direction of the diagram. For example, the mass flow of the continuous phase is
positively correlated to the response, since its increase practically leads to more of the target component
that can be extracted and indirectly decreases the solvent ratio. This is even better illustrated by the
mass flow of the dispersed phase, which is located in the opposite direction of the target component
concentration and therefore implies a negative correlation to the model response. This fits very well
with all the above mentioned findings (sensitivity studies, Pareto-chart, comparison of experiment and
simulation of two operating points, which origin from the DoE and theoretical understanding) and is
the final step in the model validation workflow.
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It should be noted that for other systems both the Pareto and the PLS loading diagrams will be
different. For example, for a mass transport-limited system the solvent ratio is expected to be far less
significant. On the other hand, the smaller the distribution coefficient of the target component in
the system becomes, the more significant its influence on the concentration profile is and it should
be positively correlated to the extract concentration. The same rationale is applicable for the mass
transfer coefficient. However, the procedures and methods of evaluation should always be based on
the procedure and the evaluation criteria shown here in order to enable an evaluation of the validity of
the model for use in a QbD-based process development as discussed in the introduction and depicted
in Figure 1.

Finally, to further demonstrate the validity of the model, it is applied to the wash extraction of a
monoclonal antibody (mAb). Details on the latter study are published by Eggersgluess et al. [7] and
process parameters are summarized in Table 6. After capture of the antibody from a cell culture harvest
by aqueous two-phase extraction, the mAb containing light phase is washed in multistage-operation
with fresh heavy phase. The process is executed in a packed extraction column. The light phase
enters the column dispersed at the bottom; the heavy wash phase enters the column as continuous
phase at the top. For the design of the total process it is especially important to have information
about the purity profile to be able to design the subsequent purification steps adequately. The size
exclusion chromatogram of the inlet and outlet streams is shown in Figure 10. The monoclonal antibody
(mAb) peak is located at around 10 min. The following peaks can be contributed towards lower
molecular weight (LMW1, LMW2, LMW3, LMW4) components, which will serve in the following
as the investigated impurities. The comparison between the experimental and simulated purity
profiles is shown in Figure 11. The simulated purity profile for LMW1 and LMW4 are well within
the experimental deviation. This is to be expected, since LMW1 does not show a high solubility in
the continuous phase and LMW4 already is highly depleted at the column inlet. The more difficult
impurities LMW2 and LMW3 are also within the experimental deviation at the column top, with larger
deviations for LMW2 at the column middle. However, the critical overall purity profile is then again
within the experimental deviations over the entire column length.
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Table 6. Process and model parameters for the wash extraction from [7]. The default values of the
simulation equal the experimental process parameters. The dispersed phase enters the column at the
bottom; the continuous phase inlet is at the column top.

Parameter Unit Default Deviation

Massflow dispersed phase g/min 3 5%
Massflow continuous phase g/min 15 5%

Density dispersed phase kg/liter 1.118 5%
Density continuous phase kg/liter 1.222 5%

Dispersion coefficient, dispersed m2/s 5.60× 10−5 10%
Dispersion coefficient, continuous m2/s 4.70× 10−5 10%

Sauter diameter mm 0.21 10%
Hold-Up - 0.2755 10%

Distribution coefficient mAb - 100 5%
Distribution coefficient LMW1 - 15.23 5%
Distribution coefficient LMW2 - 4 5%
Distribution coefficient LMW3 - 3.5 5%
Distribution coefficient LMW4 - 1.83 5%

Effective mass transfer coefficient m/s 1.00× 10−6 5%Processes 2019, 7, x FOR PEER REVIEW 15 of 21 
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5. Material and Methods

The materials and methods for the Artemisinin study can be found in detail in our previously
published article [69]. Butyl acetate for the column tests was purchased from ThermoFisher (Waltham,
MA, USA) in technical grade purity of 99% (by GC). Acetone was purchased from VWR (Darmstadt,
Germany). The analysis of artemisinin by HPLC is performed on an Elite LaChrom® device equipped
with an Evaporation Light Scatting Detector (ELSD) Alltech® 3300 (Grace®, Columbia, SC, USA).
The analytical column is a PharmPrep® RP18 250 mm × 4 mm i.d. (inner diameter) by Merck® (Merck
KGaA, Darmstadt, Germany) operated at 25 ◦C.

The materials and methods for the mAb study can be found in detail in the work published by
Eggersgluess et al. [7]. Polyethylene glycol with an average molecular weight of 400 Da (PEG 400) and
NaH2PO4 were obtained from Merck (Darmstadt, Germany). K2HPO4 and Tween-20 were from Sigma
Aldrich (St. Louis, MO, USA). A cell culture harvest from a Chines hamster ovary (CHO) cell culture
(harvest/cell culture harvest) was provided by Boehringer Ingelheim Pharma (Biberach, Germany).
The cell culture harvest contained an IgG mAb. Size exclusion chromatography (SEC; TSKgel G3000
SWXL column; Tosoh Biosciences, Stuttgart, Germany) was performed to obtain the purity profile.

The purity P is defined in all experiments as the area of the target component peak in the ELSD
chromatogram (for artemisinin) or in the size exclusion chromatogram (for the monoclonal antibody)
divided by the total area of the target component and respective side components:

P =
ATarget Component

Atotal
(8)

The solvent ratio in all column experiments is defined as follows:

Solvent ratio =
morg.

maq.
(9)

The column experiments are carried out in two mini-plant columns; a stirred Kühni column
(Artemisinin study) and a pulsed, packed column (mAb study). Both columns have a total volume of
approximately 5 L with an effective separation height of 3.5 m. The diameter of the separating area
is 26 mm. This results in an effective separation volume of about 2 L, slightly reduced by 8 vol% by
the installations.

6. Conclusions

The presented work adopts the model validation workflow presented by Sixt et al. [15] and applies
it to liquid-liquid extraction column modeling and simulation. Single- and multi-parameter-at-a-time
studies reveal the significance of model parameters and enables the identification of combined parameter
effects with support from statistical evaluation (Pareto chart and partial-least-squares loading plot).
Two case studies for products from complex feed mixtures, Artemisinin and a monoclonal antibody,
are presented and the comparison between simulation and experiment suggest sufficient precision and
accuracy for the applied model approach to be applicable in a process development scenario. For the
Artemisinin process, it is shown in the Pareto-analysis that significant parameters in regards to the
concentration of the target component are the mass flow of the dispersed and continuous phase as
well as the distribution coefficient of acetone. Interactions of these parameters are made visible in
the partial-least-squares loading plot. It is shown that the highest concentration of Artemisinin is
negatively correlated to the mass flow of the dispersed phase. Applying the validated model to the
monoclonal antibody (mAb) process resulted again in model accuracy and precision comparable to
the experiment. The results and procedure presented support the implementation of liquid-liquid
extraction in upcoming processes, especially when feed material in the early product development is
limited and traditional experiment- and pilot-testing based development strategies are not applicable.
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Future research could be directed towards higher modeling depth, if experimental results suggest,
that certain effects are not sufficiently described by the axial dispersion model. However, the findings
shown here suggest that probably better prediction is possible by more precise model parameter
determination than by an increase in model depth, which would result in more model parameters to
be additionally determined.
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Abbreviations

ADM Axial dispersion model
CFD Computational Fluid Dynamics
CQA Critical quality attribute
CPP Critical process parameter
EMA European Medicines Agency
FDA U.S. Food and Drug Administration
FMEA failure-mode-effect-analysis

ICH
International Council for Harmonization of Technical Requirements for Pharmaceuticals
for Human Use

LLE Liquid-Liquid Extraction
QbD Quality-by-Design
QTPP Quality target product profile
PAT Process-Analytical-Technology
PBM Population balance model
PDA Parenteral Drug Association
PLS Partial-least-squares
List of Symbols
AC Column cross-sectional area, m2

Bo Bodenstein number, -
ci

c Concentration in the continuous phase, kg/m3

ci
d Concentration in the dispersed phase, kg/m3

ci,Eq
d Equilibrium concentration in the dispersed phase, kg/m3

C1 Constants in the axial dispersion coefficient correlation
C2 Constants in the axial dispersion coefficient correlation
C3 Constants in the axial dispersion coefficient correlation
d Sauter diameter of droplets, m
DR Stirrer diameter, m
Dax

c Axial dispersion coefficient of the continuous phase, m2/s
Dax

d Axial dispersion coefficient of the dispersed phase, m2/s
Hc Height of a mixing compartment, m
ke f f Effective mass transfer coefficient, m/s
L Column loading, m3/m2/s
N Stirring speed, 1/s
t Time, s
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uc Velocity of the continuous phase, m/s
ud Velocity of the dispersed phase, m/s
Vc Volume flow of the continuous phase, m3/s
Vd Velocity of the dispersed phase, m3/s
z Coordinate in axial direction, m
Φ Hold-up
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