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Abstract: Genome-scale models have become indispensable tools for the study of cellular growth.
These models have been progressively improving over the past two decades, enabling accurate
predictions of metabolic fluxes and key phenotypes under a variety of growth conditions. In this
work, an efficient computational method is proposed to incorporate genome-scale models into
superstructure optimization settings, introducing them as viable growth models to simulate the
cultivation section of biorefinaries. We perform techno-economic and life-cycle analyses of an algal
biorefinery with five processing sections to determine optimal processing pathways and technologies.
Formulation of this problem results in a mixed-integer nonlinear program, in which the net present
value is maximized with respect to mass flowrates and design parameters. We use a genome-scale
metabolic model of Chlamydomonas reinhardtii to predict growth rates in the cultivation section. We
study algae cultivation in open ponds, in which exchange fluxes of biomass and carbon dioxide are
directly determined by the metabolic model. This formulation enables the coupling of flowrates
and design parameters, leading to more accurate cultivation productivity estimates with respect to
substrate concentration and light intensity.

Keywords: algal biorefinery; techno-economic analysis; life-cycle analysis; superstructure
optimization; genome-scale models; disjunctive programming; mixed-integer nonlinear programming

1. Introduction

Carbon dioxide concentration in the atmosphere has been on the rise in the past few centuries
as a result of the excessive use of fossil fuels. Climate change and global warming are two main
environmental concerns that are attributed to the increased atmospheric CO2. In the past few
decades, there has been a growing interest to find renewable fuels and clean energy resources.
Extensive investigations have shown that using biomass-derived fuels can be effective in reducing
greenhouse-gas emission [1]. In this context, algal biofuels have proven promising renewable
energy alternatives because of desirable properties of algae. Algae can grow in harsh environments,
seawater, brackish water, or wastewater, reducing the dependence on food feedstocks and freshwater
resources [2]. Algae are photosynthetic organisms, consuming CO2 to produce oil. As a result, algal
biorefineries are designed as part of integrated carbon sequestration networks (CSNs).

Achieving selling prices that are comparable to those of petroleum-derived fuels is a major
challenge facing large-scale production of algal biofuels. This has motivated several superstructure
optimization studies to maximize the profit and improve the efficiency of biorefineries. West et al. [3]
analyzed the after-tax rate-of-return, construction cost, and overall economy of four biodiesel production
processes with prescribed operating conditions using HYSYS simulations. Heterogeneous-acid catalyst
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was found to be the only process with a positive net present value (NPV). Using Aspen Plus,
Pokoo-Aikins et al. [4] performed a techno-economic analysis (TEA) of a biodiesel production plant
with a two-step alkali-transesterification process. Their results indicated that using high-lipid-content
(∼50% in weight) algal species and heat integration, a positive return-on-investment is achievable.
Davis et al. [5] performed a TEA of an algal biorefinery using Aspen Plus, estimating the lipid-production
costs∼10 $/gal and 20 $/gal for open ponds and photobioreactors. Through a sensitivity analysis, they
showed the significant dependence of production-cost estimates on the lipid content. Of course, these
estimates depend a lot on the specific process and material costs. For example, Amer et al. [6] examined
five scenarios for the production of biofuels with various products and several cultivation technologies,
reporting selling prices in the range ∼13–105 $/gal.

Gebreslassie et al. [7] considered a superstructure of a CSN with five processing sections
(cultivation, carbon capture, harvesting and dewatering, lipid extraction, upgrading, and remnant
treatment), maximizing NPV and minimizing global-warming potential (GWP) to identify optimal
processing pathways. They formulated this optimization problem as a multi-objective mixed-integer
nonlinear programming (MINLP) problem and constructed a Pareto curve in an NPV-GWP space.
Hydroprocessing was the optimal upgrading technology and filtration was the optimal dewatering
technology in the maximum NPV limit, whereas sodium-catalyzed transesterification was the optimal
upgrading and floatation was the optimal dewatering technology in the minimum-GWP limit. Gong
and You [8] conducted a more comprehensive study of algal biorefineries with 11 processing sections.
In addition to those considered by Gebreslassie et al. [7], they also included hydrothermal liquefaction
and electricity and steam generation sections. Alkali- and enzymatic-transesterification technologies
were identified as the most economical for biodiesel production using the gross profit as the objective
function in other superstructure models [9,10].

A fundamental hurdle for economical production of algal oil is the high energy demand of
dewatering compared to the energy content of extracted oil [11]. Wet-solvent strategies have been
studied as a possible solution; however, they have not been tested at the commercial scale, and efficient
solvent recovery remains a crucial challenge [12]. Hydrothermal liquefaction (HTL) is another
promising technology that has been studied extensively [13–18]. It involves processing biomass
at high temperatures in a high-pressure water environment to break down biopolymers and produce
biofuels [16]. HTL is less energy intensive then lipid extraction from thermally dried algae because
it can process algae slurry with very low solid contents (10–20%). It can also partially convert
carbohydrates and proteins into oil [19]. The aqueous byproduct of HTL is usually sent to a catalytic
hydrothermal gasification (CHG) unit to recover additional thermal and electrical energy [19].

Several studies have examined the economic and environmental impacts of HTL technologies
in biofuel production. Orfield et al. [20] studied the effects of HTL and CHG technologies on
the life-cycle analysis (LCA) of an algal biorefinery, showing the significance of CHG units in
lowering GWP. Integrating algae cultivation and wastewater treatment has also been shown to have
a significant environmental impact [18]. Frank et al. [15] performed a comparative LCA of HTL and
lipid-extraction technologies, showing that HTL is more efficient in biomass use and less efficient
in nitrogen consumption (no nitrogen recovery from upgrading) then lipid extraction. Ou et al. [21]
studied the economy of transportation-fuel production from defatted microalgae using HTL and
hydroprocessing technologies and reported a competitive minimum selling price (∼2.6 $/gal) to that
of petroleum-derived fuels. However, current HTL technologies still need further improvements to be
economically viable at the commercial scale [19].

Recent investigations have move towards integrated energy systems and co-production of biofuel
and value-added products [22]. Dong et al. [23] performed a TEA of an integrated fermentation and
lipid-extraction process for co-production of ethanol and biodiesel. Juneja and Murthy [24] considered
the economic and environmental impacts of integrating biodiesel production and wastewater treatment.
Hernaandez-Calderoon et al. [25] formulated a superstructure model to solve the allocation problem
of finding the optimal distributed algal biorefineries sourcing CO2 from multiple industrial plants.
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Gonzalez-Bravo et al. [26] developed a multi-objective superstructure model to identify optimal
designs of water–energy–food distribution grids. All these studies demonstrated improved economy
with varying degrees of success.

On a broader scale, superstructure optimization has been leveraged for strategic planning and
sustainable development of energy infrastructures. It has been used for LCA of hydrocarbon [27]
and algal [11] biorefineries to assess the environmental impacts of fuel production. Of note is the
LCA of O’Connell et al. [28], where it was shown that the harvesting and dewatering section alone
accounts for more than 50% of the total emissions in algal biorefineries. Their results indicate that lipid
production from algae yields higher GWP than from several terrestrial plants due to their high water
contents. Superstructure optimization has also been applied for TEA of polygeneration and hybrid
energy systems [29–31].

All previous studies estimated the cultivation productivity using unstructured growth models [32]
or solely based on empirical data without considering the photosynthetic-reaction stoichiometry.
Therefore, the mass flowrate and composition of the feed and product streams of the cultivation section
were regarded as fixed parameters. However, the conversion of substrates and nutrients to products in
algae occurs through a complex network of photosynthetic reactions [33] that are highly sensitive to
reactor-design parameters and fluctuations in light intensity, nutrient, and substrate concentrations.
As a result, realistic metabolic models constructed from precise stoichiometry are required for reliable
economic studies of algal biorefineries.

In this paper, we propose a computational framework to implement genome-scale models (GEMs)
within superstructure optimization settings for TEA of biorefineries. We perform a TEA and LCA of an
algal biorefinery with five processing sections, including cultivation, harvesting and dewatering, lipid
extraction, upgrading, and remnant treatment. Formulating the resulting optimization problem
as an MINLP, we identify optimal processing pathways by maximizing the NPV. We examine
algae cultivation in open raceway ponds, coupling growth rate and superstructure optimization
calculations. This is because open ponds are inexpensive, easy to operate, and do not require heavy
maintenance; thus, they are more suitable for large-scale production. We account for the effects of
the pond surface area, depth, and water loss due to evaporation in the optimization, improving
on the superstructure models previously examined in the literature. We use a genome-scale model
of Chlamydomonas reinhardtii [33] to predict the growth rate in the cultivation section. Accordingly,
the product compositions and reaction rates are decision variables that are simultaneously optimized
with other design parameters of the superstructure. We previously demonstrated the computational
viability of integrating genome-scale and superstructure models for steady-state optimization of
biorefineries [34]. Here, we further extend and improve these techniques, demonstrating the
application of our optimization strategy in TEA and LCA of algal biorefineries. We construct
continuous parametric solutions for the metabolic model, enhancing the convergence rate of the MINLP
solver when handling the integrated genome-scale and superstructure models. This significantly
reduces the computation times compared to those we previously observed [34]. We also propose
an optimization strategy to handle hourly fluctuations in the growth rate during the day due to
light-intensity changes, which can appreciably affect the optimization results.

2. Theory

2.1. Superstructure

Figure 1 shows a reduced superstructure that we adopt from the work of Gebreslassie et al. [7].
It has three alternative dewatering technologies, including centrifugation, filter press, and floatation.
We choose supercritical methanol transesterification for the upgrading section among several
alternatives that have been studied in the literature. Algae is cultivated in an open pond, which
we model as a continuous stirred-tank reactor (CSTR) [35]. Design parameters such as the pond
surface area and depth are decision variables in our formulation, and they are explicitly accounted
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for in the mass-balance equations. Accordingly, the composition of the product-stream (algae
slurry) is determined from the growth models and design parameters as part of the solution to
the optimization problem.

The open pond has a flue-gas feed stream with a fixed composition (13.6% CO2, 5% O2, and 81.4%
N2 on a weight basis) and a dilute algae-slurry product stream with a solid content wa = 0.0006.
Algae slurry is sent to the dewatering section, where it is initially concentrated to wa = 0.06 in a
settling tank, and, then, depending on the dewatering technology choice, it is further concentrated to
wa = 0.1, 0.325, 0.4 in a floatation, centrifugation, or filtration unit. To achieve a dry product with a
solid content wa = 0.95, the remaining water is removed in a thermal dryer.

Using hexane as a solvent, lipids are removed from the dried algae in an extractor. A lipid-hexane
recovery unit separates the excess hexane from the lipid-rich stream, recycling it back the lipid extractor.
Biogas (mostly methane) and ammonium are produced in the remnant treatment section by digesting
the extraction residuals (mostly consisting of proteins and carbohydrates) in an anaerobic digester.
Ammonium is necessary nutrient for the growth of algae, which is mixed with a makeup stream of
nutrients (ammonium nitrate (AN) and ammonium phosphate (AP)) and fed into the open pond.
Pressurized water is used to upgrade the biogas mixture, which is then burnt in a combustor to
generate power. Finally, biodiesel and glycerol are produced in the upgrading section by processing
the algal oil from the lipid-extraction section in a supercritical methanol transesterification unit.

Following the studies of Gebreslassie et al. [7] and Gong and You [8], optimal processing pathways
are determined by maximizing the NPV. This requires an estimation of construction cost, operating
cost, and revenue. The total annual project investment cost Cpi comprises annual equipment purchase
cost Cpe, engineering, legal contractor, project contingency, land, and working capital costs, all given
as fractions of annual equipment purchase cost

Cpi = Cpe(1 + Keng + Klcf + Kpcc + Klnd + Kwcp), (1)

where Ki are the corresponding cost fractions and

Cpe = CRF ∑
i∈eqp

Ci. (2)

Here, the sum is over all pieces of equipment in the superstructure, Ci denotes the purchase cost
of equipment i in the year of interest, and CRF is the capital recovery factor given as a function of
interest rate IR and project depreciation time Tdp

CRF =
IR(IR + 1)Tdp

(IR + 1)Tdp − 1
. (3)

Using the chemical engineering plant cost index CEPCI [36], the equipment purchase cost in the
year of interest with respect to a reference year is obtained

Ci = Cb,i

(
mi

mb,i

)SFi CEPCIi
CEPCIref,i

, (4)

where Cb,i and mb,i are the purchase cost and feed-mass flowrate in the base case, mi is the feed-mass
flowrate into the equipment i, and SF is the sizing factor (see Table 1). The annual operating cost Co

comprises the fixed Cfix, utility Cqh, power Cpw, and the operating costs of all the equipment

Co = Cfix + Cqh + Cpw + 365 ∑
i∈mat

PRICEimi. (5)



Processes 2019, 7, 286 5 of 25

We define the reduced annual operating cost as C̃o = Co − Cfix. Given all the costs and the
annual revenue

REV = 365 ∑
i∈prd

PRICEimi, (6)

the NPV is obtained

NPV = −NtTperCpi + Tper

Nt

∑
i=1

(1− Rtax)(REV− Ct)

(1 + r)i , (7)

where the sum in Equation (5) is over all the materials consumed in different sections of the
superstructure (i.e., polymer additives for centrifugation and filtration, coagulant, hexane, methanol,
ammonium nitrate, and ammonium phosphate) and in Equation (6) over all the products (i.e., biodiesel
and glycerol) with PRICE the market price per ton, m mass flowrate in ton/day, r discount rate, Rtax

tax rate, Nt total number of periods in which the plant is in operation, Tper period length in years,
and Ct = Cpi + Co total annual cost.

RX

OP SST

RT FLT

CT FPT

 
CGT

DRY LE LHR

AAD BGU COM

GT

DIS1

DIS2

DC

Cultivation Harvesting & dewatering

Remnant treatment

Lipid extraction Upgrading 

Figure 1. Process-flow diagram of an algal biorefinery with five processing sections. Main unit
operations are open pond (OP), retention tank (RT), settling tank (SST), conditioning tank (CT),
centrifugation technology (CGT), floatation technology (FLT), filter-press technology (FPT), dryer
(DRY), lipid extraction (LE), lipid-hexane separation (LHR), biogas upgrading (BGU), anaerobic digester
(AAD), combustion (COM), gas turbine (GT), transesterification reactor (RX), distillation column (DIS),
and decanter (DC).
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Table 1. Parameters used to estimate the purchase cost of all the equipment in the superstructure
shown in Figure 1 [7,8,36].

Equipment Cb ($MM) mb (ton/day) SF CEPCIref CEPCI

PMP 0.0437 5.182 0.7 539.1 950.9
STT 0.0785 4200 1.1 525.4 631.4
FLT 0.0717 4200 1.14 355.4 567.7
FPT 0.137 17.76 0.6 394.1 567.7
CGT 1.11 14.4 0.6 381.1 567.7
DRY 0.7064 5.182 0.6 539.1 673.8
CT 0.4 500 0.7 401.7 631.4
RT 0.4 500 0.7 401.7 631.4
LE 2.43 23,225.8 0.6 539.1 567.7

LHR 2.43 23,225.8 0.6 539.1 567.7
AAD 0.034 17 0.6 539.1 567.7
BGU 0.1367 6912 0.6 539.1 567.7
GT 44.632 150 0.76 539.1 567.7
DC 0.0301 2198 0.65 525.4 567.7
RX 0.639 1.287 0.8 532.9 567.7
DIS 0.55 968 0.65 525.4 567.7
OP 0.0276 5.182 0.6 585.7 567.7

Using a detailed genome-scale metabolic model for the cultivation section based on the precise
stoichiometry of photosynthetic reactions is a key difference between our superstructure and those
studied in previous works. Therefore, we only discuss mass-balance equations for the species involved
in the cultivation (see Figure 2), and we briefly outline the correlations we used to estimate the energy
consumption of major units in the superstructure and their associated costs and parameters. Detailed
mass- and energy-balance equations for other units can be found in the works of Gebreslassie et al. [7]
and Gong and You [8]. We model the open pond as a rectangular cuboid CSTR to derive mass-balance
equations for all the species shown in Figure 2

∑
i∈inflows

mi,j − ∑
i∈outflows

mi,j +
HdMWjCX Ah

9.07× 108 vj = 0 (8)

with Hd the average hours of operation of the cultivation section per day, mi,j flow rate of species
j in stream i in ton/day, MWj molecular weight of species j, CX biomass concentration in g/m3,
A pond surface area in m2, h pond depth in m, and vj production (or consumption) rate of species
j in mmol/gDW/h. Here, j runs over all the species involved in the cultivation section, namely
X (biomass), H2O, O2, N2, CO2, HCO−3 , CH4, NH+

4 , NO−3 , and PO3−
4 . For the species involved in

photosynthesis, production rates are provided by the metabolic model, as discussed in Section 2.2; the
production rates for other species are zero. The metabolic model also determines the composition of
various hydrocarbons in the biomass. Accordingly, mas,k = w̄kmas,X for k ∈ {dg, tg, car, pro}, where w̄
denotes the mass fraction of diglycerides (dg), triglycerides (tg), proteins (pro), and carbohydrates
(car) in the biomass. These mass fractions are given parameters of our model and remain fixed during
optimization. The area productivity of the open pond is ξ = mas,X/A. An empirical expression for the
evaporation rate from free water surface in still air is used to estimate water loss in the pond [37]

mvn,H2O = 0.82P∗w(1− RH)A, (9)

where RH is the relative humidity, P∗w the water saturation pressure at ambient temperature,
and mvn,H2O evaporation rate in ton/day. The maximum tolerable CO2 emission to the atmosphere
from the pond is specified as a fraction βOP

CO2
of CO2 flowing into the pond

mvn,CO2 ≤ βOP
CO2

(m f lu,CO2 + mg f g,CO2 + mbwg,CO2). (10)
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Open Pond

flu

ntf

gfg
bgw wr

as

vn
wrm

CO2

O2

N2

(NH4)3PO4

NH4 CO2

O2

N2

H2O

(NH4)NO3

+

NO3

-H2O

H2O

CO2

O2

N2

CH4

H2O

CH4

CO2

H2O

dg
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H2O

PO4

3-

NH4
+

HCO3

-

Figure 2. Flow streams into and out of the open pond in the cultivation section of Figure 1. Inflows
include a flue-gas stream from a carbon capture plan (flu), nutrients (ntf), flue gas from gas turbine (gfg),
liquid stream from biogas upgrading (bgw), recycled water from dewatering section (wr), and makeup
water (wrm). Outflows include a vent (vn) to account for water evaporation and unreacted gas emission
into the atmosphere and algae slurry (as), non-aqueous phase of which contains diglycerides (dg),
triglycerides (tg), proteins (pro), carbohydrates (car).

To estimate ion concentrations in the pond, we consider the following dissolution and
dissociation equilibria

(NH4)3PO4 (s)
KS,AP

 (NH4)3PO4 (aq), (11)

(NH4)NO3 (s)
KS,AN

 (NH4)NO3 (aq), (12)

NH3 (g)
KS,AM

 NH3 (aq), (13)

CO2 (g)
KH,CO2

 CO2 (aq), (14)

O2 (g)
KH,O2

 O2 (aq), (15)

(NH4)3PO4 (aq)
Ksp,AP

 3NH+

4 + PO3−
4 , (16)

(NH4)NO3 (aq)
Ksp,AN

 NH+

4 + NO−3 , (17)

H2O (l)
Ksp,H2O

 H+ + OH−, (18)

NH3 (aq) + H2O (l)
KAM

 NH+

4 + OH−, (19)

CO2 (aq) + H2O (l)
KCO2

 H+ + HCO−3 , (20)

the equilibrium constants of which are summarized in Table 2. Given pH, the equilibrium concentration
of all the ions can be obtained as functions of CO2 composition in the inflow and pressure of
flue-gas streams.
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Table 2. Equilibrium constants of dissolution and dissociation equilibria Equations (11)–(20) at
25 ◦C [38].

Constant Value Unit Constant Value Unit

KS,AP 261 g/L Ksp,AP 254 M4

KS,AN 1180 g/L Ksp,AN 219 M2

KS,AM 310 g/L Ksp,H2O 10−14 M2

KH,CO2 29.4 atm/M KAM 1.8× 10−5 M
KH,O2 769.23 atm/M KCO2 4.45× 10−7 M

We use expressions reported by Gebreslassie et al. [39] and Gong and You [8] to estimate the
power and energy consumption of different units in the superstructure. The power consumption of
pumps, floatation technology, and FPT are estimated

PPMP,k = 0.00247
mj(k)hpmp

ηpmpHd
, (21)

PFLT =
777.8SA + 22220

365Hd
, (22)

PFPT =
294277ν + 66680

365Hd
, (23)

where

SA =
8.34(1 + RP)m f lt

HL
, (24)

ν =
m f pt

ρ f ptwa, f ptNC
. (25)

Here, j(k) is the index of the stream that the pump k operates on, P the power consumption in kW,
η the pump efficiency, hpmp the pump head in m, SA the floatation surface area in ft2, RP the recycle
percentage, HL the hydraulic loading in ton/day/ft2, ν the required volume of the filter press in m3,
and NC the number of filtration cycles per day (see Table 3). The power (electric) consumption of all
other units are estimated by

Pk = UPCk ∑
j∈Lk

mj, k ∈ Kpw. (26)

The heat consumption of all the units in the superstructure is similarly calculated

Qk = UHCk ∑
j∈Lk

mj, k ∈ Kqh, (27)

where Lk is the list of all the inflow streams of the equipment (or section) k, Kpw =

{OP, CGT, RTS, UGS, LES}, and Kqh = {DRY, RTS, UGS, LES}. The mass flowrates in these equations
are measured in ton/day. Note that the power and heat consumption (see Table 3) of all the units in the
remnant treatment, upgrading, and lipid-extraction sections are lumped together into a single variable;
the subscripts RTS, UGS, and LES denote the respective processing section in Equations (26) and (27).

We evaluate the environmental impact of the downstream processing in Figure 1 by calculating
the GWP according to

GWP = GWPdir + GWPpw + GWPqh, (28)

where
GWPdir = 365 ∑

i∈I
∑

k∈KGHG

φGHG,iwk,imk, (29)

GWPpw = 365 ∑
k∈Kpw

φpwPk, (30)
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GWPqh = 365 ∑
k∈Kqh

φqhQk (31)

with GWPdir, GWPpw, and GWPqh the contributions of the direct emission of greenhouse gases (GHG),
the indirect emission of GHG due to power consumption, and the indirect emission of GHG due to
heat consumption, all measured in hundred-year GWP of equivalent carbon dioxide (CO2-eq). Here,
I is the list of all the GHGs in the superstructure that are released into the environment, KGHG the
list of the streams through which GHGs are released, and wk,i is the mass fraction of species i ∈ I in
the stream k ∈ KGHG; the damage factors associated with GHGs, electric consumption, and power
consumption are denoted by φGHG, φpw, and φqh, respectively (see Table 4).

In this paper, we only focus on the environmental impacts of downstream processing. Therefore,
we exclude the contribution of the CO2 in the flu-gas stream that is not sequestered in the cultivation
section from GWP calculations. This implies that the unreacted CO2 in the cultivation section, which
is released into the atmosphere, is not considered to be direct emission when calculating the GWP.
Moreover, in our superstructure model, the stream vn (see Figure 2) is the only source of direct emission
of GHGs. Thus, GWPdir only reflects the amount of carbon fixation in the pond and the excess methane
recycled from the biogas upgrading unit in the remnant treatment section.

Table 3. Parameters used to estimate the power and heat consumption of all the equipment in the
superstructure shown in Figure 1.

Unit Energy Consumption Parameters

Equipment UPC (kWh/ton) UHC (kWh/ton) Variable Value/Unit

CGT 4 – hpmp 3 m
DRY – 554.6 ηpmp 0.6
OP 1.35 – RP 0.3
RTS 100 200 HL 6 ton/day/ft2

UGS 16 1350 NC 20 day−1

LES 14.08 70.4

Table 4. Parameters used to assess the global-warming potential of the superstructure shown in
Figure 1 [8].

Damage Factor Value/Unit

φpw 0.75 kg CO2-eq/kWh
φqh 0.39 kg CO2-eq/kWh
φCO2 1 kg CO2-eq/kg CO2
φCH4 25 kg CO2-eq/kg CH4

2.2. Metabolic Model

We estimate the growth rate and metabolic fluxes in the open pond using a genome-scale model
of C. reinhardtii, referred to as iRC1080 [33], which includes 1706 metabolites (175 of which constitute
biomass) and 2191 reactions (76 exchange and demand reactions). Four major metabolite groups
constitute the biomass in iRC1080: Carbohydrates, proteins, diacylglycerols, and triacylglycerols
with weight fractions 56.09%, 14.10%, 7.12%, and 4.28%, respectively. The biomass in iRC1080
has no monoacylglycerols. In general, iRC1080 has higher coverage of genes, reactions, and lipid
metabolic contents than previously published models. It explicitly accounts for all metabolites
in lipid pathways, allowing for a more precise characterization of the alkyl esters produced in
transesterification. Major lipid pathways that are incorporated into iRC1080 are those corresponding to
ketoacyl lipids, fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, and prenol
lipids. Autotrophic, heterotrophic, and mixotrophic growth modes are supported in iRC1080, enabling
the prediction of light-intensity-dependent quantities. For example, the model can quantify important
phenotypes, such as photosynthetic saturation and transitions from a carbon dioxide-producing to
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carbon dioxide-consuming metabolism (Experimental data used to validate the growth-rate predictions
of iRC1080 were acquired from the strain UTEX2243 in the temperature range 23–27 ◦C for a gas
supply with 2.5% CO2 and photon fluxes in the range 42–170 (µE/m2/s) under 660 nm peak LED
light). We only consider the autotrophic mode, assuming that the open pond operates during the
photoperiod. The exchange fluxes associated with the consumption or production of X, H2O, O2, CO2,
HCO−3 , NH+

4 , NO−3 , and PO3−
4 are determined by maximizing the growth rate in the autotrophic mode

subject to stoichiometric constraints and inequalities representing uptake bounds that are estimated
using Michaelis-Menten kinetic expressions. The maximum uptake rate of the last six species are

vlb
j =

−vmax,jCj

Km,j + Cj
, j ∈ {CO2, O2, NH+

4 , NO−3 , PO3−
4 , HCO−3 }, (32)

the maximum initial velocities vmax,j and saturation constants Km,j of which are summarized in Table 5.
We use Beer-Lambert law [40] to estimate how much photon flux algae can receive as a function of
the biomass concentration and pond depth. Accordingly, the depth-averaged photon flux available to
algae at a given time t (in hours) of the day is

veq
p = vmax,p

Īa(t)
C̄X(t)

with vmax,p =
12πλId

fphC(0)
X NA h̄c

, (33)

where

Īa(t) =
1− e−Keh

Keh
sin
(πt

fp

)
(34)

is the scaled average light intensity in the pond with fp the length of photoperiod in hours, C(0)
X

characteristic biomass concentration, NA Avogadro’s Number, h̄ Planck’s constant, λ light wave
length, c speed of light, and Id surface light intensity. Here, C̄X is the biomass concentration
scaled with C(0)

X (We use barred symbols to denote both time-averaged and scaled quantities.
Throughout this paper, single-barred variables can either refer to time averaging or scaling. Adequate
descriptions are provided to clarify whichever is relevant in the context. Double-barred variables
are both time-averaged and scaled) and Ke = Ke1 + Ke2CX. The parameters Ke1 and Ke2 are taken
from Yang [40].

Table 5. Michaelis-Menten parameters for uptake rates of key species in Figure 2.

Species vmax (mmol/gDW/h) Km (mM) Reference

CO2 1.250 3.0× 10−2 [35]
O2 2.065 8.0× 10−3 [35]

NH+
4 0.650 3.8× 10−4 [41]

NO−3 0.251 1.1× 10−3 [42]
PO3−

4 0.232 2.2× 10−4 [43]
HCO−3 1.820 2.7× 10−1 [35]

Fixing pH and the pressure of flue-gas streams, the maximum uptake rates for O2, NH+
4 , NO−3 ,

and PO3−
4 remain constant, while for CO2 and HCO−3 , they are parametrized with respect to the

equilibrium concentration of CO2 in the pond. Treating CO2 equilibrium concentration and averaged
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photon flux as parameters, the metabolic network of C. reinhardtii can be formulated as a parametric
linear program (LP) 

z∗(θ̃θθ) = max
v∈Rn′

vx

Sv = 0
vj ≥ vlb

j , j ∈ {CO2, HCO−3 }
vj = veq

j , j ∈ {p}
vj ≥ vlb,fix

j , j ∈ Jlb,fix

vj ≤ vub,fix
j , j ∈ Jub,fix

vj ≥ 0, j ∈ Jirr

, (35)

where v is the vector of reaction rates, θ̃θθ = [−vlb
CO2

/vmax,CO2 − vlb
HCO−3

/vmax,HCO−3
veq

p /vmax,p]T,

S ∈ Rm′×n′ is the stoichiometry matrix, Jlb,fix is the index set of reactions with a fixed lower bound,
Jub,fix is the index set of reactions with a fixed upper bound, and Jirr is the index set of irreversible
reactions with p and x the indices of average photon flux and biomass reaction, respectively. This
model comprises m′ = 1076 metabolites and n′ = 2191 reactions in its non-standard form, where
optimal metabolic pathways and reaction rates are determined by maximizing biomass production.
Fixed upper and lower bounds in Equation (35) include fixed uptake-rate bounds and a lower bound
on the ATP exchange reaction, accounting for ATP maintenance requirements [33].

Equation (35) can be simplified by establishing a range of pH, in which θ̃2 can be linearly expressed
in terms of θ̃1. Noting that CHCO−3

= (KCO2 /CH+)CCO2 , we find θ̃2 ≈ Km,HCO−3
θ̃1 provided pH ≈ 7.3.

We reformulate Equation (35) as a parametric LP with respect to θθθ = [−vlb
CO2

/vmax,CO2 veq
p /vmax,p]T

using this approximation. Following the multi-parametric programming (MPP) algorithm of Akbari
and Barton [44], a region R(1) of the parameter space of Equation (35), relevant to the operating
conditions of the cultivation section, is partitioned into several critical regions (CRs), in which optimal
reaction rates are expressed explicitly as affine functions of θθθ:

v = ϑϑϑk + Vkθθθ if θθθ ∈ Ωk, (36)

where R(1) =
⋃

k Ωk is the parameter region of interest and Ωk are the respective CRs

Ωk = {θθθ ∈ Rq|Dkθθθ ≤ dk}, (37)

with q the number of parameters. Here, ϑϑϑk, dk, Vk, and Dk are explicitly calculated offline using the
algorithm of Akbari and Barton [44].

2.3. Resolving Transients

In this paper, we are only concerned with the steady-state optimization of algal biorefineries.
However, the cultivation section can be hardly regarded as operating at a steady state due to significant
hourly variations in growth rates resulting from light-intensity changes. A standard technique for
handling these fluctuations in optimization problems is to discretize transient variables in time and
assign a decision variable to each time interval representing the value of the corresponding variable at
that time. This approach, however, is not tractable for most superstructure optimization problems of
practical importance. This is because of the slow convergence rate of global optimization solvers caused
by poor-quality convex under estimators arising from highly nonlinear equations (e.g., Equations (33)
and (34)).

Alternatively, one can work with daily averaged heat- and mass-balance equations to
avoid including hourly fluctuations in the optimization. This technique is especially helpful in
techno-economic studies because their goal is to evaluate the economy of industrial plants on a yearly
basis. For example, consider a sequential open raceway-pond configuration in Figure 3, where each
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pond is designed to achieve a daily periodic dynamic. The unsteady mass-balance equation around
the kth pond reads

dCi,k

dt
=

Ci,k−1 − Ci,k

τk
+ αiCX,kvi,k, (38)

where αi is a conversion factor to ensure the consistency of concentration and metabolic-flux units, and i
an index running over all the species involved in the mass balance. Here, τk = Akh/Q and Ak are the
space-time and surface area of the kth pond with Q the volumetric flowrate of the inflow and outflow
streams. Solving these unsteady equations provides much more information about instantaneous
variations in the concentrations and reaction rates than needed for evaluating the yearly economic
performance of biorefineries, and, therefore, unnecessarily complicates the analysis. However, at the
superstructure level, one is generally concerned with daily averaged mass flowrates mi,k = QC̄i,k Hd

and seeks to relate averaged reaction rates v̄i,k = (1/ fp)
∫ fp

0 vi,kdt to averaged concentrations C̄i,k =

(1/ fp)
∫ fp

0 Ci,kdt, implicitly taking into account hourly fluctuations due to light-intensity changes
and metabolic-mode alterations in the averaged quantities. In the present work, we adopt the latter
approach and propose two computationally tractable optimization strategies to resolve the transients
in open ponds.

In Optimization Strategy I, we are only concerned with steady-state solutions; thus, we
neglect changes in the photon flux due to variations of light intensity during a day. Accordingly,

a time-averaged biomass concentration ¯̄CX and light intensity ¯̄Ia = (1/ fp)
∫ fp

0 Īa(t)dt = (2/πKeh)(1−
e−Keh) is used in Equation (33) to estimate the average photon flux veq

p = vmax,p
¯̄Ia/ ¯̄CX. Here, ¯̄CX, A,

and h are treated as decision variables, enabling the coupling of growth rates and the design parameters
of the cultivation section. As a result, the growth state of algae, represented by CRs of the metabolic
model in Section 2.2, is determined as part of the solution.

The foregoing strategy is suitable when yearly averaged estimates are of interest, and it does
not address design parameters (e.g., the configuration of open ponds, number of ponds, biomass
concentration) that depend on the hourly variations of growth rates. To demonstrate the capabilities
of GEMs in predicting light-intensity-dependent metabolic rates, we study another computational
strategy, which we refer to as Optimization Strategy II. Here, we consider a sequential open-pond
configuration as shown in Figure 3, formulating TEA as a parametric MINLP, where the number
of ponds, biomass concentration, pond depths, and pond surface areas are treated as parameters.
This approach decouples CR identification (i.e., search for the metabolic state in which algae grows
and corresponds to the optimal design and operating conditions of the cultivation section), which
is necessary in Optimization Strategy I, from superstructure optimization, allowing for an offline
calculation of growth rates. Given that the dynamics in the ponds are induced by sinusoidal
light-intensity variations, we consider the following time-dependent concentrations and metabolic
rates corresponding to the species i in the kth pond

Ci,k = C̄i,k + εψi,k(t) + O(ε2), (39)

vi,k = v̄i,k + εϕi,k(t) + O(ε2), (40)

where perturbations are assumed to be periodic with period fp, so that

1
fp

∫ fp

0
ψi,kdt = 0, ψi,k(0) = ψi,k( fp), (41)

1
fp

∫ fp

0
ϕi,kdt = 0, ϕi,k(0) = ϕi,k( fp). (42)
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Substituting Equations (39)–(42) in Equation (38) and integrating the resulting equations in time
over fp, we obtain

0 =
fp(C̄i,k−1 − C̄i,k)

τk
+ αi fpC̄X,k v̄i,k + O(ε2). (43)

Observe that the periodic perturbative approximations in Equations (39) and (40) have resulted in
mass-balance equations that are in steady state with respect to the averaged quantities to second order
in ε. Summing Equation (43) over k and neglecting the second- and higher-order terms in ε, we arrive
at a modified version of Equation (8)

∑
i∈inflows

mi,j − ∑
i∈outflows

mi,j +
HdMWj Ah
9.07× 108

N

∑
k=1

ωkC̄X,k v̄j,k = 0, (44)

where we assumed that Hd = fp and ωk = τk/τ with τ = ∑N
k=1 τk.

Since the parameter space for Optimization Strategy II (i.e., number of ponds, biomass
concentration in each pond, pond surface areas, pond depths) is too large to exhaust, we make
further simplifying assumptions, focusing on a particular scenario to illustrate the application of this
strategy in TEA of biorefineries. We assume that the total surface area A = ∑N

k=1 Ak and the depth of
each pond h are the same as their optimal values in Optimization Strategy I. We also assume that the
averaged biomass concentrations C̄X,k are chosen such that all space times are equal to or as close to fp

as possible. The first pond in the configuration shown in Figure 3 is an exception because the biomass
concentration in its inflow stream is zeros. Therefore, achieving τ1 = fp is not possible due to small
growth-rate predictions from iRC1080, so we choose C̄X,1 according to

C̄X,1 = arg min
C̄X,1

τ1(C̄X,1), (45)

where τ1(C̄X,1) = 1/v̄X,1(C̄X,1). For all other ponds, C̄X,k solves

C̄X,k − C̄X,k−1

C̄X,k v̄X,k(C̄X,k)
= τk = fp. (46)

Once the averaged concentrations and space times are identified, we seek to determine the number
of sequential open ponds N that maximize the NPV.

2.4. Transesterification

Transesterification reactions play a central role in most biorefineries. They are reversible alkali-,
acid-, or enzyme-catalyzed reactions of lipids with alcohols, producing biodiesel and glycerol.
Monoglycerides, diglycerides, and triglycerides are major forms of lipids found in most algal species,
requiring different stoichiometric amounts of alcohol to produce alkyl esters. For the upgrading
section, we consider transesterification using methanol [3]

CH(CH2)2(OH)2OORm + CH3OH 
 CH(CH2)2(OH)3 + CH3OORm, (47)

CH(CH2)2OH(OORd)2 + 2CH3OH 
 CH(CH2)2(OH)3 + 2CH3OORd, (48)

CH(CH2)2(OORt)3 + 3CH3OH 
 CH(CH2)2(OH)3 + 3CH3OORt, (49)

where Rm, Rd, and Rt represent organic groups associated with mono, di, and triglycerides. Note that
the two Rd groups in Equation (48) and the three Rt groups in Equation (49), which are lumped together
for brevity, need not be identical. Biomass in iRC1080 comprises no monoglycerides, 81 diglyceride
species, and 42 triglyceride species with organic groups of various lengths. Their respective alkyl esters
constitute the biodiesel produced in the upgrading section of our superstructure model. To estimate the
biodiesel mass flowrate from the transesterification reactor RX (see Figure 1), we use the stoichiometric
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coefficients in Equations (48) and (49) with the average molecular weights of Rd and Rt in all the
foregoing glyceride species.
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Figure 3. Periodic time-varying concentration scheme used as the basis of Optimization Strategy II.

2.5. Optimization

This section provides the mathematical framework, in which to find optimal processing pathways
that maximizes the NPV subject to technology choice, mass-, and energy-balance constraints. Binary
variables corresponding to (i) technology choices and (ii) CRs of the parametric solutions of the
metabolic network are two groups of discrete variables that arise in our superstructure model. Binary
variables associated with technology choices are constrained such that each optimal pathway consists
of only one technology in a given processing section. The operating conditions of the cultivation
section determines the CR, the corresponding optimal reaction rates of which are to be used in
Equation (8). As stated in Section 2.2, optimal reaction rates are parametrized with respect to the
equilibrium concentration of CO2 in the pond and average photon flux veq

p . The former depends the
composition of CO2 in the inflow streams, while the latter is determined by the pond depth h and
biomass concentration ¯̄CX (see Equations (33) and (34)). In Optimization Strategy I, We formulate the
resulting optimization problem as a disjunctive programming problem [45,46], in which the inequities
Dkθθθ ≤ dk define disjunctions relating the operating conditions of the cultivation section to the reaction
rates of the metabolic network.

Assumptions:

• Day-to-day variations of variables describing the dynamic state of open ponds are negligible
compared to hourly variations during a day.

• The concentrations of all the species in the pond vary in a quasi-equilibrium manner.
• The length of photoperiod remains constant throughout the year.
• Nutrients (i.e., phosphate, nitrate, ammonia, and ammonium) and oxygen are available in

excess of algae growth requirements, so that their concentrations remain fixed at the respective
equilibrium values.

• Energy consumptions are linearly related to mass flowrates.
• Equipment purchase costs scale with mass flowrates.

Given parameters:

• Maximum tolerable CO2 emission to atmosphere from open pond.
• Solid contents of dilute algae-slurry stream, concentrated algae-slurry streams from dewatering

technologies, and dried algae stream.
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• Operating conditions of open pond, such as temperature and relative humidity.
• Length of photoperiod.
• Volume fraction of methane in biogas.
• Product distribution of anaerobic digester with respect to feed composition.
• Lipid and hexane recovery factors in lipid extraction and lipid-hexane separation columns.
• Fraction of hexane loss in lipid extraction column.
• Volumetric ratio of pressurized water to biogas feed.
• Air to fuel ratio of gas turbine combustion.
• Gas turbine efficiency.
• Mass flowrates of coagulant and polymer with respect to feed-mass flowrates.
• Reaction conversions in upgrading section.
• All economic parameters, such as interest rate, equipment reference purchase costs, cost indices,

sizing factors, utility and material costs, and selling prices.

Decision variables:

• Methane recovery in biogas upgrading unit.
• Excess air in combustor.
• Split fractions of decanter and distillation columns in upgrading section.
• Heat and power consumptions.
• Mass flowrates of species.
• Capital and operating costs, revenue, and NPV.
• Technology selection.
• Critical region of metabolic network corresponding to optimal processing pathway.
• Biomass concentration, pond depth, and pond surface area.
• Reaction rates of species involved in mass balance of open pond.

This optimization problem can be formulated as a disjunctive MINLP, where disjunctions are
associated with the CRs of the metabolic network.

NPV∗ = max
x,y,Y

NPV

ge(x, y) = 0,
gi(x, y) ≤ 0,
∑k∈Sj

yk = 1, ∀j ∈ {1, · · · , ns},
∑nc

k=1 Yk = 1,

∨nc
k=1

 Yk = 1,
v = ϑϑϑk + Vkθθθ,

Dkθθθ ≤ dk


(50)

where x ∈ Rn are continuous decision variables, y ∈ {0, 1}nt binary variables associated with
technology choices, Y ∈ {0, 1}nc binary variables associated with the CRs of the metabolic network,
Sj is the index set of technology alternatives in the processing section j, ge and gi are equality and
inequality constraints consisting of mass-balance, energy-balance, and economic analysis equations, n
the number of continuous decision variables, nt the total number of technology alternatives, nc the
number of CRs, and ns the number of processing sections with technology alternatives. Note that in our
simplified superstructure, there are technology alternatives only in the harvesting and dewatering
section. Moreover, the parameters of the metabolic model θθθ are explicitly related to the CO2 and
biomass concentrations in the pond and the pond depth, which are all continuous decision variables of
the optimization problem. Incorporating a detailed metabolic model into the superstructure model,
the composition of proteins, carbohydrates, lipids, and unreacted species in the dilute algae-slurry
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stream are determined as part of the optimization. The resulting disjunctive MINLP is formulated
in the General Algebraic Modeling System (GAMS) 24.7 [47] and solved using the global solver
BARON [48].

In Optimization Strategy II, growth rate and optimization calculations are decoupled. Therefore,
the search for metabolic-mode alterations resulting from hourly light-intensity changes is performed
offline when calculating averaged concentrations and averaged reaction rates. Consequently,
the disjunctive statements in Equation (50) can be avoided. Accordingly, the optimization problem is
simplified to 

NPV∗ = max
x,y

NPV

ge(x, y, ζζζ) = 0,
gi(x, y, ζζζ) ≤ 0,
∑k∈Sj

yk = 1, ∀j ∈ {1, · · · , ns},

(51)

where ζζζ represent the vector of parameters in Optimization Strategy II, as discussed in Section 2.3.

3. Results and Discussion

When CO2 is the only carbon source, photosynthesis involves a network of reactions, through
which carbon dioxide and water are converted to glucose using the light energy. In general,
the direction of the consumption and production reactions for carbon dioxide and oxygen is reversed
when there is no sunlight. However, the transition from CO2-producing to CO2-consuming metabolic
sates induced by light-intensity variations is sensitive to substrate and nutrient concentrations,
the prediction of which is a nontrivial task. These phenotypes can be accurately quantified by GEMs,
enabling reliable estimations of the cultivation productivity. Figure 4 shows the dependence of
metabolic fluxes on the light intensity in C. reinhardtii when carbon dioxide is the only substrate.
Observe that the transition between CO2-consuming and CO2-producing modes occurs at a positive
photon flux, where the growth rate vanishes. Moreover, this model can predict the saturation photon
flux (∼40 mE/gDW/hr) [33], beyond which no appreciable change in metabolic fluxes is observed
with respect to the light intensity.
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Figure 4. Metabolic fluxes in the autotrophic mode when CO2 is the only carbon source. Left panel:
consumption rate of CO2 (dashed) and production rate of O2 (dashed-dotted); Right panel: production
rate of biomass. Equilibrium concentrations of O2 and CO2 are determined for a flue-gas stream that is
fed into the pond at 0.5 atm and using Henry’s constants KH,CO2 = 29.4 and KH,O2 = 769.23 atm/M [38]
to estimate uptake bounds.
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We first present parametric solutions of the autotrophic and heterotrophic modes for comparison,
even though only autotrophic reaction rates are used in the superstructure. Polyhedral partitions of the
parameter space for the autotrophic mode with respect to the CO2-uptake bound and photon flux and
the heterotrophic mode with respect to the CO2- and O2-uptake bounds, based on the maximization
of biomass growth rate, are depicted in Figure 5. To ensure continuous parametric solutions for
all decision variables, Equation (35) is solved with an auxiliary objective, the cost vector of which is
constructed according to the algorithm of Akbari and Barton [44]. Solving this auxiliary LP is equivalent
to imposing a priority order, with as many hierarchical levels as the number of decision variables,
on the optimal solution set of Equation (35), such that the resulting lexicographic LP has a unique
solution. During the photoperiod, algae absorb photons and CO2 to grow, produce energy, and secrete
oxygen. Part of the energy is stored as starch within the cell. Accordingly, autotrophic metabolic modes
depend on the photon flux and equilibrium concentration of CO2 in the extracellular environment,
which, in turn, determines the CO2-uptake bound (Figure 5, left panel). In contrast, during the night,
algae consume oxygen and the stored starch to grow and produce CO2, so heterotrophic metabolic
modes are independent of the CO2-uptake bound (Figure 5, right panel).
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Figure 5. Polyhedral partitions of the parameter space for a genome-scale model of C. reinhardtii
(iRC1080) [33] based on autotrophic (left panel) and heterotrophic (right panel) maximum-growth
objectives and an auxiliary objective with an equivalent cost vector that furnishes a continuous
parametric solution with respect to all decision variables [44]. Here, θ1 = −vlb

CO2
/vmax,CO2 , θ2 =

veq
p /vmax,p, and θ3 = −vlb

O2
/vmax,O2 measure, respectively, the maximum uptake rate of carbon dioxide,

photon flux, and maximum uptake rate of oxygen.

Explicit parametric solutions of iRC1080 are constructed offline and then used in a GAMS
model of the biorefinery depicted in Figure 1. Table 6 summarizes key parameters used in our
economic analysis. We treat recovery factors and split fractions as decision variables, not restricting
them by equilibrium constraints for simplicity. Table 7 summarizes the results of Optimization
Strategy I. Filtration is the optimal dewatering technology according to our model, agreeing with
the results of Gebreslassie et al. [7] in the maximum NPV limit. Moreover, optimal recovery factors
and split fractions ensure perfect separation as expected. In this context, the zero recovery factor of
methane in the biogas upgrading unit is notable. This implies that recovering methane from residual
biomass for power generation is uneconomical because of the high costs of the GT, agreeing with
previous reports [1]. Furthermore, determining the optimal design of the open pond (e.g., surface
area and depth) is nontrivial. One naturally expects that increasing the pond depth, surface area,
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and biomass concentration enhances the productivity; however, these also influence the reaction
rates in a complicated way. For example, fixing the volume, shallow ponds have large surface area;
thus, they need more makeup water to compensate for the water loss because of surface evaporation,
significantly increasing the operating costs. On the other hand, surface evaporation can be reduced
by using deep ponds with high algae concentrations; however, these also lower the amount of light
energy that algae can absorb, decreasing the cultivation productivity.

Table 6. Key economic parameters, material costs [7,8], and product selling prices. Ammonium
phosphate (AP) and ammonium nitrate (AN) are the nutrients used for cultivation, while coagulant
(COG), filtration polymer additive (FPA), and centrifugation polymer additive (CPA) are used
for dewatering.

Parameter Value Ref. Material/Energy Cost Product Price

IR 0.1 [8] COG 1520 $/ton Biodiesel 9500 $/ton
Rtax 0.4 [7] FPA 327.6 $/ton Glycerol 228 $/ton

r 0.1 [49] CPA 929 $/ton
Nt 20 [8] Methanol 260 $/ton
Tdp 20 [7] Hexane 435 $/ton

AP/AN 333 $/ton
Power 0.062 $/kWh
Heat 0.0316 $/kWh

Table 7. Summary of optimization results from Optimization Strategy I. Economic variables include
annual project investment cost (APIC), annual operating cost (AOC), revenue (REV), annual actual
profit after tax (APAT), and net present value (NPV).

Process Economy Open-pond Design

Streams ton/day Variables $MM Variables Value/Unit

Flue gas 2820.28 APIC 22.10 A 1000 ha
Algae slurry 210,557.87 AOC 18.93 h 0.65 m
Dried algae 221.64 REV 157.73 C̄X 0.24 g/L
Glycerol 2.66 APAT 70.02 ξ 76.85 ton/ha/y
Biodiesel 45.43 NPV 200.99 τ 340 h

The effect of the biodiesel selling price on economic variables are summarized in Table 8. All
economic variables in our superstructure model exhibit a linear trend with respect to the biodiesel
selling price. Fixing the glycerol price, the break-even price (NPV = 0) of biodiesel from our
superstructure model is ∼6500 $/ton, which is higher than the minimum prices reported in the
literature for algal oils [5,6,50]. This is not surprising because these prices were obtained based on
high-productivity estimates for open ponds. We also did not account for possible revenue that can be
generated from selling protein and carbohydrate by-products. For example, Gallagher [50] reported a
price range ∼1400–3000 $/ton assuming a productivity in the range ∼100–120 ton/ha/y. In contrast,
the cultivation productivity in the present work (see Table 7) is directly calculated from the metabolic
model, pond depth, and pond surface area. This low productivity is mainly due to the low lipid content
(11.4% in weight fraction) of iRC1080. Clearly, producing biodiesel using available technologies is
still too expensive to compete with conventional diesel (∼400 $/ton [50]). As has been recognized
in the literature [1], algal biofuel can hardly be produced in practice at a competitive price to that of
fossil fuel by relying only traditional products (e.g., biodiesel and glycerol); thus, the possibility of
producing high-value products in the cultivation section has to be carefully examined.
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Table 8. The effect of biodiesel selling price on economic variables in Optimization Strategy I, including
annual project investment cost (APIC), annual operating cost (AOC), revenue (REV), annual actual
profit after tax (APAT), and net present value (NPV).

Selling Price ($/ton) 7500 8000 8500 9000 9500

APIC 22.094 22.097 22.100 22.102 22.105
AOC 18.933 18.933 18.933 18.933 18.933
REV 124.530 132.831 141.132 149.434 157.735
APAT 50.102 55.081 60.060 65.039 70.018
NPV 49.677 87.500 125.326 163.156 200.989

Figure 6 compares the energy consumption and operating costs of various processing sections in
the superstructure. The cultivation and dewatering sections are by far the most energy consuming
processes in our model, agreeing with the analysis of Gebreslassie et al. [7]. Accordingly, they are
the most significant CO2 indirect emission sources of algal biorefineries and, thus, play an important
role in the LCA of the superstructure. These sections also have the highest operating costs, which
partly reflects their high energy consumption. In particular, the significantly large operating cost of the
cultivation section reflects the cost of nutrients algae consume to grow.
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Figure 6. Comparison of annual operating costs and energy consumption of the cultivation (CL),
harvesting and dewatering (DW), lipid extraction (LE), upgrading (UG), and remnant treatment (RT)
processing sections in Optimization Strategy I. Left panel: components of the reduced annual operating
cost, including material (green), power (red), and heat (blue) costs. Right panel: power (red) and heat
(blue) consumption.

To evaluate the environmental impacts of the maximum NPV design, we perform an LCA of the
biorefinery. Figure 7a shows the contribution of each processing section to the total GWP. As expected,
the cultivation and dewatering sections have the highest contributions because of their large heat and
power consumption compared to other sections (see Figure 6). In addition to these indirect emission
sources, the direct emission of unreacted carbon dioxide and methane (fed into the open pond through
the recycle stream from the remnant treatment section) is a reason for the significantly large GWP of
the cultivation section. Figure 7b shows the distribution of operating costs, revealing the bottlenecks
for economic production of biodiesel. Power, heat, and nutrient costs contribute the most to the total
operating costs, highlighting the importance of energy management and nutrient recovery strategies.
Granted, thermal drying and LE from dried algae are too expensive to play any role in the future
commercialization of algal biofuels. Efficient energy management in integrated biorefineries and
lipid-extraction techniques that can process algae slurries with high liquid contents (e.g., HTL) are
more promising for future designs [19,51,52].

Before presenting the results of Optimization Strategy II, we examine the periodic unsteady-
concentration hypothesis discussed in Section 2.3 by direct numerical computations. Figure 8 shows



Processes 2019, 7, 286 20 of 25

unsteady biomass concentrations in the first pond at various space times and initial concentrations.
The initial concentrations C(i)

X set the scale for CX(t) throughout the photoperiod. Here, we highlight
two notable observations: First, for all initial concentrations, τ ≈ 22 h furnishes CX(t) that remain
nearly constant during the photoperiod (except the beginning and end), which could have important
design implications if the steady-state operation of open ponds are desired. Second, in the averaged
concentration range C̄X ≈ 0.01–0.1 g/L and space-time range τ ≈ 20–24 h, there exists several solution
pairs (C̄X, τ) furnishing periodic unsteady-concentrations, which is the basis of Optimization Strategy
II. Interestingly, Equation (45) provides the solution (C̄X,1, τ1) = (0.073 g/L, 22.202 hr) for the same
operating conditions and design parameters as Figure 8, agreeing with the forging ranges obtained
from direct numerical computations.

We formulated Optimization Strategy II in Section 2.3 to identify operating conditions and design
parameters that can only be determined if hourly resolved growth rates are accounted for in the
cultivation section. We introduced a particular scenario for maximizing NPV based on an interplay
between the space times and averaged biomass concentrations in a sequential open-pond configuration.
The space-time for each pond depends on the surface area, depth, and volumetric flowrates. However,
for simplicity, we only considered space-time variations with respect to the flowrate at fixed surface
area and depth, seeking biomass concentrations that minimize space times such that they are not
smaller than the photoperiod. A key idea behind this approach is to restrict the search for maximum
NPVs to scenarios that maximize the productivity of each pond (Note that τk = Akh/Q is inversely
proportional to the productivity ξk of pond k at fixed h and C̄X,k. Of course, this proportionality
should be regarded as a rough estimate and used as a guideline for designing scenarios because
of the complicated relationship between the growth rate, pond depth, and biomass concentration)
and maximally use the entire photoperiod length by design. The goal in Optimization Strategy II is
then to find the number of open ponds in a sequential configuration (see Figure 3) that maximize
NPV, where (C̄X,k, τk) are chosen according to Equation (45). Figure 9a shows variations of NPV
with respect to the number of open ponds. The respective averaged biomass concentrations for up
to 35 consecutive reactors are plotted in Figure 9b. For the given operating conditions and design
parameters, the maximum NPV ≈ 256 $MM/y is achieved at N = 12 with the corresponding total
space-time τ ≈ 132.2 h. Recall, the maximum NPV≈ 201 $MM/y from Optimization Strategy I was
obtained based on a constant averaged biomass concentration ¯̄CX ≈ 2.4 with the total space-time
τ ≈ 340 h. This ∼27% increase in NPV reflects the potential economic benefits that can be gained from
the variable biomass concentration scheme introduced in Section 2.3.
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Figure 7. (a) Global-warming potential of the processing sections in Figure 1, and (b) distribution of
operating costs from Optimization Strategy I.
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Figure 8. Time-varying concentrations of algae growing in an open pond with no algae in the inflow
stream (e.g., the first pond in Figure 3) and operating at CCO2 = 3.12 mmol/L, τ = 20, 22, 24 h (upward),

h = 0.651 m, and fp = 10 h. Concentrations are plotted at (a) C(i)
X = 0.01 g/L, (b) C(i)
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C(i)
X = 0.1 g/L, and (d) C(i)

X = 0.2 g/L. Red circles indicate transition points in the metabolic state
of algae.
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Figure 9. Optimal number of open ponds in Optimization Strategy II for the sequential-pond
configuration (see Figure 3) operating at CCO2 = 3.12 mmol/L, h = 0.651 m, and fp = 10 h. (a) NPV
versus the number of sequential open ponds. Red circle indicates the number of ponds that furnish

the maximum NPV. (b) Time-averaged concentration (scaled with C(0)
X = 0.1 g/L) distribution that
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show the trends.
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4. Conclusions

Techno-economic and life-cycle analyses of algal biorefineries can benefit from accurate growth
models for algae cultivation. Previous techno-economic studies were mostly based on unstructured
growth models and empirical correlations that need fine-tuning for specific cultivation conditions
and reactor designs. In contrast, genome-scale models can quantify the dependence of metabolic
fluxes on the light intensity and substrate concentration, capturing metabolic-state transitions without
relying on adjustable parameters. To leverage the predictive capabilities of genome-scale models
for growth-rate estimation, we introduced a computational framework to integrate genome-scale
and superstructure optimization models. This enabled the coupling of the design parameters of the
cultivation and the stream flowrates of the superstructure. Our results suggest that the proposed
implementation is computationally viable and applicable to larger superstructure models to provide
more realistic economic assessments.

Overall, our results indicate that producing traditional products in biorefinaries using algal species
with less than 35–40% lipid content is not economical. Several species of algae need to be systematically
examined to identify the strains with desirable lipid content and determine other high-value products
that can be potentially produced. In this context, genome-scale metabolic models are useful by
providing a comprehensive description of all the metabolites a given species can produce with their
respective stoichiometric coefficients in a reaction network. The optimization setting presented in
this paper can then leverage the genomic information of reconstructed metabolic models to help
accurately assess the economic impacts of producing novel products within the framework of carbon
sequestration networks.

We studied a reduced superstructure model with traditional technology alternatives in the
dewatering section to demonstrate how genome-scale models can be used to optimize the design
and improve the performance of open raceway ponds. Emphasis was placed on the computational
and optimization techniques, so we did not examine the latest and most efficient technologies for
each processing section. Granted, the selling-price estimates in this paper can be improved if more
advanced and efficient technologies are incorporated into the superstructure. In this context, two
advanced cultivation and dewatering technologies that have recently emerged are notable [51]: (i) A
novel sloped raceway pond with ∼200% higher productivity and ∼67% lower energy consumption
than conventional raceway ponds, and (ii) a large-scale (∼108 gal/day) membrane-based harvesting
and dewatering technology, reducing the energy consumption by more than an order of magnitude.
Examining the economic and environmental impacts of these advanced technologies is a promising
direction for future techno-economic studies of algal biorefineries.
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