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Abstract: Face-centered cubic lattice FCC(n) has received extensive consideration as of late, inferable
from its recognized properties and non-poisonous nature, minimal effort, plenitude, and basic creation
process. The graph of a face-centered cubic cross-section contains cube points and face centres.
A topological index of a molecular graph G is a numeric amount identified with G, which depicts
its topological properties. In this paper, using graph theory tools, we computed the molecular
descriptors (topological indices)—to be specific, Zagreb-type indices, a forgotten index, a Balaban
index, the fourth version of an atom–bond connectivity index, and the fifth version of a geometric
arithmetic index for face-centered cubic lattice FCC(n).

Keywords: Zagreb-type indices; forgotten index; Balaban index; atom–bond connectivity index;
geometric arithmetic index; face-centered cubic lattice FCC(n)

MSC: 05C12; 05C90

1. Introduction

Chemical graph theory is a branch of numerical science in which we apply apparatuses of a
diagram hypothesis to demonstrate the compound marvel scientifically. This hypothesis contributes
noticeably in the fields of chemical sciences. Through its assistance, some physical properties,
e.g., the breaking point, can be anticipated in view of the structure of the atoms. Numerical and
computational strategies are effectively used to display and foresee the structure of the issue at nuclear
level [1]. The structures of atoms, from a numerical perspective, are graphs. Graph theory is utilized
as part of relatively every field of science, and it is likewise vigorously utilized as a part of training,
both for recreations and designing arrangements [2–4].

Each structural formula that incorporates covalent bonded compounds or atoms is a diagram.
Thus, these are called molecular graphs or basic diagrams or, perhaps more accurately, constitutional
graphs. In chemistry, graph theory provides the basis for the definition, numeration, systematization
of the issue closeby, it paves the way toward organizing laws or standards as per a framework
or arranging terminology, and it provides the association between compounds or atoms, and PC
programming. The significance of graph theory for science can be found in the presence of isomerism,
which is supported by chemical graph theory [5,6].

As a result, it was recently noted that topological indices are utilized for bringing together QSAR
models with numerous objectives, such as for DNA examination, to consider protein successions, for 2D
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RNA structures, to examine sedate–protein or medication–RNA quantitative structure-restricting
relationships (QSBR), to encode protein surface data, and for protein association systems (PINs) [7–9].

A graph G(V, E) is a collection of two sets, namely vertex set V and edge set E. For a graph G,
the level of a vertex v is the quantity of edge episodes to v and signified by ξ(v). A subatomic chart is
a hydrogen-exhausted synthetic structure in which vertices signify iotas and edges indicate the bonds.

The possibility of a topological index came to light through the work of Wiener [10], while he
was managing the limit of paraffin. He named this rundown the Wiener index. The Wiener index is
the first and most thought-out topological file, both from a theoretical point of view and applications,
and described as the entire of partitions between all arrangements of vertices in G; for further
information, see [11].

Ghorbani and Azimi [12] defined the first and second multiple Zagreb index of a graph G as:

PM1(G) = ∏
wy∈E(G)

[ξ(w) + ξ(y)], (1)

PM2(G) = ∏
wy∈E(G)

[ξ(w)× ξ(y)]. (2)

The first Zagreb index was presented by Gutman and Trinajstic in [13,14]. Taken after by the first
and second Zagreb indices, Furtula and Gutman [15] presented the forgotten topological index as:

F(G) = ∑
wy∈E(G)

(
ξ(w)2 + ξ(y)2). (3)

Gutman et al. argue that the prescient capacity, acentric factor, and entropy of the forgotten
topological index are practically like those of thr first Zagreb index, and the correlation coefficients
between these two are bigger than 0.95. Thus, the forgotten topological index is helpful to test the
compound and pharmacological properties of medication subatomic structures. Sun et al. (2014) found
some essential type of the forgotten topological index and announced that such an index can fortify the
physicochemical flexibility of Zagreb indices. Recently, Gao et al. [16] showed the forgotten topological
index of some noteworthy medication atomic structures.

Urtula [17] et al. introduced an augmented Zagreb index as:

AZI(G) = ∑
wy∈E(G)

(
ξ(w)ξ(y)

ξ(w) + ξ(y)− 2

)3

. (4)

Another topological index based on the vertex degree is the Balaban index [18,19]. This index for
a graph G of order n, size m is defined as:

J(G) =
m

m− n + 2 ∑
wy∈E(G)

1√
ξ(w)ξ(y)

. (5)

The redefined versions of the Zagreb indices were defined by Ranjini et al. [20], namely,
the redefined first, second, and third Zagreb index for a graph G as:

ReZG1(G) = ∑
wy∈E(G)

ξ(w) + ξ(y)
ξ(w)ξ(y)

, (6)

ReZG2(G) = ∑
wy∈E(G)

ξ(w)ξ(y)
ξ(w) + ξ(y)

, (7)

ReZG3(G) = ∑
wy∈E(G)

(ξ(w)ξ(y))(ξ(w) + ξ(y)). (8)
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Fath-Tabar [21] defined the first Zagreb polynomial and second Zagreb polynomial of a graph
G as:

M1(G, x) = ∑
wy∈E(G)

x[ξ(w)+ξ(y)], (9)

M2(G, x) = ∑
wy∈E(G)

x[ξ(w)×ξ(y)]. (10)

In 2017, Chaluvaraju et al. [22] defined the first and second hyper-Zagreb polynomials of a graph
G as:

HM1(G, x) = ∑
wy∈E(G)

x[ξ(w)+ξ(y)]2 , (11)

HM2(G, x) = ∑
wy∈E(G)

x[ξ(w)×ξ(y)]2 . (12)

The fourth version of the atom–bond connectivity index ABC4 of a graph G was introduced by
Ghorbhani et al. [23]. It was defined as:

ABC4(G) = ∑
wy∈E(G)

√
Sw + Sy − 2

SwSy
. (13)

Another molecular descriptor is the fifth version of the geometric arithmetic index GA5 of a graph
G, introduced by Graovoc et al. [24]. It was defined as:

GA5(G) = ∑
wy∈E(G)

2
√

SwSy

Sw + Sy
, (14)

where Sw = ∑
wy∈E(G)

ξ(y) and Sy = ∑
wy∈E(G)

ξ(w).

For more details about topological indices, see [25–29].

2. Face-Centered Cubic Lattice

Face-centered cubic lattice FCC(n) comprises unit cells that are 3D squares with an atom at each
edge of the solid shape and a particle in the focal point of each face of the 3D shape, see Figure 1.
In our diagrams, vertices (focuses) speak to the atoms; the terms 3D square vertices (block focuses)
and confront focuses (or face centre points) will be utilized, individually. An unordered pair of nodes
(atoms) that specify a line joining these two nodes (atoms) is said to form an edge. In fact, the FCC(n)
structure has the biggest pressing thickness in 3D space: This is a standout amongst the highest
productive models to cover similar size circles in a volume [30,31], as can be found in Figure 1. Along
these lines, this structure is otherwise called a cubic nearest pressed precious stone structure. Metals
with an FCC(n) structure include copper, aluminum, nickel silver, and gold. In this paper, we utilized
graphs that speak to lines of unit cells of the FCC(n) cross section (i.e., the measurement of our space
is (n× 1× 1) unit cells), see Figure 2.

Methodology of Face-Centered Cubic Lattice FCC(n) Formulas

The molecular graph of face-centered cubic lattice FCC(n) adds up to 9n + 5 vertices, among
which the quantity of vertices of degree 4 is 5n + 1, the quantity of vertices of degree 6 is 8, and the
quantity of vertices of degree 9 is 4n− 4. Likewise, then, adding up the number of edges again gives
us 28n + 8. To find the abstracted indices, we partition the edges of FCC(n) The first edge segment
contains 24 edges wy, where ξ(w) = 4 and ξ(y) = 6. The second edge segment contains 20n− 20
edges wy, where ξ(w) = 4 and ξ(y) = 9. The third edge segment contains 8 edges wy, where ξ(w) = 6
and ξ(y) = 6. The fourth edge segment contains 8 edges wy, where ξ(w) = 6 and ξ(y) = 9. The fifth



Processes 2019, 7, 280 4 of 15

edge segment contains 8n− 12 edges wy, where ξ(w) = ξ(y) = 9. Table 1 shows the edge partition of
FCC(n) with n ≥ 2.

(a) (b)

Figure 1. (a) Unit cell of FCC(n); (b) Face-centered cubic lattice FCC(2).

Figure 2. Face-centered cubic lattice FCC(n).

Table 1. Degree-based partition of edges of face-centered cubic lattice FCC(n).

(ξ(w), ξ(y)) Frequency Edge Sets

(4, 6) 24 E1
(4, 9) 20n− 20 E2
(6, 6) 8 E3
(6, 9) 8 E4
(9, 9) 8n− 12 E5

3. Main Results

In the next theorems, we computed the topological indices—to be specific, the Zagreb-type
indices, the forgotten index, Balaban index, augmented Zagreb index, the fourth version of atom–bond
connectivity index, and the fifth version of the geometric arithmetic index for face-centered cubic lattice
FCC(n). Moreover, to compute our results, we used the method of combinatorial computing, analytical
techniques, the vertex partition method, edge partition method, graph theoretical tools, the degree
counting method, and the sum of degrees of neighbours method. Moreover, we used MATLAB for
mathematical calculations and verifications. We also used the maple to plot these mathematical results.

Theorem 1. Consider face-centered cubic lattice FCC(n), then its multiple Zagreb indices are:

PM1(FCC(n)) = 1024 × 13(20n−20)) × 168 × 158 × 18(8n−12),

PM2(FCC(n)) = 2424 × 36(20n−20)) × 368 × 548 × 81(8n−12).

Proof. Let G be the graph of face-centered cubic lattice FCC(n). Now, using Table 1 and Equation (1),
add Equation (2) to the following computation:
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PM1(G) = ∏
wy∈E(G)

[ξ(w) + ξ(y)]

PM1(FCC(n)) = ∏
wy∈E1(G)

[
ξ(w) + ξ(y)

]
× ∏

wy∈E2(G)

[
ξ(w) + ξ(y)

]
× ∏

wy∈E3(G)

[
ξ(w) + ξ(y)

]
× ∏

wy∈E4(G))

[
ξ(w) + ξ(y)

]
× ∏

wy∈E5(G))

[
ξ(w) + ξ(y)

]
= 1024 × 13(20n−20)) × 168 × 158 × 18(8n−12)

PM2(G) = ∏
wy∈E(G)

[ξ(w)× ξ(y)]

PM2(FCC(n)) = ∏
wy∈E1(G)

[
ξ(w)× ξ(y)

]
× ∏

wy∈E2(G)

[
ξ(w)× ξ(y)

]
× ∏

wy∈E3(G)

[
ξ(w)× ξ(y)

]
× ∏

wy∈E4(G))

[
ξ(w)× ξ(y)

]
× ∏

wy∈E5(G))

[
ξ(w)× ξ(y)

]
= 2424 × 36(20n−20)) × 368 × 548 × 81(8n−12)

Theorem 2. Consider face-centered cubic lattice FCC(n), then its forgotten topological index is equal to:

F(G) = 3236n− 1124.

Proof. Let G be a the graph of face-centered cubic lattice FCC(n). Now, using Table 1 and Equation (3),
the F(G) index can be calculated as:

F(G) = ∑
wy∈E(G)

(
ξ(w)2 + ξ(y)2)

F(G) = ∑
wy∈E1(G)

(
ξ(w)2 + ξ(y)2)+ ∑

wy∈E2(G)

(
ξ(w)2 + ξ(y)2)+ ∑

wy∈E3(G)

(
ξ(w)2 + ξ(y)2)

+ ∑
wy∈E4(G)

(
ξ(w)2 + ξ(y)2)+ ∑

wy∈E5(G)

(
ξ(w)2 + ξ(y)2)

= (24)
(
42 + 62)+ (20n− 20)

(
42 + 92)+ (8)

(
62 + 62)+ (8)

(
62 + 92)+ (8n− 12)

(
92 + 92)

= (52)(24) + (97)(20n− 20) + (72)(8) + (117)(8) + (162)(8n− 12) = 3236n− 1124.

Theorem 3. Consider face-centered cubic lattice FCC(n), then its augmented Zagreb index is:

AZI(G) = =
1185105411n

681472
− 248308379068617

374298496000
.

Proof. Let G be a the graph of face-centered cubic lattice FCC(n). Now, using Table 1 and Equation (4),
AZI(G) can be calculated as:

AZI(G) = ∑wy∈E(G)

(
ξ(w)ξ(y)

ξ(w)+ξ(y)−2

)3

AZI(G) = ∑wy∈E1(G)

(
ξ(w)ξ(y)

ξ(w)+ξ(y)−2

)3
+ ∑wy∈E2(G)

(
ξ(w)ξ(y)

ξ(w)+ξ(y)−2

)3
+ ∑wy∈E3(G)

(
ξ(w)ξ(y)

ξ(w)+ξ(y)−2

)3

+ ∑wy∈E4(G)

(
ξ(w)ξ(y)

ξ(w)+ξ(y)−2

)3
+ ∑wy∈E5(G)

(
ξ(w)ξ(y)

ξ(w)+ξ(y)−2

)3
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AZI(G) = (24)
(

4×6
4+6−2

)3
+ (20n− 20)

(
4×9

4+9−2

)3
+ (8)

( 6×6
6+6−2

)3

+ (8)
( 6×9

6+9−2
)3

+ (8n− 12)
( 9×9

9+9−2
)3

= 1185105411n
681472 − 248308379068617

374298496000 .

Theorem 4. Consider face-centered cubic lattice FCC(n), then its Balaban index J(G) index is:

J(G) =
1064n2 + (616n + 176)

√
6− 536n− 240

171n + 27
.

Proof. Let G be the graph of face-centered cubic lattice FCC(n). The above result can be proven using
Table 1 and Equation (5) in the following computation:

J(G) = m
m−n+2 ∑wy∈E(G)

1√
ξ(w)ξ(y)

J(G = m
m−n+2

[
∑wy∈E1(G)

1√
ξ(w)ξ(y)

+ ∑wy∈E2(G)
1√

ξ(w)ξ(y)
+ ∑wy∈E3(G)

1√
ξ(w)ξ(y)

]
+ m

m−n+2

[
∑wy∈E4(G)

1√
ξ(w)ξ(y)

+ ∑wy∈E5(G)
1√

ξ(w)ξ(y)

]
= 28n+8

19n+3

[
24√
4×6

+ 20n−20√
4×9

+ 8√
6×6

+ 8√
6×9

+ 8n−12√
9×9

]
= 1064n2+(616n+176)

√
6−536n−240

171n+27 .

Theorem 5. Consider the graph of face-centered cubic lattice FCC(n), then its redefined Zegreb indices are:

ReZG1(G) = 9n + 5,

ReZG2(G) =
5940n + 33

13
,

ReZG3(G) = 21024n− 11160.

Proof. Let G be the graph of FCC(n). Then, using Equation (6) and Table 1, the first, second, and third
redefine Zagreb indices are computed as below:

ReZG1(G) = ∑
wy∈E(G)

ξ(w) + ξ(y)
ξ(w)ξ(y)

= ∑
wy∈E1(G)

ξ(w) + ξ(y)
ξ(w)ξ(y)

+ ∑
wy∈E2(G)

ξ(w) + ξ(y)
ξ(w)ξ(y)

+ ∑
wy∈E3(G)

ξ(w) + ξ(y)
ξ(w)ξ(y)

+ ∑
wy∈E4(G)

ξ(w) + ξ(y)
ξ(w)ξ(y)

+ ∑
wy∈E5(G)

ξ(w) + ξ(y)
ξ(w)ξ(y)

= (24)
(

4 + 6
4× 6

)
+ (20n− 20)

(
4 + 9
4× 9

)
+ (8)

(
6 + 6
6× 6

)
+ (8)

(
6 + 9
6× 9

)
+ (8n− 12)

(
9 + 9
9× 9

)
= 9n + 5.
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Using Equation (7) and Table 1, the second redefined Zagreb index is computed as below:

ReZG2(G) = ∑
wy∈E(G)

ξ(w)ξ(y)
ξ(w) + ξ(y)

= ∑
wy∈E1(G)

ξ(w)ξ(y)
ξ(w) + ξ(y)

+ ∑
wy∈E2(G)

ξ(w)ξ(y)
ξ(w) + ξ(y)

+ ∑
wy∈E3(G)

ξ(w)ξ(y)
ξ(w) + ξ(y)

+ ∑
wy∈E4(G)

ξ(w)ξ(y)
ξ(w) + ξ(y)

+ ∑
wy∈E5(G)

ξ(w)ξ(y)
ξ(w) + ξ(y)

ReZG2(G) = (24)
(

4× 6
4 + 6

)
+ (20n− 20)

(
4× 9
4 + 9

)
+ (8)

(
6× 6
6 + 6

)
+ (8)

(
6× 9
6 + 9

)
+ (8n− 12)

(
9× 9
9 + 9

)
=

5940n + 33
13

.

Now, using Equation (8) and Table 1, the third redefined Zagreb index is computed as below:

ReZG3(G) = ∑
wy∈E(G)

(ξ(w)ξ(y))(ξ(w) + ξ(y))

= ∑
wy∈E1(G)

(ξ(w)ξ(y))(ξ(w) + ξ(y)) + ∑
wy∈E2(G)

(ξ(w)ξ(y))(ξ(w) + ξ(y))

+ ∑
wy∈E3(G)

(ξ(w)ξ(y))(ξ(w) + ξ(y)) + ∑
wy∈E4(G)

(ξ(w)ξ(y))(ξ(w) + ξ(y))

+ ∑
wy∈E5(G)

(ξ(w)ξ(y))(ξ(w) + ξ(y))

= (24)
(
(4× 6)(4 + 6)

)
+ (20n− 20)

(
(4× 9)(4 + 9)

)
+ (8)

(
(6× 6)(6 + 6)

)
+ (8)

(
(6× 9)(6 + 9)

)
+ (8n− 12)

(
(9× 9)(9 + 9)

)
= 21024n− 11160.

Theorem 6. Consider face-centered cubic lattice FCC(n), then its first and second Zagreb polynomials are
equal to:

M1(G, x) = 24x10 + (20n− 20)x13 + 8x12 + 8x15 + (12n− 8)x18,

M2(G, x) = 24x24 + (20n− 20)x36 + 8x36 + 8x54 + (12n− 8)x81.

Proof. Let G be the graph of FCC(n). Now, using Table 1 and Equations (9) and (10), the Zagreb
polynomials are computed as below:

M1(G, x) = ∑
wy∈E(G)

x(ξ(w)+ξ(y))

M1(G, x) = ∑
wy∈E1(G)

x(ξ(w)+ξ(y)) + ∑
wy∈E2(G)

x(ξ(w)+ξ(y)) + ∑
wy∈E3(G)

x(ξ(w)+ξ(y))

+ ∑
wy∈E4(G)

x(ξ(w)+ξ(y)) + ∑
wy∈E5(G)

x(ξ(w)+ξ(y))

= (24)x(4+6) + (20n− 20)x(4+9) + (8)x(6+6) + (8)x(6+9) + (12n− 8)x(9+9)

= 24x10 + (20n− 20)x13 + 8x12 + 8x15 + (12n− 8)x18
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M2(G, x) = ∑
wy∈E(G)

x(ξ(w)×ξ(y))

M2(G, x) = ∑
wy∈E1(G)

x(ξ(w)×ξ(y)) + ∑
wy∈E2(G)

x(ξ(w)×ξ(y)) + ∑
wy∈E3(G)

x(ξ(w)×ξ(y))

+ ∑
wy∈E4(G)

x(ξ(w)×ξ(y)) + ∑
wy∈E5(G)

x(ξ(w)×ξ(y))

= (24)x(4×6) + (20n− 20)x(4×9) + (8)x(6×6) + (8)x(6×9) + (12n− 8)x(9×9)

= 24x24 + (20n− 20)x36 + 8x36 + 8x54 + (12n− 8)x81.

Theorem 7. Consider face-centered cubic lattice FCC(n), then its first and second hyper-Zagreb polynomials
are equal to:

HM1(G, x) = 24x100 + (20n− 20)x169 + 8x1296 + 8x225 + (12n− 8)x324,

HM2(G, x) = 24x576 + (20n− 20)x1296 + 8x1296 + 8x2916 + (12n− 8)x6561.

Proof. Let G be the graph of FCC(n). Now, using Table 1 and Equations (11) and (12), the hyper-Zagreb
polynomials are computed as:

HM1(G, x) = ∑
wy∈E(G)

x(ξ(w)+ξ(y))2

HM1(G, x) = ∑
wy∈E1(G)

x(ξ(w)+ξ(y))2
+ ∑

wy∈E2(G)

x(ξ(w)+ξ(y))2
+ ∑

wy∈E3(G)

x(ξ(w)+ξ(y))2

+ ∑
wy∈E4(G)

x(ξ(w)+ξ(y))2
+ ∑

wy∈E5(G)

x(ξ(w)+ξ(y))2

= (24)x(4+6)2
+ (20n− 20)x(4+9)2

+ (8)x(6+6)2
+ (8)x(6+9)2

+ (12n− 8)x(9+9)2

= 24x100 + (20n− 20)x169 + 8x144 + 8x225 + (12n− 8)x324

HM2(G, x) = ∑
wy∈E(G)

x(ξ(w)×ξ(y))2

HM2(G, x) = ∑
wy∈E1(G)

x(ξ(w)×ξ(y))2
+ ∑

wy∈E2(G)

x(ξ(w)×ξ(y))2
+ ∑

wy∈E3(G)

x(ξ(w)×ξ(y))2

+ ∑
wy∈E4(G)

x(ξ(w)×ξ(y))2
+ ∑

wy∈E5(G)

x(ξ(w)×ξ(y))2

= (24)x(4×6)2
+ (20n− 20)x(4×9)2

+ (8)x(6×6)2
+ (8)x(6×9)2

+ (12n− 8)x(9×9)2

= 24x576 + (20n− 20)x1296 + 8x1296 + 8x2916 + (12n− 8)x6561.

Table 2 shows the partition of the edges of the graph face-centered cubic lattice FCC(n) depending
on the sum of degrees of the neighboring vertices of the end vertices of each edge. The next theorem
shows the exact value of the fourth version of atom–bond connectivity index ABC4 of FCC(n).
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Table 2. Degree-based partition of edges of FCC(n), for n ≥ 2.

(Su, Sv) Number of Edges Edge Sets

(33, 33) 8 E1(G)
(24, 33) 8 E2(G)
(30, 33) 16 E3(G)
(36, 53) 24 E4(G)
(30, 53) 16 E5(G)
(33, 53) 8 E6(G)
(53, 53) 8 E7(G)
(53, 56) 8 E8(G)
(56, 56) 8n-28 E9(G)
(36, 56) 20n-60 E10(G)

Theorem 8. Consider the graph G ∼= FCC(n), then the fourth version of index ABC4 for FCC(n) is:

ABC4(G) = 5.72406962n + 3.6455090.

Proof. Let G be the graph structure of FCC(n). Then, using Table 2 and Equation (13), the fourth
version of index ABC4 is computed as follows:

S(G) = ∑
wy∈E(G)

√
Sw + Sy − 2

Sw × Sy

ABC4(G) = ∑
wy∈E1(G)

√
Sw + Sy − 2

Sw × Sy
+ ∑

wy∈E2(G)

√
Sw + Sy − 2

Sw × Sy
+ ∑

wy∈E3(G)

√
Sw + Sy − 2

Sw × Sy

+ ∑
wy∈E4(G)

√
Sw + Sy − 2

Sw × Sy
+ ∑

wy∈E5(G)

√
Sw + Sy − 2

Sw × Sy
+ ∑

wy∈E6(G)

√
Sw + Sy − 2

Sw × Sy

+ ∑
wy∈E7(G)

√
Sw + Sy − 2

Sw × Sy
+ ∑

wy∈E8(G)

√
Sw + Sy − 2

Sw × Sy
+ ∑

wy∈E9(G)

√
Sw + Sy − 2

Sw × Sy

+ ∑
wy∈E10(G)

√
Sw + Sy − 2

Sw × Sy

ABC4(G) = (8)

√
33 + 33− 2

33× 33
+ (8)

√
24 + 33− 2

24× 33
+ (16)

√
30 + 33− 2

30× 33

+ (24)

√
36 + 53− 2

36× 53
+ (16)

√
30 + 53− 2

30× 53
+ (8)

√
33 + 53− 2

33× 53

+ (8)

√
53 + 53− 2

53× 53
+ (8)

√
53 + 56− 2

53× 56
+ (8n− 28)

√
56 + 56− 2

56× 56

+ (20n− 60)

√
36 + 56− 2

36× 56

= 5.72406962n + 3.6455090.
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Theorem 9. Consider the graph G ∼= FCC(n), then the fifth version of geometric arithmetic index GA5 of
FCC(n) is:

GA5(G) = 9.53740238n + 7.3250487.

Proof. Let G be the graph structure of FCC(n). Then, using Table 2 and Equation (14), the fifth version
of geometric arithmetic index GA5 is computed as follows:

GA5(G) = ∑
wy∈E(G)

2
√

SwSy

Sw + Sy

= ∑
wy∈E1(G)

2
√

SwSy

Sw + Sy
+ ∑

wy∈E2(G)

2
√

SwSy

Sw + Sy
+ ∑

wy∈E3(G)

2
√

SwSy

Sw + Sy

+ ∑
wy∈E4(G)

2
√

SwSy

Sw + Sy
+ ∑

wy∈E5(G)

2
√

SwSy

Sw + Sy
+ ∑

wy∈E6(G)

2
√

SwSy

Sw + Sy

+ ∑
wy∈E7(G)

2
√

SwSy

Sw + Sy
+ ∑

wy∈E8(G)

2
√

SwSy

Sw + Sy
+ ∑

wy∈E9(G)

2
√

SwSy

Sw + Sy

+ ∑
wy∈E10(G)

2
√

SwSy

Sw + Sy

GA5(G) = (8)
2
√

33× 33
33 + 33

+ (8)
2
√

24× 33
24 + 33

+ (16)
2
√

30× 33
30 + 33

+ (24)
2
√

36× 53
36 + 53

+ (16)
2
√

30× 53
30 + 53

+ (8)
2
√

33× 53
33 + 53

+ (8)
2
√

53× 53
53 + 53

+ (8)
2
√

53× 56
53 + 56

+ (8n− 28)
2
√

56× 56
56 + 56

+ (20n− 60)
2
√

36× 56
36 + 56

= 9.53740238n + 7.3250487.

4. Comparisons and Discussion

In this section, we computed all the indices for different values of n for face-centered cubic lattice
FCC(n). In addition, we constructed Tables 3 and 4 for small values of n for these topological indices
to the structure of face-centered cubic lattice FCC(n). Now, from Tables 3 and 4, we can easily see that
all indices are in increasing order as the value of n are increases.

The graphical representation of the PM1(G) and PM2(G) indices is depicted in Figure 3, that of
the forgotten topological index in Figure 4, that of the augmented Zagreb index in Figure 5, that of
the Balaban index in Figure 6, that of the first, second, and third Zagreb indices in Figure 7, that of
Zagreb polynomials M1(G, x) and M2(G, x) in Figure 8, that of hyper-Zagreb polynomials in Figure 9,
and that of the ABC4 index and GA5 index in Figure 10.
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Figure 3. The graphical representation of the PM1(G) and PM2(G) indices.

Figure 4. The graphical representation of the forgotten topological index.

Figure 5. The graphical representation of the augmented Zagreb index.
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Figure 6. The graphical representation of Balaban index.

Figure 7. The graphical representation of the first, second, and third Zagreb indices of FCC(n). The red,
blue, and green colors represent ReZG1(G), ReZG2(G), and ReZG3(G), respectively.

Figure 8. The graphical representation of M1(G, x) and M2(G, x) polynomials of face-centered cubic
lattice FCC(n). The colors blue and green represent M1(G, x) and M2(G, x), respectively.
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Figure 9. The graphical representation of the first and second hyper-Zagreb polynomial in a 2D
structure of face-centered cubic lattice FCC(n). The colors blue and green represent HM1(G, x) and
HM2(G, x), respectively.

Figure 10. The graphical representation of ABC4 index and GA5 index of face-centered cubic lattice
FCC(n). The colors brown and green represent ABC4 and GA5, respectively.

Table 3. Comparison of all indices for face-centered cubic lattice FCC(n).

n PM1(FCC(n)) PM2(FCC(n)) F(FCC(n)) AZI(FCC(n)) J(FCC(n))

1 1.4× 1038 2.5× 1018 2112 49.31 8.9
2 3.7× 1066 3.4× 1038 5348 60.34 29.8
3 6.5× 1089 5.6× 1057 8548 80.41 61.4
4 7.6× 1095 7.4× 1076 11820 97.18 97.6
5 9.4× 10110 6.2× 1095 15056 115.08 105.7
6 5.8× 10125 8.5× 10119 18292 135.21 125.5
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Table 4. Comparison of all indices for face-centered cubic lattice FCC(n).

n ReZ1(FCC(n)) ReZ2(FCC(n)) ReZ3(FCC(n)) ABC4(FCC(n)) GA5(FCC(n))

1 14 459.6 9864 59.31 47.42
2 23 916.38 30888 62.34 65.18
3 32 1373.5 51912 81.41 81.23
4 41 1830.5 72936 95.11 97.04
5 50 2287.6 93960 107.12 117.31
6 59 2744.5 114984 1157.31 137.24

5. Conclusions

In this paper, we studied a reputable lattice, namely face-centered cubic lattice FCC(n), and we
determined the topological indices, namely the Zagreb-type indices, the forgotten index, Balaban index,
the fourth version of AB4, and the fifth version of the geometric arithmetic index for face-centered
cubic lattice FCC(n).

Since the first and second multiple Zagreb indices, redefined Zagreb indices were found to
occur for computation of the total π-electron energy of the molecules; in the case of face-centered
cubic lattice FCC(n), their values provide total π-electron energy in increasing order for higher
values of n. Moreover, the forgotten topological index, Balaban index, and augmented Zagreb index
announced that the physicochemical flexibility of face-centered cubic lattice FCC(n) is fruitful for
chemical reactions. Further, the fourth atom–bond connectivity ABC4 and the fifth version of the
geometric arithmetic index GA5 index provide a very good correlation for computing the strain energy
of molecules; one can easily see that the strain energy of face-centered cubic lattice FCC(n) is higher as
the values of n increases. Additionally, these result are helpful from a chemical point of view as well as
in pharmaceutical science. However, computing the distance-based and counting-related topological
indices for these symmetrical chemical structures still remains open for investigation and a challenge
for researchers.
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