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Abstract: The boundary-layer equations for mass and heat energy transfer with entropy generation
are analyzed for the two-dimensional viscoelastic second-grade nanofluid thin film flow in the
presence of a uniform magnetic field (MHD) over a vertical stretching sheet. Different factors, such
as the thermophoresis effect, Brownian motion, and concentration gradients, are considered in
the nanofluid model. The basic time-dependent equations of the nanofluid flow are modeled and
transformed to the ordinary differential equations system by using similarity variables. Then the
reduced system of equations is treated with the Homotopy Analysis Method to achieve the desire
goal. The convergence of the method is prescribed by a numerical survey. The results obtained are
more efficient than the available results for the boundary-layer equations, which is the beauty of the
Homotopy Analysis Method, and shows the consistency, reliability, and accuracy of our obtained
results. The effects of various parameters, such as Nusselt number, skin friction, and Sherwood
number, on nanoliquid film flow are examined. Tables are displayed for skin friction, Sherwood
number, and Nusselt number, which analyze the sheet surface in interaction with the nanofluid
flow and other informative characteristics regarding this flow of the nanofluids. The behavior of the
local Nusselt number and the entropy generation is examined numerically with the variations in the
non-dimensional numbers. These results are shown with the help of graphs and briefly explained
in the discussion. An analytical exploration is described for the unsteadiness parameter on the thin
film. The larger values of the unsteadiness parameter increase the velocity profile. The nanofluid film
velocity shows decline due the increasing values of the magnetic parameter. Moreover, a survey on
the physical embedded parameters is given by graphs and discussed in detail.
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1. Introduction

In the last few years, thin film flow problems have received great attention. The history behind
such a loyalty and importance is the use of thin film flow in various technological disciplines. Thin
film flow problems cannot be categorized and classified in a simple way, because they are rooted in
particular to broad areas, such as from the analysis of flow in human lungs to industrial problems
involving lubricants. Examining thin film flow of liquids and its uses leads us to an important
relationship between structural mechanics and fluid mechanics. The polymers and metal extraction,
drawing of elastic sheet, exchanges, foodstuff striating, fluidization of the devices, and constant
forming are some common uses and applications of liquid film flow. In view of these practical uses
of liquid film flow, further advancement and development is observed to be necessary. For this
purpose, a variety of attempts have been made with constructive geometries from time to time by
many investigators. One such an important geometry is the expanding sheet, which has received great
attention and become a problem of interest for the investigators [1,2].

In the beginning, thin liquid film flow was devoted to fluids with some viscosity. Classifications
of these fluids based on viscosity have made the area saturated. With the passage of time, the domain
was extended to non-Newtonian fluids. Non-Newtonian nano-liquids are studied and are discussed
with variations in internal and external agents. The transfer of heat is investigated for non-Newtonian
nanoliquid thin film flow by Sandeep et al. [3]. In stretching sheet problems, the geometry of the
problem is important, due to its time dependency as well as the nature of the sheet. Wang [4]
investigated the liquid thin film flow past a time-dependent expanding sheet. The same geometry with
finite thin liquid is investigated by Usha et al. [5]. They analyzed the flow on an unsteady stretching
sheet for finite thin liquids. Liu et al. [6] investigated the thin film flow for heat transfer enhancement
through an expanding sheet. Aziz et al. [7] described the flow of thin fluid film with generation of
heat over an expanding surface. Tawade et al. [8] examined thin film liquid flow for the transfer of
heat in the presence of thermal radiations. They implemented the RK-Fehlberg and Newton-Raphson
method to tackle the modeled equations. A briefer survey on heat transfer analysis on liquid film
flow past an expanding sheet is presented by Anderssona et al. [9]. The study of expanding sheet
problem is not rare in the literature and a brief survey can be found on its applications and other
technological advancements in [10–15]. Besides all these, a variety of fluids are investigated under
the same geometry. Megahed [16] studied the impact of heat on thin Casson fluid past an unsteady
expanding surface by assuming the slip velocity in the presence of viscous dissipation and heat flux.
Shah et al. [17] described the flow of Casson nanofluid in rotating parallel plates in the presence of
Hall effect. Jawad et al. [18] studied the MHD flow of the nanofluid thin film by considering the Joule
heat loss and Navier’s partial slip by considering Darcy-Forchheimer model. Interested readers are
referred to [19–22] for more brief discussion on rotating systems. Some new modifications are made by
Khan et al. [23] and Tahir et al. [24] for the thin film flow of nanofluids.

The proficiency in different applications of nanofluids are due to the enormous features (heat
transfer enhancement, cooling etc.). From the practical application point of view, nanofluids are used
in powered engines, pharmaceutical procedures, micro-electrons, and hybrid fuel cells. Presently,
its major use is in the field of nanotechnologies. In industries, the use of electronic equipment and
nanoboards are essential presently. These boards and electronic accessories become hot with the
passage of time, due to which its efficiency is normally badly affected. To overcome this situation,
nanofluids are used as a coolant to reduce heat [25]. A literature survey shows that air is used as
a coolant in many processes. In the enhancement of the performance of microchips, projectors and
LED nanotechnology coolants are used [26,27]. Non-Newtonian fluid flow is found in abundance
in the literature and deeply depends on the mechanism in which it is used. One such a mechanism
is the peristaltic mechanism, which plays a vital role in physiological and industrial processes. In
this process, along the wall of the channel sinusoidal waves are propagated. The best examples of
such waves in practice are dialysis, hose pumps, and the heating of lungs etc. Further investigation of
this study leads researchers to examine MHD flows. MHD analysis of peristaltic flows plays a key
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role in medicine and bio-engineering. The variations in viscosity for peristaltic flow are examined by
Srivastava et al. [28]. The variation of viscosity with temperature is studied by Abbasi et al. [29] for
nanofluid flow.

From earlier study, nanofluids have been found to retain dimensions smaller than 100 nm [7,8].
Nanofluids are known to be a mixture of nanoparticles and the general heat transfer fluids, for example
oil, ethylene glycol, glycol, and water etc. Nanoparticles can be prepared in laboratories and in
industries on a large scale. It can be obtained from metals such as Ag, Al, Au, Cu, and oxides of metals
such as Fe3O4, CuO, TiO2, Al2O3, nitrides such as AlN, SiN, carbides (SiC) etc. The nanoparticles
obtained from these materials are used in very small amounts for the improvement of heat transfer,
due their high thermal conductivity. The enhancement of heat transfer due to thermal systems for
augmentation are presently become widespread. Abolbashari et al. [30] described nanofluid flow
using Buongiorno’s model through a time-dependent stretching sheet. Hayat et al. [31] discussed
the nanoliquid flow in three dimensions by using the Maxwell model. Malik et al. [32] studied a
mixed convective MHD nanofluid flow on a stretching surface by considering Erying-Powell fluid.
Nadeem et al. [33] discussed the Maxwell liquid film flow of nanoparticles past a perpendicular
stretching surface. Raju et al. [34] examined the non-Newtonian nanoliquid MHD flow through a cone
with free heat convection and mass transfer. The heat transfer investigations of the nanofluid flow
through plates are performed by Rokni et al. [35]. Numerical investigations of the non-Newtonian
nanoliquid flow on the stretching surface are presented by Nadeem et al. [36]. Shehzad et al. [37]
examined the nanoliquid MHD flow of Jaffrey fluid in the presence of convective-type boundary
constraints. Sheikholeslami et al. [38,39] analyzed the heat effects on nanoliquid flow by applying
an external magnetic field. Mahmoodi et al. [40] studied the flow of nanofluid for cooling purposes
and discussed the heat sink for the flow field. The impact of thermal radiations and Hall current is
recently explored by Shah et al. [41,42] for rotating surfaces. A detailed study on rotating surfaces with
stretching sheet performed by Shah et al. can be found in [43–49]. CuO containing nanofluid thin film
flow inside a semi-annulus region is examined by Sheikholeslami and Bhatti [50] numerically with
constant magnetic field. They analyzed the heat transfer enhancement and found some good results.
Tube-in-tube analysis of heat exchanger for γ−ALOOH nanofluid is performed by Monfared et al. [51].
They found both upper and lower boundaries of irreversibility for platelet and spherical shape
geometries. A brief and detailed survey on nanofluids of Sheikholeslami with modern applications of
dissimilar phenomena with a variety of approaches can be found in [52,53]. Besides the theoretical
study, literature is rich with experimental results on nanofluid flow and its use in the heat transfer
analysis. A combined effect of the silver and carbon nanotubes by taking water as the base fluid is
performed by Munkhbayar [54]. In this study, he used 3% of the nanoparticles by volume as compared
with base fluids. The use of these combined nanoparticles enhances the heat transfer up to 14.5% at a
very low temperature. The increase in concentration and heat transfer for a hybrid of the copper oxide
and titanium nanoparticles is achieved by taking water and ethylene glycol mixture as the base fluid
studied by Hemmat et al. [55]. They performed this experiment in a laboratory from (30–60)◦C. At
the upper bound of the temperature range they found a 41.5% increase in the thermal conductivity.
Hybrid base fluid (water-ethylene) and hybrid nanofluids (titanium-MWCNT’s) investigation was
carried out by Akhgar et al. [56] for the stability of base fluid and enhancement of thermal conductivity.
They observed a 38.7% increase in the thermal conductivity of the nanofluids as compared with the
base fluid. Similar experimental results for the enhancement of the thermal conductivity of nanofluids
can be found in [57,58].

The free existence of non-Newtonian fluids and its use attracted researchers to construct models
and further developments due to its application in industry. Most of the organic compounds came
under the umbrella of the non-Newtonian fluids. Food products, molten plastic, wall paints, lubricant
oils, drilling mud, and molten plastic are some of the widely used examples non-Newtonian fluids.
Surveys suggest that to classify the non-Newtonian fluids in terms of behavior, many models have
been introduced and developed. Some of them, Williamson fluid, Walter’s-B fluid, Casson fluid,
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Carreau fluid, etc., are very common in use. Carreau fluid model is also known as the Newtonian
generalized model [59]. The significance of the Carreau fluid model in the field of melts, water-based
polymers, and suspensions attracted investigators. Considering the effectiveness of this model, many
researchers investigated the nature of Carreau fluid by using different geometries. Some surveys
related to this model are presented here. Kefayati et al. [60] performed a survey on the thermosolutal
forced convective flow over two circular cylinders with magnetic effects by taking the Carreau fluid
model. They also analyzed the entropy generation in their study. Olajuwon [61] studied the Carreau
liquid flow over a perpendicular permeable surface with magnetic effect. Hayat et al. [62] investigated
this model for a free convection flow over a non-stationary surface. The study of nanofluids is not just
linked to the fluids model used, but purely depends on the nature of the nanomaterial used. The shape
of the nanomaterial used is more important in the study of heat transfer processes. To enhance the heat
transfer, and to improve thermal and hydraulic properties, the shape of the nanoparticles used is also
important. Alsarraf et al. [63] implemented a two-phase mixture model to investigate the double-pipe
flow of boehmite alumina nanofluid. They presented the results in the form of percentages for both
spherical and platelet-shaped nanoparticles under high Reynolds numbers. Similarly, an experimental
study is presented by Azari et al. [64] for alumina nanofluid flow. They successfully analyzed the
two-phased model theoretical results with practically obtained information.

Due to its complicated nature, non-Newtonian fluids have been studied by many researchers,
just for the purpose of explicitly or implicitly explaining the strain rate. An important type of
non-Newtonian fluids is Sisko fluid, which has great significance in engineering as well as in technology.
Stretching surface analysis was made by Munir et al. [65] by using Sisko fluid bidirectional flow. Sisko
model is used by Olanrewaju et al. [66], for the unsteady non-convective fluid flow over a flat surface by
taking into account heat transfer. Khan et al. [67] studied the effect of heat energy transfer in an annular
pipe of the Sisko fluid steady state flow. Khan et al. [68] described the Sisko fluid boundary-layer flow
over a stretching surface. Similar investigation on the stretching surface for the laminar flow by using
Sisko fluid model is carried out by Patel et al. [69]. Darji et al. [70] examined the natural convective
time-independent Sisko fluid flow of boundary-layer type. Analytical solutions of the Sisko fluid thin
film flow for the drainage down a vertical belt is presented by Siddiqui et al. [71]. The MHD Sisko fluid
numerical study for an annular region flow is carried out by Khan et al. [72]. Sar et al. [73] studied both
the Lie group and Sisko fluid boundary-layer equations. Haneef et al. [74] investigated the Maxwell
nanofluid flow for magnetic and electric effects on a stretching plate. Moallemi et al. [75] studied the
flow of Sisko fluid in the pipe and discussed the exact solution. Dawar et al. [76] investigated the
CNT Casson fluid flow with MHD in a rotating channel for heat transfer analysis. Shah et al. [77]
implemented Cattaneo-Christov model for the heat transfer analysis of MHD micropoler Casson fluid
over a stretching sheet. Khan et al. [78] investigated the Eyring-Powell nanoliquid film slip flow by
considering nanoparticles of graphene. Recently, Khan and Pop [79] investigated the thermophoresis
effect and Brownian motion of a boundary-layer nanofluid flow past a stretching sheet. For the
enhancement of heat transfer, researchers started to use impurities. Osiac [80] discussed the electrical
and structural properties of nitrogen. Radwan et al. [81] performed the synthesis classification and
applications of polystyrene. Coating applications of thin film flow and flexible coating with conductive
fillers and applications of thermoelectric materials are discussed [82–85].

The best possible design conduction in the energy system is always the aim of investigators.
For this purpose, the role of entropy cannot be ignored in modeling, and other optimization
applications of the energy systems. The roots of entropy are connected to the second law of
thermodynamics and its irreversible aspects are laid down by Kelvin and Clausius. The theoretical
background of entropy was developed very rapidly and has been extended to the new generation.
However, in the heat transfer process/thermal radiations, entropy generation cannot be treated by
conventional thermodynamic approaches. That is why researchers are compelled to take an interest
in the second law of thermodynamics and to investigate its engineering applications. When there is
a heat transfer in the system, there must be the generation of entropy. The generation of entropy is
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mainly concerned with the irreversibility of thermodynamics. Entropy can be generated from different
sources, such as viscous dissipation, mass diffusion, and finite temperature gradients in the transfer of
heat. The generation of entropy in thermal engineering has been investigated by Bejan [86,87] from
some new aspects. The work already available in the system vanishes due to the generation of entropy.
From an engineering point of view, it makes sense to understand the irreversibility and mechanism of
the entropy generation in the transfer of heat and other problems in the fluid flow.

The generation of entropy in thermal systems has been discussed by many investigators. Weigand
and Birkefeld [88] investigated the laminar flow past a flat plate with entropy generation. Makinde [89]
investigated the second law for the hydro-magnetic flow of the boundary layer on a stretching
surface along with the heat transfer analysis by using variable viscosity. Makinde reported that with
the increasing values of Prandtl number and radiation parameter the entropy generation decreases.
Hayat et al. [90] presented Darcy-Forchheimer CNT-based nanomaterial convective flow with heat flux
for entropy generation. They analyzed both SWCNTs and MWCNTs for heat transfer enhancement
and entropy generation. In another investigation of gravity-driven thin film flow in the direction of the
heated inclined plate, Makinde [91] reported that at the liquid-surface, the irreversibility of heat transfer
is dominant, while an opposite result is observed at the surface of the plate. A small amount of work
is done on the heat transfer analysis, considering the second law of thermodynamics in nanofluids.
This is because of the rareness of the nanofluids. Recently, Esmaeilpour and Abdollahzadeh [92]
investigated the enhancement of heat for nanofluid free convection flow inside an enclosure with
the entropy generation. Dawar et al. [93] presented a semi-analytic solution to the CNT nanofluid
flow inside rotating plates. In this investigation, the effect of magnetic field and entropy generation
is deliberated numerically. A further brief survey on entropy generation by investigating different
models and geometries can be found in [94,95]. Surveys suggest that the stretching sheet problem
has been studied by different researchers for different fluids. Entropy generation of viscoelastic fluid
for the second-grade fluid is rare and will be discussed in this article for the first time. In science and
engineering majority of the mathematical models are very complicated, and it is also impossible to solve
these types of problems for exact solution. For this purpose, researchers are widely using numerical
and semi-analytic methods for the approximate solution. Numerical techniques are sometimes difficult
to perform in an efficient way for some problems. This happens due the high non-linearity of the
problem. To overcome this situation, Liao [96,97] investigated the solution of these types of problems
by implementing a new technique. The method is termed the Homotopy Analysis Method (HAM),
due to the use of homotopy, a topological property. He further discussed the convergence of the new
implemented method. A solution is a function of single variable in the form of a series.

The foremost aim of discussing this work is to investigate the flow of second-grade thin film
flow in the presence heat transfer and magnetic effect with the generation of entropy in a vertical
stretching sheet. To the best of our knowledge, we cannot find new work on nanofluid thin film flow on
vertical stretching sheet by considering viscoelastic fluid of second grade. Equations for the generation
of entropy and the boundary-layer heat transfer over a vertical stretching sheet are constituted for
two-dimensional nanofluid thin film flow with uniform magnetic field (MHD). These equations are the
leading-order mathematical equations constituted from the geometry, keeping in view the assumptions
in flow field. Different physical aspects such as thermophoresis, concentration gradients, and Brownian
motion of the flow are assumed in the nanofluid model. The modeled leading-order system in the
form of PDEs (partial differential equations) are further transformed into a system of ODEs (ordinary
differential equations), with the help of similarity variables. Similarity variables have the property
of non-dimensionalization and transforming the system of PDEs to a single independent variable
system also known as ODEs. The reduced system of differential equations is tackled by an analytic
approach (HAM). HAM is implemented with initial guesswork, as required for the implementation of
the technique, due to its fast convergence. The convergence of the implemented technique is discussed
numerically and with graphs. The state variables are plotted under the variation of different physical
parameters and discussed in detail. Physical quantities such as Sherwood number, Nusselt number,
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and skin friction are presented numerically for its significance in the boundary-layer flow. The impact
of Brinkman number and Bejan number is discussed by graphs for entropy function. The effect of
Reynolds number, Prandlt number, and magnetic parameter is also influential on entropy function,
Bejan number, and Brinkman number by graphs.

2. Problem Formulation

Assume an unsteady nanoliquid thin film flow of the second-grade fluid past a stretching sheet.
Furthermore, the fluid is assumed to be electrically conducting and the magnetic field effect is also
considered inside the flow field. The moving sheet starts its motion from a fixed slit. The arrangement
of the geometry is made in the Cartesian system of coordinates in such a way that the plate length
is equal to ox, and oy is flat to the surface. The stretching effects are applied in such a manner to the
surface of the flow that the two forces are in opposite direction with an equal magnitude along the
x-axis, and keeps the center motionless. The stretching sheet and x-axis are taken in such a manner
that it is adjacent to each other, and the stress velocity of the sheet is given by [17]:

Uw(x, t) = γx(1− ζt)−1, (1)

where ζ and γ represents any fix numbers, which are vertical to x-axis. The wall temperature and
capacity of the nanoparticles are given by [17,19]:

Tw(x, t) = Tr

(
γx2

2ν f

)
(1− ζt)−1.5 + T0 (2)

Cw(x, t) = Cr

(
γx2

2ν f

)
(1− ζt)−1.5 + C0 (3)

where ν f denotes the fluid kinematic viscosity, T0 and C0 denotes the temperature of the slit and volume
friction of the nanoparticles, while Tr and Cr represents the reference temperature and reference volume
of the nanoparticles, respectively.
The applied magnetic field has the relationship of the form [17]:

B(t) = B0(1− ζt)−
1
2 , (4)

here B0 is the magnetic field strength.
The mathematical model that illustrates the second-grade fluid is given in the form [23]:

~T = −p~I + ~S. (5)

The basic equations of the second-grade fluid can be obtained by using β1 = β2 = β3 = 0 in the
third-grade fluid model i.e.

~S = τ = µ~A(1) + α(2) ~A(2) + α(2) ~A
2
(2). (6)

Here p~I is an isotropic stress, ~S is an extra tensor of stress, µ is the coefficient of viscosity, α(1) and
α(2) represent the thermal stress moduli, ~A(1) and ~A(2) are the stresses of Rivlin Ericksen tensors and
have the mathematical structures ~A(1) = ∇~V + (∇~V)T and ~A(2) =

D
Dt (

~A(1)) + ~A(1)∇~V + (∇~V)T ~A(1)

2.1. Continuity Equation:

The equation of continuity under the assumed assumption (in-compressible fluid) for the modeled
geometry takes the vectorial form [74]:

∇.~V. (7)
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For two-dimensional nanofluids, Equation (7) takes the form:

∂u
∂x

+
∂v
∂y

= 0 (8)

2.2. Momentum Equation

The momentum equations for the modeled geometry and flow assumptions, are given by [74]:

ρ
D
Dt

(~V) = ∇.~V +~J × ~B +~g. (9)

Here ρ denotes the fluid density, ~V velocity, which can be expressed in components form as:
~V = (u, v, 0), ~T Cauchy tensor of stress and ~g force acts from a distance respectively. ~J × ~B represents
the famous Lorentz force, in which~J is the current density, B is the magnetic field with a magnetic field
strength B0. Furthermore,~J can be expressed as: ~J = σ(~E + ~V× ~B), also known as Ohm’s law, in which
σ and ~E describe the electrical conductivity and electric field respectively, and assume that ~E = 0. D

Dt
represents the substantial derivative. Using all the above assumptions in Equation (9), we get

∂u
∂t

+ u
∂u
∂x

+ v
∂v
∂y
− ν

∂2u
∂y2 =

α1
ρ

(
∂

∂y (u
∂2u
∂y2 )− ∂u

∂y
∂2u

∂x∂y + ν ∂2u
∂y2

)
− σB2

0u + grβT(T − T∞) + grβT(C− C∞), (10)

where B0 and α1 describe the strength the magnetic field and thermal conductivity of the fluid,
respectively, βT is the thermal expansion coefficient, C∞ and T∞ denotes the concentration and
temperature at a distance from the surface, and g is the gravitational acceleration.

2.3. Equation of Thermal Energy

Thermal energy equation for the unsteady flow field is presented in the form [74]:

∂T
∂t

+ ~V.∇T = ∇.
[

K(T)
(ρcp) f

∇T
]
+ τ

[
DB∇C.∇T +

(
DT
T0
∇T.∇T

)]
, (11)

where T represents the temperature, τ =
ρp
ρ f

illustrates the ratio of the base liquid to thermal capacities
of nanoparticles, the heat capacitance of the liquid is represented by cp, DB represents the constant of
Brownian diffusion, while DT demonstrates the constant of thermophoretic diffusion, T0 denotes the
liquid temperature, which is detached from the sheet.
After implementing the assumptions (two-dimensional, unsteady, viscous, in-compressible, electrically
conducting, etc.), Equation (11) is reduced to:

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
1

ρcp

∂

∂y

[
∂u
∂y

]
+ τ

[
DB

(
∂C
∂y

∂T
∂y

)
+ DT

T∞

(
∂T
∂y

)2
]

. (12)

2.4. Equation of Mass Transfer

The nanofluid concentration can be mathematically described as [14]:

∂C
∂t

+ ~V.∇C = DB∇2C +
DT
T0
∇2T. (13)

After applying the assumptions, Equation (13) takes the form:

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

(
∂2T
∂y2

)
. (14)
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The pertinent restrictions can be written as:

u = Uw, v = 0, T = Tw, C = Cw at y = 0, (15)

∂u
∂x

=
∂T
∂x

=
∂C
∂x

= 0, v =
dh(t)

dt
, C > 0, at y = h. (16)

Introducing the following transformations [14]:

ψ = x
√

υγ

1− ζt
f (η), u =

∂ψ

∂y
= γx

f
′
(η)

1− ζt
, v =

∂ψ

∂x
= −

√
γυ

(1− ζt)
f (η),

η =

√
γ

υ(1− ζt)
y, h(t) =

[
υ

γ(1−ζt)−1

] 1
2 , θ(η) =

T − T0

Tw − T0
, φ(η) =

C− C0

Cw − C0
.

(17)

Here the stream function is represented by ψ, the thickness of the fluid film is denoted by h(t),
and the kinematic viscosity is represented by ν = µ

ρ . The dimensionless film thickness is defined as:

β =

√
ζ

υ(1− ζt)
h(t) (18)

In other words, Equation (18) becomes:

dh
dt

= − ζβ

2

√
υ

ζ(1− ζt)
. (19)

With the help of the newly introduced variables, Equations (10)–(14) are reduced to the following
equations, while the continuity equation is satisfied identically.

f ′′′ + γ1

(
f
′′′

f
′ − ( f

′′
)2 − f f iv

)
+ f f

′′ − ( f
′
)2 − St

(
f
′
+ η

2 f
′′
)
− Grθ + Gmφ + M f

′
= 0, (20)

(1 + Rd)θ
′′
+ f θ

′ − 2 f
′
θ − St

2
(3θ + ηθ

′
) + Nt(θ

′
)2 + Nbθ

′
φ
′
= 0, (21)

φ
′′
+ Sc

[
f φ
′ − 2 f

′
φ− St

2 (3φ + ηφ
′
)
]
+

Nt
Nb

θ
′′
= 0. (22)

The boundary conditions of the problem are:

f (0) = 0, f
′
(0) = 1, θ(0) = 1, φ(0) = 1, f (β) =

Sβ

2
, f

′′
(β) = 0, θ

′
(β) = 0, φ

′
(β) = 0. (23)

After generalization, the physical parameters are defined as: St = γ
ε is the measure of the

time-dependent non-dimensional parameter, γ1 = α1β2

ρδ2 is the second-grade fluid stretching parameter,

M =
σf B2

0
bρ f

represents the magnetic parameter, λ = m(T − T0) denotes the variable viscosity, Pr = ρυcp
k

represents the Prandtl number, Nt = τDw(Tw−T∞)
υT∞

demonstrates thermophoresis parameter, Nb =
τDB(Cw−C∞)

υ represents the limitations of Brownian motion, Gm = gβL3(Cw−C∞)
υ is the mixing parameter,

Gr = gβL3(Tw−T∞)
υ denotes the Grashof number, Rd = 16σT3

∞
3kk∗ is the radiation parameter, and Sc = υ

DB
represents Schmidt number.
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3. Parameters of Interest

3.1. Skin Friction

The coefficient of skin friction can be defined in the closed form as:

C f =
( ~Sxy)y=0

ρU2
w

2

, (24)

where
~Sxy =

[
µ ∂u

∂y + ρa1

(
2 ∂u

∂x
∂u
∂y + ∂2u

∂x∂y

)]
(25)

A dimensionless description of C f is demonstrated as:

C f = (Ree)
− 1

2 ( f
′′
(0) + 3γ1 f

′′
(0) f

′
(0)), (26)

where Re denotes the local Reynolds number, and has the mathematical description given as: Re =
Uwx

ν .

3.2. Nusselt Number

Nusselt number has the closed mathematical form given by Nu = hQw
k̂(T0−Th)

, where Qw =

−k̂
(

∂T
∂y

)
y
= 0, and is known as the flux of heat. A dimensionless description of Nu is demonstrated as:

Nu = −Θ(0) (27)

3.3. Sherwood Number

Sherwood number can be demonstrated in mathematical form as: Sh = hJw
DB(C0−Ch)

, where Jw =

−DB

(
∂C
∂y

)
y=0

is the flux of mass. The non-dimensional descriptions of Sh is demonstrated as:

Sh = −Φ(0) (28)

4. Entropy Analysis and Its Mathematical Description

Entropy generation of volumetric type of viscous fluids is demonstrated as [87,88]:

S
′′′
=

K(T)
T2

0

[(
∂T
∂y

)2
+ 16σT3

∞
3k

(
∂T
∂y

)2
]
+

µ(T)
T0

(
∂u
∂y

)2
+

Rd
C0

(
∂C
∂y

)2
+

Rd
T0

(
∂T
∂y

∂C
∂y + ∂C

∂x
∂T
∂x

)
+

σB2
0u2

T0
(29)

Equation (29) illustrates that the entropy generation has two main features, i.e., the irreversibility
of the transmission of heat, and the fluid friction irreversibility. Magnetic and porosity effects are
illustrated in the last two terms. The aspects of entropy generation are illustrated by mathematical
description, given by

S
′′′
0 =

K0(∆T)2

L2T2
0

, (30)

while NG = S
′′′

S′′′0
, demonstrates the ratio of the actual entropy generation to the generation rate of

characteristic entropy. This number NG for a non-dimensional system takes the form:

NG = Re(1+ εθ + Rd)(θ
′
)2 +

ReBr
Ω(1 + Λ)

( f
′′
)2 +

ReBr
Ω

M( f
′
)2 + Reλ

(
χ
Ω

)2
(φ
′
)2 + Reλ

(
χ
Ω

)
θ
′
φ
′
, (31)
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where Br is used for the Brinkman number, λ represents the diffusion quantity, M demonstrates the
parameter of the magnetic field, Ω and χ denotes the dimensionless temperature and concentration
change, respectively.

The illustrated mathematical description of each parameter is given as:

Re =
bL2

ν
, Ω =

∆T
T0

, χ =
∆C
C0

, λ =
RdC0

k
. (32)

The source of the generation of the entropy is an important class for engineers, the Bejan number
is responsible for such an important measurement, which is defined as:

Be =

K(T)
T2

0

[(
∂T
∂y

)2
+ 16σT3

∞
3k

(
∂T
∂y

)2
]

µ(T)
T

(
∂u
∂y

)2
+

σB2
0u2

T

(33)

The alternative representation of the Bejan number Be, after using the similarity transformations,
is:

Be =
(1 + εθ + Rd)(θ

′
)2

Br
Ω(1+Λ)

( f ′′)2 + Br
Ω M( f ′)2

(34)

5. Solution by HAM

Numerical methods applied presently uses the concept of linearization and discretization to tackle
the nonlinear systems. HAM is the method used for the same purpose, analytically, as the numerical
techniques. Its derivation is totally dependent on the topological concept known as homotopy.
Liao [97,98] was the first to use this concept successfully. For this purpose, Liao used the idea of
homotopy by considering two continuous functions Ψ1 and Ψ2 defined on the topological spaces X̄
and Ȳ. The homotopic idea explained in topological spaces is implemented over a closed unit interval
by:

Ψ : X̄× [0, 1]→ Ȳ

where the relation holds for all x̄ ∈ X̄, together with Ψ[x̂, 0] = ξ1(x̂) and Ψ[x̂, 1] = ξ2(x̂) . The mapping
defined by Ψ is known as a homotopic function in the literature. Equations (20)–(23) have been tackled
by HAM. Solutions are restricted by a new parameter, h̄, which modifies and links the solutions in an
appropriate manner.

We guess

f0(η) =
1

4β2 (4β2η + 3β(S− 2)η2 + (2− S)η3), θ0(η) = 1, φ0(η) = 1. (35)

The linear operators represented by L f̃ , Lθ̃ and Lφ̃ are defined as:

L f̃ ( f̃ ) = ˜f ′′′ , Lθ̃(θ̃) = θ̃
′′ and Lφ̃(φ̃) = φ̃

′′ , (36)

with the following properties

L f̃ (a1 + a2η + a3η2) = 0, Lθ̃(a4 + a5η) = 0, and Lφ̃(a6 + a7η) = 0. (37)

6. HAM Solution Convergence

The goal of the HAM solution (series solution) is its convergence, which is always linked to
some constraints. The subordinate restrictions h̄ f̃ , h̄θ̃ , and h̄φ̃ are implemented in the HAM procedure.
The embedding parameters choice guarantee the solution convergence [99]. In our case, the proposed
method shows the performance in the form of results, which are valid and efficient. The probability
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sectors of h̄ are constructed h̄-curves of f̃ ′′(0), θ̃
′(0) and φ̃

′(0) for the HAM solution (approximated)
of order 25. The effective domains of h̄ are −1.5 < h̄ f̃ < 0.0, −1.5 < h̄θ̃ < 0.0 and −2.5 < h̄φ̃ < 0.0.
Figure 1 illustrates the HAM technique convergence of h̄-curves for the state variables (velocity,
temperature, and concentration). The numerical values of HAM solution convergence with the
variations of different parameters are presented in Tables 1 and 2. The table illustrates that HAM is a
rapidly convergent method.
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20

40

60

80

100

hϕ
ϕ
'(0

)

ϕ'(0)

(a) (b)

Figure 1. (a,b) h̄-curve representation of f (η), θ(η) and φ(η).

Table 1. 25th-order approximation table for HAM convergence, when γ1 = Sc = 0.5, Nt = Gr = β =

St = 0.1, h = −0.5, Pr = Nb = Gm = 0.1.

Approximation Order f
′′
(0) Θ

′
(0) φ

′
(0)

1 −0.0600000 −1.107500 0.0537500
3 −0.104656 −0.106980 0.0856833
5 −0.115692 −0.106849 0.0935671
7 −0.118420 −0.106817 0.0955156
9 −0.119090 −0.106809 0.0095997

11 −0.119261 −0.106807 0.0961163
13 −0.119303 −0.106807 0.0961457
15 −0.119313 −0.106806 0.0961530
17 −0.119315 −0.106806 0.0961548
19 −0.119316 −0.106806 0.0961552
23 −0.119316 −0.106806 0.0961554
25 −0.119316 −0.106806 0.0961554

7. Results and Discussion

The objective of our investigation focuses on the interpretation of the thin film flow of nanoliquid
flow parameters. Figures 2–23 reveal the comprehension of the parameters involved in our
model equations.

7.1. Velocity Profile

The liquid film thickness β along the direction of the fluid flow is illustrated in Figure 2. The flow
velocity curve declines with the larger numbers of the film thickness β, because the dimensionless
thin film thickness is directly related to the fluid thickness h(t) and is the function of viscosity. As a
result, an increase in β further increases the viscosity of the film, which further causes in the decline
of the velocity curve. This happens due to the indirect relationship between β and the flow velocity
profile, i.e., the increasing values of β decrease the viscosity of the fluid, which as a result decreases the
velocity profile.
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β= 0.5
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Figure 2. Impact of β on f
′
(η), when γ1 = 0.2, St = 0.6, Gm = 0.8, Gr = 0.7, M = 0.8.

Figure 3 reflects the impact of the unsteadiness parameter over the profile of the velocity for
dissimilar values of the embedded parameters. A direct variation can be observed in the profile
of the velocity with the variations in the unsteadiness parameter St in the figure as demonstrated.
These variations are due to the effect of the stretching parameter. The unsteadiness parameter is a
function of the liquid film thickness, which further varies directly with the stretching parameter and
as a result increases the velocity profile. An increase in St rises the motion of the fluid. Investigation
demonstrates that the solution exists for St ∈ [0, 2] and strongly depends on the parameter St.

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

η

f
' (
η
)

St= 0.9

St= 0.6

St= 0.3

St= 0.1

Figure 3. Impact of St on f
′
(η), when γ1 = 0.2, β = 0.9, Gm = 0.8, Gr = 0.7, M = 0.7.

Figure 4 illustrates the mixed convective effect on the flow. In Figure 4 Gm shows the characteristic
of buoyancy forces, which play a favorable behavior for the state variable velocity. The mixing
parameter is mainly affected by the length, concentration difference, and the kinematic viscosity of
the nanofluid. There is an inverse relation between the velocity and the viscosity of the nanofluid.
Therefore, when the mixing parameter increases, the liquid film concentration increases directly, and
the viscosity decreases, which further causes increase of the profile of the velocity. The velocity profile
shows a direct relation to Gm.
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Figure 4. Impact of Gm on f
′
(η), when γ1 = 0.2, β = 0.9, St = 0.3, Gr = 0.7, M = 0.9.

Figure 5 reveals the effect of the order two-fluid velocity distribution parameter γ1. Physically,
this parameter is inversely related to the density, keeping the thickness parameter constant. Therefore,
an increase in the values of the parameter γ1, would decrease the density of the fluid, which further
causes in the increase of the velocity profile. In other words, it would make the fluid less dense and
as a result the fluid velocity jumps up. Thus, the larger the values of non-Newtonian parameter, the
greater the motion of thin film.

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4
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8

η

f
' (
η
) γ1 = 0.7

γ1= 0.5

γ1= 0.3

γ1= 0.1

Figure 5. Impact of γ1 on f
′
(η), when Gm = 0.8, β = 0.9, St = 0.3, Gr = 0.7, M = 0.7.

Figure 6 illustrates the relation between Grashof parameter Gr and the profile of the velocity. Here
Gr shows the characteristics of buoyancy forces, which offers a favorable behavior for the velocity
profile. Physically, Grashof number Gr is the ratio of the buoyancy force to the viscous force. Increasing
values of the buoyancy forces cause the decrease of the viscous forces, which as a result producing
faster motion. In summary, the increasing values of Gr causes a rapid increase in the velocity profile.
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Figure 6. Impact of Gr on f
′
(η), for γ1 = 0.4, β = 0.6, St = 0.5, Gm = 0.8, M = 0.7.

Figure 7 illustrates the variation of the magnetic parameter M over the velocity profile. Since the
magnetic parameter is applied horizontally to the surface on which the nanofluid flows, so an increase
in the magnetic parameter would increase the strength of the magnetic field that create bending on the
surface of the plate. This bending causes the decline of the velocity profile, but does nothing to the
magnitude. In short, with the increasing values of the magnetic parameter M, a decrease is observed
in the velocity profile.
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η
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Figure 7. Impact of M on f
′
(η), for γ1 = 0.2, β = 0.6, St = 0.6, Gr = 0.5, Gm = 0.8.

7.2. Temperature Profile

The effect of thermal radiations Rd on θ(η) is discussed in Figure 8. The figure reveals an inverse
relationship between the thermal radiation parameter Rd and the temperature profile. For higher
values of Rd a rapid decrease can be observed in the profile of the temperature and vice versa.
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Figure 8. Impact of Rd on θ(η), for β = 0.1, St = 0.1, Nt = 0.6, Nb = 0.5.

Figure 9 reveals the impact on the temperature profile of the thermophoresis parameter Nt.
The limitations on thermophoresis helps in the increase of a surface temperature. The irregularity
in motion (Brownian motion) causes a temperature increase due to the kinetic energy produced by
nano-suspended particles; consequently, a thermophoretic force is produced. The fluid starts in the
opposite direction of the stretching sheet, due to the intensity produced by this force. As a result, larger
values of Nt cause an increase in temperature, due to which the surface temperature also increases.
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η
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Figure 9. Impact of Nt on θ(η), for β = 0.1, St = 0.1, Rd = 0.2, Nb = 0.3.

Figure 10 demonstrates the effect on the profile of a heat θ(η) of the unsteadiness parameter St.
It is observed that θ(η) directly varies with unsteadiness parameter St. The higher numbers of the
unsteadiness parameter St increases the temperature, which further causes increase in the kinetic
energy of the fluid, the result of which appears in the form of increase in the liquid film.



Processes 2019, 7, 262 16 of 29

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

η

θ
(η
) St= 0.4

St= 0.3

St= 0.2

St= 0.1

Figure 10. Impact of St on θ(η), for β = 0.1, Nt = 0.8, Rd = 0.2, Nb = 0.5.

The impact of thin film thickness β on temperature for different values of the embedded parameter
is presented in Figure 11. Since the thickness parameter is the function of the kinematic viscosity and
fluid thickness, so an increase in β would increase the viscosity, which further causes the decline of the
temperature profile. Thus, for larger values of β, the profile of the temperature falls. The same effect
can be seen in the profile of the velocity for β.
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η

θ
(η
) β= 0.4

β= 0.3
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β= 0.1

Figure 11. Impact of β on θ(η), for St = 0.1, Nt = 0.5, Rd = 0.6, Nb = 0.5.

Figure 12 illustrates the temperature distribution under Brownian motion parameter Nb.
In general, due to the irregular motion of particles, a collision is produced between the particles.
The figure shows that an increase in heat of the fluid can be observed with the ascending order of the
Brownian motion parameter, Nb; consequently, free surface nanoparticle volume friction decreases.
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Figure 12. Impact of Nb on θ(η), for St = 0.2, Nt = 0.6, Rd = 0.2, β = 0.1.

7.3. Concentration Profile

Figure 13 illustrates the effects on concentration profile φ(η) of the Brownian motion parameter
Nb. The irregularity and turbulence in the motion of the fluid particles is normally known as Brownian
motion. At molecular level, Brownian motion of micropolar nanofluid leads to the thermal conductivity
of nanofluids. The figure illustrates the increase in Nb in the form of a decline in the profile of the
concentration. The boundary-layer thicknesses diminish due to the larger values of Brownian motion,
which results in reduction of the concentration profile.
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η
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) Nb= 1.2
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Figure 13. Impact of Nb on φ(η), for St = 0.1, Nt = 0.1, Sc = 0.5, and β = 0.5.

Figure 14 shows the concentration profile φ(η) behavior, under the effect of the unsteadiness
parameter St. A direct relation can be observed between the unsteadiness parameter St and the
concentration profile φ(η). Higher values of the unsteadiness parameter St increases the profile
of temperature that blows the kinetic energy of the fluid, which further causes an increase in the
concentration of the liquid film.
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Figure 14. Impact of St on φ(η), for Nt = 0.1, Nb = 1.2, Sc = 0.5, and β = 0.9.

Figure 15 illustrates the effect on concentration field of the thermophoresis parameter Nt.
The figure demonstrates that the concentration profile rises due to an increase in Nt. This is because
of higher values of Nt increase the nanofluid molecule kinetic energy, as a result of which the
concentration increases.
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Figure 15. Impact of Nt on φ(η), when St = 0.1, Sc = 0.5, Nb = 1.2, β = 0.9.

Figure 16 illustrates the thin film thickness β effect on φ(η) for different values of the embedded
parameters. The thickness parameter is inversely related to the kinematic viscosity; we know that
kinematic viscosity is inversely proportional to the density of the fluid, so increasing the thickness
parameter β causes the decline of the concentration profile. Thus, it is obvious that the concentration
profile falls with higher numbers of β. The same effect was observed for β in the velocity distribution
as well as in temperature distribution.
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Figure 16. Impact of β on φ(η), when Nt = 0.1, Nb = 0.3, Sc = 0.3, St = 0.1.

Figure 17 demonstrates the opposite information as discussed in the temperature distribution
under different parameters. The diagram shows that with increasing values of Schmidt number Sc, the
concentration profile decreases, consequently reducing the thickness of the boundary-layer.
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Figure 17. Impact of Sc on φ(η), for Nt = 0.1, Nb = 0.3, β = 0.9, St = 0.1.

7.4. Entropy Profile

The diagram reflects the variations of Brinkman number Br verses Bejan number Be. It is observed
that with increasing values of Br the Bejan number Be declines. There is no variation in the Bejan
number, and it remains constant up to 0.8 for the values of η in decreasing order for different values of
the Brinkman number. Large variations are observed for smaller values of η as we increase the values
of Brinkman number.

Figure 18 illustrates the variations in Bejan number under dissimilar values of the magnetic
parameter M. It is clear from the figure that for larger values of M, the Bejan number boots up. Similar
variations are observed for Brinkman number in Figure 19. The variations here are constant for smaller
values of the magnetic parameter in the range of 0.85 < η ≤ 1.0. Large variations are investigated for
greater values of the magnetic parameter in the range of 0.0 < η ≤ 0.2.
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Figure 18. Deviations in Bejan number Be for dissimilar numbers of M, when Br = 0.1, Re = 0.7,
Rd = 0.6, and Pr = 0.6.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

η

B
e
(η
) Br= 0.4

Br= 0.3

Br= 0.2

Br= 0.1

Figure 19. Variations in Be for dissimilar values of Br, when M = 0.1, Re = 0.7, Rd = 0.6, and Pr = 0.6.

Figure 20 illustrates the effect of Reynolds number on NG(η). For greater values of Re the entropy
regime increases. Consequently, Reynolds number and entropy function variates directly. From the
graph it is clear that for large values of η the variations in entropy remains constant, while this variation
jumps up for large values of the Reynolds number in the range of 0.0 ≤ η ≤ 0.4.
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Figure 20. Variations in the function of entropy NG(η) for dissimilar values of Re, when Br = 0.1,
Rd = 0.6, M = 1.3.
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Figure 21 demonstrates the variations in entropy number with the variations in Prandtl number
Pr. The figure demonstrates that for larger values of the Prandtl number Pr, the temperature profile
rises, and consequently, the entropy function boots up. The variations in the entropy function jumps
up throughout inside the interval 0.0 ≤ η ≤ 1.0. The increasing values of the Prandtl number increases
the entropy function exponentially.
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Figure 21. Variations in the function of entropy NG(η) for unlike values of Pr, when Br = 0.3, Re = 0.7,
Rd = 0.7 and M = 0.9.

Figure 22 demonstrates the variations of magnetic parameter on the entropy function NG(η).
It is clear from the figure that for larger numbers of M, the entropy function reduces, because the
Lorentz force in the magnetic field produces the resistance strength. These variations in the entropy
function exist in the range of 0.0 ≤ η ≤ 0.65 for larger values of the magnetic parameter, and remains
constant elsewhere.
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Figure 22. Variations in the function of entropy NG(η) for unlike values of M, when Br = 0.3, Re = 0.7,
Rd = 0.7 and Pr = 1.2.

Figure 23 demonstrates the effect of Brickman number Br on the generation function of entropy
generation NG(η). Figure shows that for larger numbers of the Brickman number NG(η) increases.
Viscous dissipation produces heat, which as a result raises the generation of entropy due to the lower
conduction rate. The figure demonstrates that the variation in the entropy function remains constant
between 0.64 < η ≤ 1.0, while an increasing tendency is observed for large values of the Brinkman
number elsewhere.
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Figure 23. Variations in the function of entropy NG(η) for unlike values of Br, when M = 0.7, Re = 0.6,
Rd = 0.8 and Pr = 1.5.

7.5. Table Discussion

The influence of different parameters is demonstrated in Tables 2–4. Table 2 explains the effect
on skin friction of M, Gr, β, and St. The skin-friction coefficient shows a rapid increase, with larger
numbers of the unsteady parameter St, while for large values of the magnetic parameter M the Nusselt
number decreases. On the other hand, larger values of the Grashof number Gr and thickness parameter
β cause the decline of the skin-friction coefficient. Physically, Grashof number arises in the natural
convection due to density difference. Viscous forces are also the functions of dependence of the Grashof
number. Increasing the viscosity coefficient causes a decrease in the Grashof number. Therefore, as a
result, the increasing values reduce the skin friction.

Table 3 reveals the effect on Nu of the parameters M, St, β, and Pr. It is noted that the larger
the values of M (magnetic parameter), and the unsteadiness parameter St, the smaller the Nusselt
number Nu. On the other hand, the Nusselt number Nu increases with larger values of unsteadiness
parameter St and thickness parameter β. The increasing values of the Prandtl number decreases Nu.

The effects of Brownian motion Nb, thermophoretic parameter Nt, Schmidt number Sc, Prandlt
Pr, and unsteadiness parameter St on Sherwood number are demonstrated in Table 4. It is clear that
the increasing values of the thermophoretic parameter increases the Sherwood number. An inverse
relation is observed between the Schmidt number and Sherwood number. The same phenomenon
appears in observations for the unsteady parameter St and Prandtl number Pr for the Sherwood
number in the form of decline. The larger values of the Prandtl number show an exponential decline
in the Sherwood number.

Table 2. Variation in skin-friction coefficent, under dissimilar values of M, Gr, β and St.

M Gr β St C f

0.1 0.5 0.1 1.5 −0.1708
0.5 −0.2034
1.0 −0.2460
1.5 0.1 −0.1776

0.5 −0.1708
1.0 −0.1708
1.5 0.1 0.3434

0.5 0.7463
1.0 −6.9860
1.5 0.1 −1.8672

0.5 −0.2217
1.0 −0.1320
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Table 3. For dissimilar values of Pr, M, Rd and St variations in Nu (Nusselt Number).

M β St Pr Nu

0.1 0.1 1.5 1.5 0.3523
0.5 0.3521
1.0 0.3519
1.5 0.1 0.3523

0.5 1.5145
1.0 2.2616
1.5 0.1 1.6248

0.5 0.2284
1.0 0.2904
1.5 1.5 0.3523

3.0 0.3243
5.0 0.3087
7.0 0.3012

Table 4. For dissimilar values of Nb, Nt, Sc, Pr, and St, variations in Sherwood Number.

Nb Nt Sc St Pr Sh

0.1 0.5 0.1 1.5 1.5 −1.3582
0.5 −0.2388
1.0 −0.0988
1.5 0.1 0.0223

0.5 −1.3582
1.0 −2.7537
1.5 0.1 −4.1455

0.5 −3.9667
1.0 −3.7453
1.5 0.1 −1.8105

0.5 −2.3059
1.0 −2.9193
1.5 1.5 −3.5263

3.0 −5.6130
5.0 −6.7706
7.0 −7.3323

8. Conclusions

These reconsideration efforts are worthy enough to categorize the enhancement in heat
transfer and thermal conductivity of non-Newtonian fluid with nanoparticle conductive properties.
The velocity profile shows an increase with increasing value of the unsteadiness parameter St, while
the increasing values of the magnetic parameter causes the decline of the velocity profile of the
nanofluid film. It is shown that the coefficient of skin friction rises with the larger rates of the magnetic
parameter M and the unsteadiness parameter St; on the other hand, the coefficient of skin friction
decreases with higher values of the stretching and thickness parameters. The temperature profile
shows a direct variation with Brownian motion parameter. The thermal boundary-layer thickness
decreases with increasing values of the of Sc. Nusselt number with increasing values of the radiation
parameter increases. The surface temperature of the fluid increases with increasing values of Prandtl
number, while an opposite tendency is observed with larger values of the unsteady parameter on the
temperature profile. Similar results are investigated for the temperature profile with the variation of the
thermophoresis parameter. The mass flux shows a decline with higher numbers of the Brownian motion
parameter, while an opposite trend is experienced for the thermophoretic parameter. The implemented
technique convergence is shown numerically for the validation of our technique.

Author Contributions: A.U., Z.S. and S.I. modeled the problem and wrote the manuscript. P.K. and M.A.
thoroughly checked the mathematical modeling and English corrections. M.J. and A.U. solved the problem using



Processes 2019, 7, 262 24 of 29

Mathematica software, and P.K., Z.S., M.J., and M.A. contributed to the results and discussions. All authors
finalized the manuscript after its internal evaluation.

Funding: This research was funded by the Center of Excellence in Theoretical and Computational Science
(TaCS-CoE), KMUTT.

Acknowledgments: This project was supported by the Theoretical and Computational Science (TaCS) Center
under Computational and Applied Science for Smart Innovation Research Cluster (CLASSIC), Faculty of
Science, KMUTT.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations and parameters with their possible dimensions stated here are used in this article:

Sh Sherwood number
β Film thickness parameter
Nu Nusselt number
St Unsteady parameter
Re Reynolds number
Pr Prandtl number
ζ Stretching parameter
Sc Schmidt number
Uw Stretching velocity ( m

sec )
Nt Thermophoretic parameter
C f Skin-friction coefficient
Nb Brownian motion parameter
T Cauchy stress tensor
T Fluid temperature (K)
I Identity tensor
υ Kinematic viscosity m2

sec
ρ Density (

Kg
m3 )

µ Dynamic viscosity mPa
cp Specific heat ( J

KgK )

h(t) Thickness of liquid
Qw Heat Flux ( W

m2 )
Jw Mass flux (

Kg
sec.m2 )

f Dimensionless velocity
∞ Condition at infinity
0 Reference condition
ũ Velocity component in x−direction ( m

sec )

ṽ Velocity component in y−direction ( m
sec )

x, y, z Coordinates (m)

η Similarity variable
t Time (sec)
ω Frequency parameter
A1, and A2 Revilin Erickson Tensor
E Electric Field
α Non-Newtonian Parameter
u0 Magnetic Permeability
α1 and α2 Material constants
Gm Mixing parameter
σ Electric conductivity
J Current density
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