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Abstract: The constraint-based rMeCBM-KU50 model of cassava storage root growth was analyzed to
evaluate its sensitivity, with respect to reaction flux distribution and storage root growth rate, to changes
in model inputted data and constraints, including sucrose uptake rate-related data—photosynthetic
rate, total leaf area, total photosynthetic rate, storage root dry weight, and biomass function-related
data. These mainly varied within ±90% of the model default values, although exceptions were
made for the carbohydrate (−90% to 8%) and starch (−90% to 9%) contents. The results indicated
that the predicted storage root growth rate was highly affected by specific sucrose uptake rates
through the total photosynthetic rate and storage root dry weight variations; whereas the carbon
flux distribution, direction and partitioning inclusive, was more sensitive to the variation in biomass
content, particularly the carbohydrate content. This study showed that the specific sucrose uptake rate
based on the total photosynthetic rate, storage root dry weight, and carbohydrate content were critical
to the constraint-based metabolic modeling and deepened our understanding of the input–output
relationship—specifically regarding the rMeCBM-KU50 model—providing a valuable platform for
the modeling of plant metabolic systems, especially long-growing crops.

Keywords: biomass components; biomass function; carbon flux prediction; cassava storage root
model; constraint-based modeling; long-growing crop; model sensitivity; rMeCBM model; specific
storage root growth rate; specific sucrose uptake rate

1. Introduction

The complexity of plant metabolism hinders experimental studies to unravel the fate of metabolic
substrates derivation for biomass production, and it is even harder to unwind the underlying regulations.
As multicellular organisms, plants are composed of cells with several subcellular compartments,
defined as organelles; as a result, metabolic processes are fragmented into parts that are exposed to
heterogeneous surrounding environments [1]. A constraint-based modeling (CBM) approach with
flux balance analysis (FBA) was employed to deepen the understanding of plant metabolism through
simulation. The CBM approach enables the study of biological systems and characterization of
metabolic network behavior by flux analysis under steady-state assumptions, integrating biochemical,
genetic, and genomic information [2]. Constraints and the biomass objective function, which are
the heart of the CBM approach for identifying biologically relevant flux solutions, were established
based on organism-specific and/or condition-specific experimental measurements [3–7]. In case of
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lacking particular information, the constraints and biomass compositions were usually deduced from
data closely related to the supposed values in the studied organism [8,9]. The CBM approach has
been hugely successful in the study of microorganisms including bacteria, yeast, and mold [10–17].
The genome-scale CBM of Arabidopsis [18], the first for plants, was introduced to simulate the simplified
central metabolism of Arabidopsis to produce cellular biomass. Later, the compartmentalized Arabidopsis
model, AraGEM, was proposed to provide a more realistic simulation of the metabolism, and it was
able to predict the classical photorespiratory cycle and to differentiate metabolic fluxes between redox
metabolism in photosynthetic and non-photosynthetic plant cells [19]. Ever since, CBM has been used
to study biomass yield under varying environmental pressure (i.e., photosynthesis, photorespiration,
and respiration conditions), in Zea mays [20], to elucidate the metabolism underlying seed growth
toward oil accumulation in rapeseed (Brassica napus) [21], and to simulate the response of central
metabolism of rice seedlings under flooding and drought stresses [3].

Notwithstanding the advantages of the CBM approach, collection of experimental
measurements—such as [14C] sucrose-labeling for the determination of sucrose uptake rate [22],
cell suspension or plant cultivation for measuring carbon uptake, biomass compositions, and plant
growth rates [3–7,18]—required for the construction of a robust model that well-represents cellular
complexity can be time-consuming and tedious. In addition, there are up to 94 steps between model
conceptualization and drafting and its completion, some of which include iterative manual curation,
mathematical conversion, and programming [23,24]. There are also the challenges of poor annotation
of plant genome, incomplete biochemical reactions to describe the entire metabolism, the lack of
background knowledge to address the precise constraints [25], difficulties with quantifying the cell
maintenance costs [26], and limited information to develop fully-represented biomass reactions [9,25,27],
along with the issue of metabolite transportation between cellular compartments [24]. To minimize
the time and efforts for model development, the influences of the experimental measurements
and constraints on CBM prediction were studied, as recent findings have indicated that only
some of them—which were mainly related to substrate uptake rate, biomass function, and growth
rate—impacted the prediction considerably [26,28–32]. For example, the lipid content of the biomass had
an immense effect on the predicted carbon flux distribution in rapeseed (Brassica napus) [28], whereas,
cellular maintenance costs showed a greater influence on the flux prediction than biomass compositions
during the growth of Escherichia coli under aerobic glucose-limited conditions [29]. The study in the
Arabidopsis model showed that the predicted flux distribution in central metabolism was sensitive to
ATP and reductant costs of cell maintenance [26], but not related to biomass compositions [30].

Cassava is very rich in carbohydrate [33] and research has sought to increase its storage root yield.
Carbon metabolism in cassava in poorly understood in comparison with other major staple crops such
as rice. The long growing cycle of 9–24 months possesses a major challenge [34], hampering both
experimental work and modeling studies. The first CBM of cassava storage roots, rMeCBM-KU50 [4],
published this year, took at least 3–4 years to completion for all data on plant growth, sucrose
uptake rate, and cellular biomass compositions to be generated. The rMeCBM-KU50 model was
used to study carbon assimilation during starch filling in the storage roots. Accordingly, we herein
present an approach to enhance the utilization of the available CBM model of cassava storage roots,
rMeCBM-KU50, for more extensive applications based on the model assessment. First, the sensitivity
of metabolic flux prediction to model inputted data (experimental measurements and constraints) in
the rMeCBM-KU50 model was studied. The observed values were (i) substrate–uptake related (sucrose
uptake)—i.e., photosynthetic rate, total leaf area, storage root dry weight, and total photosynthetic
rate—and (ii) biomass function-related. The results indicated that changes in the specific sucrose
uptake rate due to variation in the measured physiological characteristics of plants significantly
impacted the simulated growth rate of cassava storage roots, but had relatively little effect on carbon
flux prediction. In contrast, biomass compositions, especially carbohydrate content, greatly affected
simulated metabolic flux distribution. The rationale is not only limited to the demonstrated model, but
is also applicable to a broad range of models available in the literature. This study provides a platform
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for the development of plant metabolic models and deepens our understanding of flux partitioning
and its sensitivity to model data, demonstrating that the latter could be exploited to shorten the model
construction process.

2. Materials and Methods

2.1. The rMeCBM-KU50 Model

The rMeCBM-KU50 model is a constraint-based metabolic model of carbon assimilation in cassava
storage roots. It was originally developed to simulate metabolism during starch accumulation in
the storage roots of Kasetsart 50 (KU50), a high starch-yielding cultivar that is widely grown in
Southeast Asia [4]. The rMeCBM-KU50 model is composed of 468 reactions related to 393 metabolites,
which are partitioned into 3 subcellular compartments, i.e., the cytosol, mitochondria, and plastid.
The details of the rMeCBM-KU50 model (i.e., reactions, metabolites, and biomass function) can be
found in the supplementary information of the study by Chiewchankaset et al. [4]. The rMeCBM-KU50
model successfully mimicked the measured storage root growth rate of KU50 cultivar, using the
pre-determined specific sucrose uptake rate of 0.0548 mmolsucrose gDW−1

SRs day−1, calculated based
on the photosynthetic capacity (Equation (1)), and biomass components (92.07% carbohydrates, 5.78%
proteins, 1.69% fibers, and 0.45% lipid, on dry weight basis). The optimal growth-associated ATP
maintenance (SGAM) of the rMeCBM-KU50 model was 9.8 mmolATP gDW−1

SRs [4].

Speci f ic sucrose uptake rate
(
mmolsucrosegDW−1

SRsday−1
)
=

PN × LA× F× 7.2
SRDW

(1)

PN is photosynthetic rate (µmolCO2 m−2 s−1), LA is total leaf area per plant (m2), SRDW is the dry
weight of cassava storage roots (g), F (= 0.37) is a faction of photosynthetic sucrose translocated to the
root of the cassava—estimated based upon the proportion of sucrose to the total soluble carbohydrates
in shoot and root parts on the dry weight basis [4]—and 7.2 is the constant value for unit conversion.

2.2. Model Sensitivity Analysis

The sensitivity of the inputted data for the rMeCBM-KU50 model was investigated through a
simple perturbation and response method, similarly to other various model analysis studies, including
constraint-based metabolic models [26,28–32]. The individual inputted data were systematically varied
throughout their range of feasible values, while observing the alteration of the simulation from the
default prediction. The impacts of the experimental measurements and constraints on the model
simulation were assessed based upon the simulated storage root growth rates and the predicted carbon
fluxes, as demonstrated in Figure 1. Two groups of model data were investigated, consisting of (i)
substrate–uptake related data (the specific sucrose uptake rate, photosynthetic rate, total leaf area,
storage root dry weight, and total photosynthetic rate), and (ii) biomass function-related data (the
composition of biomass components), as shown in Figure 1a,b, respectively. The values of these
model data were thoroughly varied within ±90% the range of the original values [4], to cover a full
range excluding carbohydrate and starch contents. The carbohydrate and starch contents, respectively,
were varied in the ranges of −90% to 8% and −90% to 9% to ensure positive values (see details in
Supplementary Materials File S1).
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Figure 1. Overall framework of rMeCBM-KU50 model assessment to changes of (a) substrate–uptake related data (i.e., the specific sucrose uptake rate, 
photosynthetic rate, total leaf area, storage root dry weight, and total photosynthetic rate) and (b) the biomass function-related data (i.e., composition of biomass 
components). Each data variation, the sensitivity analysis of model prediction examined the changes in the predicted growth rate, as well as the changes of metabolic 
flux direction and partitioning. Inactive fluxes refer to zero-flux reactions (gray arrows). Active fluxes refer to non-zero flux reactions (black arrows—with 
unchanged direction; and red arrows—with changed direction). The thickness of the arrows indicates the flux magnitude. 

 

Figure 1. Overall framework of rMeCBM-KU50 model assessment to changes of (a) substrate–uptake related data (i.e., the specific sucrose uptake rate, photosynthetic
rate, total leaf area, storage root dry weight, and total photosynthetic rate) and (b) the biomass function-related data (i.e., composition of biomass components). Each
data variation, the sensitivity analysis of model prediction examined the changes in the predicted growth rate, as well as the changes of metabolic flux direction and
partitioning. Inactive fluxes refer to zero-flux reactions (gray arrows). Active fluxes refer to non-zero flux reactions (black arrows—with unchanged direction; and red
arrows—with changed direction). The thickness of the arrows indicates the flux magnitude.
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For each group of data, the sensitivity on model prediction was assessed based upon the simulated
storage root growth rate (Figure 1, left panel) and the predicted metabolic fluxes (Figure 1, right panel).
The sensitivity of the simulated growth rate (Figure 1, left panel) was determined by the percentage of
changes, as shown in Equation (2).

ε (%) =
vv − vo

vo
× 100 (2)

where ε is the percentage of changes of the simulated specific storage root growth rate (vv) from the
default prediction (vo).

The sensitivity of the predicted metabolic fluxes (Figure 1, right panel) was evaluated both upon the
changes in direction of individual flux, and upon flux partitioning at each metabolic branch point where
a metabolite was converted into a product by multiple reactions (production and consumption reaction
fluxes) [35]. The percentage of production and consumption reaction flux partitioning was calculated
and, respectively, denoted as positive and negative signs in this study. The details of the metabolic
branch points of the rMeCBM-KU50 model are provided in the Supplementary Materials (File S2).
The percentage of data variation, where the direction and/or partitioning of each predicted reaction flux
began to deviate from the original prediction, was denoted here as a breakpoint. All simulations were
performed using the COBRA Toolbox 2.0.5 [36] in MATLAB (The MathWorks, Inc., version R2015a,
Natick, MA, USA).

3. Results

The sensitivity of a prediction to variances in model input data determines the capability of
the model to simulate real systems. Hence, the quality of the experimental measurements and
constraints used for the prediction is critical to the reliability of the predictions. Accordingly, the
rMeCBM-KU50 model was evaluated according to the sensitivity of predicted results, based upon
(i) substrate–uptake related data (i.e., the specific sucrose uptake rate, photosynthetic rate, total leaf
area, storage root dry weight, and total photosynthetic rate), and (ii) biomass function-related data
(i.e., the compositional ratios of biomass components). The values for the observed input data were
systematically varied within a ±90% range of default experimentally determined optimal values for
cassava storage root growth [4] to ascertain the model sensitivity, considering values that have been
reported for cassava [37–44].

3.1. The Impacts of Substrate–Uptake Related Data on Model Prediction

The rMeCBM-KU50 model primarily utilizes sucrose as the main carbon substrate to simulate
the growth of cassava storage roots. The specific sucrose uptake rate employed in the model was
calculated from experimentally determined data on the photosynthetic rate, total leaf area, and storage
root dry weight of cassava. Details of the range of values used for the sensitivity analysis, with respect
to sucrose uptake related data, are shown in Table 1.

Results for specific sucrose uptake rates are shown in Figure 2. The photosynthetic rate, total
leaf area, and total photosynthetic rate were positively related to the specific sucrose uptake rates,
in contrast to storage root dry weight (Figure 2a). The specific sucrose uptake rate was mostly affected
by the storage root dry weight—changing by approximately +850% and −50% of the original value
at SRDW of −90% and +90%, respectively—followed by the total photosynthetic rate (Figure 2b).
The photosynthetic rate and total leaf area both showed little effects.
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Table 1. The range of the substrate–uptake rate-related data in the rMeCBM-KU50 model.

Model Input Data Original Values a Range of Values in Sensitivity Analysis b

Specific sucrose uptake rate
(mmolsucrose gDW−1

SRs day−1) 0.0548 0.0005–0.5400 d

Photosynthetic rate
(µmolCO2 m−2 s−1) 16.08 1.61–30.55

Total leaf area
(m2) 1.63 0.16–3.10

Storage root dry weight
(kgDW) 1.28 0.13–2.43

Total photosynthetic rate
(µmolCO2 s−1) 26.21 0.26–94.91 c

a The values published with rMeCBM-KU50 model [4]. b The range of data variation within ± 90% of the original
value in the rMeCBM-KU50 model. c The total photosynthetic rate was the product of the total leaf area and
photosynthetic rate. d The specific sucrose uptake rate was the product of the total leaf area and photosynthetic rate
divided by storage root dry weight.Processes 2019, 7, 259 8 of 37 

 

 
Figure 2. Model sensitivity to changes in the photosynthetic rate, total leaf area, storage root dry 
weight, and total photosynthetic rate, regarding (a) specific sucrose uptake rate and (b) percent 
variation in the specific sucrose uptake rate compared to the original value. The black dashed line 
denotes the original value of the specific sucrose uptake rate. The red circle denotes the breakpoint, 
where the predicted carbon flux direction and partitioning differed from the original values in the 
rMeCBM-KU50 model. 
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Figure 2. Model sensitivity to changes in the photosynthetic rate, total leaf area, storage root dry weight,
and total photosynthetic rate, regarding (a) specific sucrose uptake rate and (b) percent variation in the
specific sucrose uptake rate compared to the original value. The black dashed line denotes the original
value of the specific sucrose uptake rate. The red circle denotes the breakpoint, where the predicted
carbon flux direction and partitioning differed from the original values in the rMeCBM-KU50 model.
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The sensitivity of the model—regarding the specific storage root growth rate prediction, to specific
sucrose uptake rate—was analyzed based on changes to the photosynthetic rate, total leaf area, total
photosynthetic rate, and storage root dry weight (Figure 3). The experimentally derived values used as
the baseline for evaluating the sensitivity of the model are marked as red crosses, and the gray areas on
the left panel represent the range of possible values, based on the literature. The results showed a linear,
positive response between the predicted specific storage root growth rate and the specific sucrose
uptake rate—in relation to variations in photosynthetic rate, total leaf area, and total photosynthetic
rate—but that for storage root dry weight was nonlinear (Figure 3a–d). Moreover, it was found that
the sensitivity of the predicted growth rate to specific sucrose uptake rate in relation to variations
in total photosynthetic rate was multiplicative to the effect of the individual dependent factors (i.e.,
the variations in photosynthetic rate and total leaf area). The percent error of predicting the specific
storage root growth rate from the specific sucrose uptake rate by varying the photosynthetic rate and
total leaf area to within ±90% of the original values ranged from +90% to −88.89%, while that for total
photosynthetic rate ranged from +260% to −97.78%, and storage root dry weight ranged from −46.67%
to +880% (Figure A1a in Appendix A). Thus, the storage root dry weight and total photosynthetic rate
were considered important data for determining the specific storage root growth rate.

The sensitivity study covered the entire range of expected values in cassava. The photosynthetic
rate was varied from 13 to 35 µmolCO2 m−2 s−1 to represent values that have been reported under
different growth and environmental conditions. Cassava photosynthetic rates of 13–24 µmolCO2 m−2

s−1 and 20–35 µmolCO2 m−2 s−1 are typical under greenhouse or growth chamber conditions [39,40]
and field conditions [41], respectively. The total leaf area of cassava is around 1.24–3.38 m2 depending
on variety, shade level, water availability, temperature, and plant age [38,42]. The average storage root
dry weight of cassava, based on over 100 cultivars, under rain-fed field conditions, ranges from 0.01 to
1.40 kg plant−1 [43]. This range supported the representativeness of the rMeCBM-KU50 model for
mimicking the metabolism of cassava storage roots, as derived by proper model data (marked as red
crosses in Figure 3).

To analyze the sensitivity of carbon flux distribution to changes in the specific sucrose uptake
rate, the direction and partitioning of the carbon flux were examined. Details of the flux direction
and partitioning are provided in Figures A2–A5 and Figures A6–A8 in Appendix A, respectively (see
the details in Supplementary Materials File S3–S4). The flux direction was identical for all the model
variables analyzed, as indicated by the blue-colored active fluxes with unchanged direction. Also,
analysis of the flux partitioning revealed the variable data considered were largely comparable, except
for the total photosynthetic rate from −60% variation downward, when the flux partitioning became
different from the original value (corresponding to a decrease in the specific sucrose uptake rate of
84%), herein referred to as the breakpoint (Figures 2b and A6 in Appendix A). These results indicated
that the carbon flux prediction was relatively robust to changes in the specific sucrose uptake rate.
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Figure 3. The sensitivity of the predicted specific storage root growth rates to specific sucrose uptake 
rates (right panel), calculated by varying (a) the photosynthetic rate, (b) total leaf area, (c) total 
photosynthetic rate, and (d) storage root dry weight (left panel) within ±90% of the original values. 
Red crosses denote experimentally derived, original model default values, while the areas highlighted 
in gray indicate the range of possible values reported in the literature [37–43]. 
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Figure 3. The sensitivity of the predicted specific storage root growth rates to specific sucrose uptake
rates (right panel), calculated by varying (a) the photosynthetic rate, (b) total leaf area, (c) total
photosynthetic rate, and (d) storage root dry weight (left panel) within ±90% of the original values.
Red crosses denote experimentally derived, original model default values, while the areas highlighted
in gray indicate the range of possible values reported in the literature [37–43].
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3.2. The Impacts of Biomass Function-Related Data on Model Prediction

The biomass function is typically integrated into the model as an objective function, which is
used to draw resources from the metabolic network and define cellular components along with their
functions [27]. The default biomass function in the rMeCBM-KU50 model was retrieved from literature
and consisted of carbohydrates, proteins, fibers, and lipids. Cassava comprises mainly of starch, which
could account for up to 90% of the storage root dry weight, depending on variety, growth condition,
and age [45]. Therefore, we sought to determine if the starch content could solely be used to define the
biomass characteristics of the cassava storage root model. The sensitivity of the model prediction was
analyzed by varying the total carbohydrate, starch, protein, fiber, and lipid compositions (Table 2).

Table 2. Details of biomass function used for the rMeCBM-KU50 model and sensitivity analysis.

Model Input Data Original Values a Range of Values in Sensitivity Analysis b

Carbohydrates 92.07 9.21–99.44
Starch 84.06 8.41–91.62

Proteins 5.78 0.58–10.99
Fibers 1.69 0.17–3.22
Lipid 0.45 0.05–0.86

a Default biomass compositions in the rMeCBM-KU50 model [4]. b The range of values within ±90% of the original
values in rMeCBM-KU50 used for the sensitivity analysis. Noted that ranges of −90% to 8%, and −90% to 9% were
used for carbohydrate and starch contents, respectively, to ensure positive values.

The prediction of the specific storage root growth rate was examined against the variation of
biomass components represented in Figure 4. The default storage root growth rate in the rMeCBM-KU50
model, marked as red crosses, were used as the baseline for sensitivity analysis. The results showed
that the predicted storage root growth rate was more robust to changes in biomass components
(Figure 4a–e) with a percent error of 18.89% (Figure A1b in Appendix A), in comparison to that of
specific sucrose uptake rate (800%; Figure A1a in Appendix A). The predicted storage root growth
rate increased as the carbohydrate and starch contents were increased, relative to the default values
(Figure 4a,d), but decreased as the protein content was increased (Figure 4c). Variations in the lipid
and fiber contents resulted in a minimal response (Figure 4b,e).

In contrast to the growth rate, the simulated carbon flux distribution was sensitive to the
composition of biomass components. The biomass components-related variation in flux distribution
could be inferred from the positions of their breakpoints (red circles in Figure 4) relative to the default
values. The flux distribution was greatly influenced by the carbohydrate content with a decrease
of 1% and an increase of 4%, relative to the default value, resulting in changes in flux distribution.
The protein, fiber, lipid, and starch contents had less effect on the predicted fluxes, retaining similar
predictions as the original values until a breakpoint of around −50%.

In addition, the impact of the biomass was studied, based on the direction of the individual
reaction fluxes and the partitioning of each metabolic branch point. The results suggested that the
direction of predicted fluxes was highly associated with the composition of biomass (Figures A9–A12
in Appendix A and Supplementary Materials File S5). The variations in the direction of metabolic
fluxes and breakpoints, due to changes in the biomass content, are shown in Figure 5. Each breakpoint
contained at least one reaction flux exhibiting a directional change relative to the default value,
highlighted in red. The differences in flux direction were found in similar reactions (red-colored areas
in the black-dashed rectangle; Figure 5) within the starch and sucrose biosynthesis pathway, pentose
phosphate pathway, and respiration pathway in cytosol and plastid, and amino acid biosynthesis
pathway in the cytosol.
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Figure 4. The predicted storage root growth rate of the rMeCBM-KU50 model with the varied biomass
function related data: (a) Carbohydrates, (b) lipids, (c) proteins, (d) starch, and (e) fibers. The biomass
content range used, highlighted in gray, was based on values reported for storage roots of several
cultivars [44]. A red circle denotes the breakpoint, where the flux direction or partitioning, obtained
by varying the biomass contents, differed from the original model. A red cross denotes the original
simulation of the rMeCBM-KU50 model.
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Figure 5. The influence of biomass compositions on the predicted flux direction of the rMeCBM-KU50
model. The reactions with zero flux predictions, inactive reactions, are denoted by white-colored bars.
The non-zero flux reactions, active reactions, consists of those with similar flux direction as the original
model—denoted by blue bars, and those that are dissimilar—denoted by red bars. AMI, amino acid
biosynthesis pathway; PPP, pentose phosphate pathway; RES, respiration pathway; SSP, starch and
sucrose biosynthesis pathway.
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Further analysis of the predicted flux partitioning showed that it was also highly influenced
by the changes in biomass contents (Figures 6 and A13–A15 in Appendix A, and Supplementary
Materials File S6). Reactions with a similar flux partitioning as the original model were color-coded
similarly, whereas, those indicating a breakpoint were color-coded differently (Figure 6). The results
indicated that the predicted flux direction and flux partitioning had similar sensitivity, as indicated
by the shared breakpoints (−1% and +4% for carbohydrates, −50% and +6% for proteins, −50% for
fibers, −60% for lipids, and −70% for starch). The metabolic fluxes in the plastid were more sensitive to
variations in biomass content than those in the cytosol. The sensitive reaction fluxes were primarily
found in the pentose phosphate pathway, followed by the starch and sucrose biosynthesis pathway.
D-xylulose-5-phosphate and D-erythrose-4-phosphate branch points in the pentose phosphate pathway
showed relatively high sensitivity, both in the cytosol and plastid compartments (Figure 6II,VI),
reflecting their primary role as metabolic precursors for energy balance [46]. Metabolic fluxes in
the starch and sucrose biosynthesis pathway in the cytosol were highly influenced by the protein
content (Figure 6I), whereas, carbohydrate-related biomass components were more important in the
plastid (Figure 6V). The starch and sucrose biosynthesis pathway and pentose phosphate pathway play
important roles in carbon utilization for storage root growth, as demonstrated by the rMeCBM-KU50
model [4].
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Figure 6. The influence of biomass content on flux partitioning by the rMeCBM-KU50 model.
The production and consumption fluxes at each metabolic branch point were respectively denoted as
positive and negative signs in the simulation. C, carbohydrate content; F, fiber content; L, lipid content;
P, protein content; S, starch content; AMI, amino acid biosynthesis pathway; PPP, pentose phosphate
pathway; RES, respiration pathway; SSP, starch and sucrose biosynthesis pathway.

4. Discussion

The constraint-based modeling approach has been adopted to help unravel the complexity of
plant metabolism. The reliability of this approach is very much dependent on the quality of data used
and its representativeness of real systems, among others. This study investigated the sensitivity of
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the rMeCBM-KU50 model to inputted data and constraints used for the prediction, which included
(i) specific sucrose uptake-related data (photosynthetic rate, total photosynthetic rate, total leaf area,
and storage root dry weight) and (ii) biomass function-related data. The results showed the specific
storage root growth rate was highly dependent on the specific sucrose uptake rate (Figure 3), whereas,
the carbon flux distribution was more sensitive to the proportion of biomass components (Figures 4–6).

Our analysis showed that the storage root dry weight and total photosynthetic rate had a
remarkable effect on the specific sucrose uptake rate and also, the specific storage root growth rate
prediction (Figure 3). The effects of the photosynthetic rate and total leaf area were comparatively
minimal, despite being important indicators of plant growth [47]. These results suggest storage root
dry weight and total photosynthetic rate can reliably be used to model the storage root growth rate in
cassava under different conditions, an approach, which if implemented could enable researchers to
channel limited resources and focus on the most relevant plant physiological traits in their quest to
understand plant systems.

The cellular biomass composition, which is the proportion of constituent macromolecular
compounds such as carbohydrates and proteins, is indicative of the metabolic products and perhaps,
more importantly, reflects the physiological conditions, among others, to which the cells are exposed.
An accurate representation of the biomass is, therefore, important for analyzing the metabolic flux [32].
Sensitivity analysis showed that the rMeCBM-KU50 model was more sensitive to variations in the
biomass function than it was to changes in the sucrose uptake-related data. The biomass content had a
greater effect on the metabolic flux prediction than the sucrose uptake-related data (Figures 3 and 4).
Also, the carbon flux prediction by the rMeCBM-KU50 model was most sensitive to the carbohydrate
content, which accounts for up to 90% of cassava storage roots biomass on a dry weight basis. Similar
observations were reported in the yeast model [31] and oilseed rape model [28]. The biomass of
yeast predominantly contains protein, 35–65% by weight [31], whereas, the main biomass component
of oilseed rape is oil mostly in the form of triacylglycerol, accounting for over 40% by weight [28].
However, the flux distribution in Arabidopsis remained unchanged when the biomass function was
varied, probably because the biomass components are more comparable [30].

Taken together, our study demonstrated that the rMeCBM-KU50 model is a well representative
model of carbon assimilation metabolism in cassava storage roots. The model was able to predict the
storage root growth rate under typical growing conditions (Figures 3 and 4), and showed sensitivity to
the specific sucrose uptake rate, total photosynthetic rate, storage root dry weight, and carbohydrate
content. Based on the findings, the specific sucrose uptake rate, carbohydrate content, and starch
content could reliably be used as the important data for model prediction and used as the guideline of
experimental design for model development.

5. Conclusions

A sensitivity analysis was performed to determine how sensitive the rMeCBM-KU50 model
is to changes in input data and constraints, enabling us to understand and quantify the impact of
the range of variables on the model outcome. By mostly varying the substrate uptake-related data
and biomass function within ±90% of the model default values, we aimed to better understand the
input–output relationship and identify variables that are most critical to the modeling process under
specific conditions, allowing for a focused, wider application of the model. The results showed the
total photosynthetic rate, storage root dry weight, and carbohydrate content had predominant impacts
on the rMeCBM-KU50 model. The predicted storage root growth rate was highly dependent on the
specific sucrose uptake rate through total photosynthetic rate, and storage root dry weight. The carbon
flux distribution, flux direction and flux partitioning, was most sensitive to changes in biomass content,
particularly carbohydrate, the major biochemical compound in cassava storage root.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/7/5/259/s1,
File S1: The model inputted data values of biomass function used for the sensitivity analysis in the rMeCBM-KU50
model, File S2: List of metabolic branch points and the involved reactions in the rMeCBM-KU50 model, File S3:
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The sensitivity of reaction flux direction to variations in sucrose uptake rate-related data, File S4: The sensitivity of
reaction flux partitioning (%) to variations in sucrose uptake rate-related data, File S5: The sensitivity of reaction
flux direction to variations in biomass function-related data, File S6: The sensitivity of reaction flux partitioning
(%) to variations in biomass function-related data.
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Figure A1. Sensitivity analysis of (a) variations in sucrose uptake rate-related data and (b) variations
of biomass function-related data to the predicted storage root growth rate of the rMeCBM-KU50 model.
(c) The percentage changes of predicted growth rate with respect to the original data. Each radar graph,
the radial axes is the error percentage of model simulation to measured storage root growth rate. LA;
total leaf area per plant; PN, photosynthetic rate; PN, total, total photosynthetic rate per plant; SRDW,
storage root dry weight per plant; C, carbohydrate content; F, fiber content; L, lipid content; P, protein
content; S, starch content.
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while those with dissimilar flux direction (breakpoint) are denoted by red grids. LA; total leaf area 
per plant; PN, photosynthetic rate; PN, total, total photosynthetic rate per plant; SRDW, storage root dry 
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Figure A2. The sensitivity of the cytosolic reaction flux direction to variations in sucrose uptake
rate-related data. Inactive reactions containing zero fluxes are denoted by white-colored grids. Active
reactions, non-zero fluxes, with similar flux direction as the original model are denoted by blue grids;
while those with dissimilar flux direction (breakpoint) are denoted by red grids. LA; total leaf area
per plant; PN, photosynthetic rate; PN, total, total photosynthetic rate per plant; SRDW, storage root
dry weight per plant; AMI, amino acid biosynthesis pathway; BIO, biomass reactions; CEL, cell wall
biosynthesis pathway; NUC, nucleotide biosynthesis pathway; PPP, pentose phosphate pathway; RES,
respiration pathway; SSP, starch and sucrose biosynthesis pathway.
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rate-related data. Inactive reactions containing zero fluxes are denoted by white-colored grids. Active 
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while those with dissimilar flux direction (breakpoint) are denoted by red grids. LA; total leaf area 
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Figure A3. The sensitivity of mitochondrial reaction flux direction to variations in the sucrose uptake
rate-related data. Inactive reactions containing zero fluxes are denoted by white-colored grids. Active
reactions, non-zero fluxes, with similar flux direction as the original model are denoted by blue grids;
while those with dissimilar flux direction (breakpoint) are denoted by red grids. LA; total leaf area
per plant; PN, photosynthetic rate; PN, total, total photosynthetic rate per plant; SRDW, storage root dry
weight per plant; AMI, amino acid biosynthesis pathway; NUC, nucleotide biosynthesis pathway; SSP,
starch and sucrose biosynthesis pathway.



Processes 2019, 7, 259 19 of 35
Processes 2019, 7, 259 21 of 37 

 

 
Figure A4. The sensitivity of the plastidial reaction flux direction to variations in the sucrose uptake 
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while those with dissimilar flux direction (breakpoint) are denoted by red grids. LA; total leaf area 
per plant; PN, photosynthetic rate; PN, total, total photosynthetic rate per plant; SRDW, storage root dry 
weight per plant; AMI, amino acid biosynthesis pathway; FAT, fatty acid biosynthesis pathway; NUC, 
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Figure A4. The sensitivity of the plastidial reaction flux direction to variations in the sucrose uptake
rate-related data. Inactive reactions containing zero fluxes are denoted by white-colored grids. Active
reactions, non-zero fluxes, with similar flux direction as the original model are denoted by blue grids;
while those with dissimilar flux direction (breakpoint) are denoted by red grids. LA; total leaf area
per plant; PN, photosynthetic rate; PN, total, total photosynthetic rate per plant; SRDW, storage root dry
weight per plant; AMI, amino acid biosynthesis pathway; FAT, fatty acid biosynthesis pathway; NUC,
nucleotide biosynthesis pathway; PPP, pentose phosphate pathway; RES, respiration pathway; SSP,
starch and sucrose biosynthesis pathway.
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colored grids. Active reactions, non-zero fluxes, with similar flux direction as the original model are 
denoted by blue grids; while those with dissimilar flux direction (breakpoint) are denoted by red 
grids. LA; total leaf area per plant; PN, photosynthetic rate; PN, total, total photosynthetic rate per plant; 
SRDW, storage root dry weight per plant; EXC, exchange reaction; TCM, transport reaction between 
cytosol and mitochondria; TCP, transport reaction between cytosol and plastid. 

Figure A5. The sensitivity of the transport and exchange reaction flux direction to variations in the
sucrose uptake rate-related data. Inactive reactions containing zero fluxes are denoted by white-colored
grids. Active reactions, non-zero fluxes, with similar flux direction as the original model are denoted
by blue grids; while those with dissimilar flux direction (breakpoint) are denoted by red grids. LA;
total leaf area per plant; PN, photosynthetic rate; PN, total, total photosynthetic rate per plant; SRDW,
storage root dry weight per plant; EXC, exchange reaction; TCM, transport reaction between cytosol
and mitochondria; TCP, transport reaction between cytosol and plastid.
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Figure A6. (a) The sensitivity of the cytosolic reaction flux partitioning to variations in the sucrose 
uptake rate-related data. (b) The influence of −90% to −60% variations of total photosynthetic rate on 
flux partitioning by the rMeCBM-KU50 model. Details of the metabolic branch points along with the 
corresponding reactions are provided in the Supplementary Materials (File S2). A difference in grid 
color between the original (first column) and predicted fluxes is indicative of dissimilarity in 

Figure A6. (a) The sensitivity of the cytosolic reaction flux partitioning to variations in the sucrose
uptake rate-related data. (b) The influence of −90% to −60% variations of total photosynthetic rate
on flux partitioning by the rMeCBM-KU50 model. Details of the metabolic branch points along with
the corresponding reactions are provided in the Supplementary Materials (File S2). A difference in
grid color between the original (first column) and predicted fluxes is indicative of dissimilarity in
partitioning (breakpoint). The production and consumption fluxes at each metabolic branch point were
respectively denoted as positive and negative signs. LA; total leaf area per plant; PN, photosynthetic
rate; PN, total, total photosynthetic rate per plant; SRDW, storage root dry weight per plant.
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Figure A7. The sensitivity of the mitochondrial reaction flux partitioning to variations in the sucrose 
uptake rate-related data. Details of the metabolic branch points along with the corresponding 
reactions are provided in the Supplementary Materials (File S2). A difference in grid color between 
the original (first column) and predicted fluxes is indicative of dissimilarity in partitioning 
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Figure A7. The sensitivity of the mitochondrial reaction flux partitioning to variations in the sucrose
uptake rate-related data. Details of the metabolic branch points along with the corresponding reactions
are provided in the Supplementary Materials (File S2). A difference in grid color between the original
(first column) and predicted fluxes is indicative of dissimilarity in partitioning (breakpoint). The
production and consumption fluxes at each metabolic branch point were respectively, denoted as
positive and negative signs. LA; total leaf area per plant; PN, photosynthetic rate; PN, total, total
photosynthetic rate per plant; SRDW, storage root dry weight per plant.
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Figure A8. The sensitivity of the plastidial reaction flux partitioning to variations in the sucrose 
uptake rate-related data. Details of the metabolic branch points along with the corresponding 
reactions are provided in the Supplementary Materials (File S2). A difference in grid color between 
the original (first column) and predicted fluxes is indicative of dissimilarity in partitioning 
(breakpoint). The production and consumption fluxes at each metabolic branch point were 
respectively denoted as positive and negative signs. LA; total leaf area per plant; PN, photosynthetic 
rate; PN, total, total photosynthetic rate per plant; SRDW, storage root dry weight per plant. 2-(α-
Hydroxyethyl)ThPP, 2-(alpha-hydroxyethyl)thiamine-diphosphate. 

 

Figure A8. The sensitivity of the plastidial reaction flux partitioning to variations in the sucrose uptake
rate-related data. Details of the metabolic branch points along with the corresponding reactions are
provided in the Supplementary Materials (File S2). A difference in grid color between the original
(first column) and predicted fluxes is indicative of dissimilarity in partitioning (breakpoint). The
production and consumption fluxes at each metabolic branch point were respectively denoted as
positive and negative signs. LA; total leaf area per plant; PN, photosynthetic rate; PN, total, total
photosynthetic rate per plant; SRDW, storage root dry weight per plant. 2-(α-Hydroxyethyl)ThPP,
2-(alpha-hydroxyethyl)thiamine-diphosphate.



Processes 2019, 7, 259 25 of 35
Processes 2019, 7, 259 27 of 37 

 

 
Figure A9. The sensitivity of the cytosolic reaction flux direction to variations in the biomass content. 
Inactive reactions containing zero fluxes are denoted by white-colored grids. Active reactions, non-
zero fluxes, with similar flux direction as the original model are denoted by blue grids; while those 
with dissimilar flux direction (breakpoint) are denoted by red grids. AMI, amino acid biosynthesis 
pathway; BIO, biomass reactions; CEL, cell wall biosynthesis pathway; NUC, nucleotide biosynthesis 
pathway; PPP, pentose phosphate pathway; RES, respiration pathway; SSP, starch and sucrose 
biosynthesis pathway. 

Figure A9. The sensitivity of the cytosolic reaction flux direction to variations in the biomass content.
Inactive reactions containing zero fluxes are denoted by white-colored grids. Active reactions, non-zero
fluxes, with similar flux direction as the original model are denoted by blue grids; while those
with dissimilar flux direction (breakpoint) are denoted by red grids. AMI, amino acid biosynthesis
pathway; BIO, biomass reactions; CEL, cell wall biosynthesis pathway; NUC, nucleotide biosynthesis
pathway; PPP, pentose phosphate pathway; RES, respiration pathway; SSP, starch and sucrose
biosynthesis pathway.
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Figure A10. The sensitivity of mitochondrial reaction flux direction to variations in biomass content. 
Inactive reactions containing zero fluxes are denoted by white-colored grids. Active reactions, non-
zero fluxes, with similar flux direction as the original model are denoted by blue grids; while those 
with dissimilar flux direction (breakpoint) are denoted by red grids. AMI, amino acid biosynthesis 
pathway; NUC, nucleotide biosynthesis pathway; and RES, respiration pathway. 

Figure A10. The sensitivity of mitochondrial reaction flux direction to variations in biomass content.
Inactive reactions containing zero fluxes are denoted by white-colored grids. Active reactions, non-zero
fluxes, with similar flux direction as the original model are denoted by blue grids; while those with
dissimilar flux direction (breakpoint) are denoted by red grids. AMI, amino acid biosynthesis pathway;
NUC, nucleotide biosynthesis pathway; and RES, respiration pathway.
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Figure A11. The sensitivity of plastidial reaction flux direction to variations in biomass content. 
Inactive reactions containing zero fluxes are denoted by white-colored grids. Active reactions, non-
zero fluxes, with similar flux direction as the original model are denoted by blue grids; while those 
with dissimilar flux direction (breakpoint) are denoted by red grids. AMI, amino acid biosynthesis 

Figure A11. The sensitivity of plastidial reaction flux direction to variations in biomass content. Inactive
reactions containing zero fluxes are denoted by white-colored grids. Active reactions, non-zero fluxes,
with similar flux direction as the original model are denoted by blue grids; while those with dissimilar
flux direction (breakpoint) are denoted by red grids. AMI, amino acid biosynthesis pathway; FAT, fatty
acid biosynthesis pathway; NUC, nucleotide biosynthesis pathway; PPP, pentose phosphate pathway;
RES, respiration pathway; SSP, starch and sucrose biosynthesis pathway.
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Figure A12. The sensitivity of transport and exchange reaction flux direction to variations in biomass 
content. Inactive reactions containing zero fluxes are denoted by white-colored grids. Active 
reactions, non-zero fluxes, with similar flux direction as the original model are denoted by blue grids; 
while those with dissimilar flux direction (breakpoint) are denoted by red grids. EXC, exchange 
reaction; TCM, transport reaction between cytosol and mitochondria; TCP, transport reaction 
between cytosol and plastid. 

Figure A12. The sensitivity of transport and exchange reaction flux direction to variations in biomass
content. Inactive reactions containing zero fluxes are denoted by white-colored grids. Active reactions,
non-zero fluxes, with similar flux direction as the original model are denoted by blue grids; while
those with dissimilar flux direction (breakpoint) are denoted by red grids. EXC, exchange reaction;
TCM, transport reaction between cytosol and mitochondria; TCP, transport reaction between cytosol
and plastid.
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Figure A13. The sensitivity of cytosolic reaction flux partitioning to variations in biomass content. 
Details of the metabolic branch points along with the corresponding reactions are provided in the 
Supplementary Materials (File S2). A difference in grid color between the original (first column) and 
predicted fluxes is indicative of dissimilarity in partitioning (breakpoint). The production and 
consumption fluxes at each metabolic branch point were respectively denoted as positive and 
negative signs. 

Figure A13. The sensitivity of cytosolic reaction flux partitioning to variations in biomass content.
Details of the metabolic branch points along with the corresponding reactions are provided in the
Supplementary Materials (File S2). A difference in grid color between the original (first column)
and predicted fluxes is indicative of dissimilarity in partitioning (breakpoint). The production
and consumption fluxes at each metabolic branch point were respectively denoted as positive and
negative signs.
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Figure A14. The sensitivity of mitochondrial reaction flux partitioning to variations in biomass 
content. Details of the metabolic branch points along with the corresponding reactions are provided 
in the Supplementary Materials (File S2). A difference in grid color between the original (first column) 
and predicted fluxes is indicative of a dissimilarity in partitioning (breakpoint). The production and 
consumption fluxes at each metabolic branch point were respectively denoted as positive and 
negative signs.  

Figure A14. The sensitivity of mitochondrial reaction flux partitioning to variations in biomass content.
Details of the metabolic branch points along with the corresponding reactions are provided in the
Supplementary Materials (File S2). A difference in grid color between the original (first column)
and predicted fluxes is indicative of a dissimilarity in partitioning (breakpoint). The production
and consumption fluxes at each metabolic branch point were respectively denoted as positive and
negative signs.
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Figure A15. The sensitivity of plastidial reaction flux partitioning to variations in biomass content. 
Details of the metabolic branch points along with the corresponding reactions are provided in the 
Supplementary Materials (File S2). A difference in grid color between the original (first column) and 
predicted fluxes is indicative of dissimilarity in partitioning (breakpoint). The production and 
consumption fluxes at each metabolic branch point were respectively denoted as positive and 
negative signs. 2-(α-Hydroxyethyl)ThPP, 2-(alpha-hydroxyethyl)thiamine-diphosphate. 

Figure A15. The sensitivity of plastidial reaction flux partitioning to variations in biomass content.
Details of the metabolic branch points along with the corresponding reactions are provided in the
Supplementary Materials (File S2). A difference in grid color between the original (first column)
and predicted fluxes is indicative of dissimilarity in partitioning (breakpoint). The production and
consumption fluxes at each metabolic branch point were respectively denoted as positive and negative
signs. 2-(α-Hydroxyethyl)ThPP, 2-(alpha-hydroxyethyl)thiamine-diphosphate.
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