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Abstract: With the continuous increment of photovoltaic (PV) energy connection into a power grid,
the accuracy of control parameters of PV power generation systems becomes the key to the stable
operation of the power grid. At present, parameter identification based on an intelligent algorithm is
a common means to obtain control parameters. However, most of the data used for identification are
simulation data and the identified parameters are difficult to use in practical engineering. Therefore,
aiming at the acquisition of low voltage ride through (LVRT) control parameters of PV unit, a method
of identification of LVRT parameters of the PV unit is proposed, which combines sensitivity analysis
with field measurement. In this paper, the test scheme of the required data is put forward through
sensitivity analysis of the identified parameters, and the intelligent algorithm is used to identify
the low voltage traverse parameters of the data. Finally, the optimal value is extracted from the
identification results and substituted into the model. The accuracy of the parameter identification
results is verified by calculating the error between the output of the model and the real operation
data. The method considers the errors caused by different power levels of the inverters with highly
accurate and consistent identification results, which is applicable to practical engineering calculation.

Keywords: parameter identification; real operation data; particle swarm optimization algorithm;
LVRT; PV inverter

1. Introduction

Accurate modeling of photovoltaic (PV) power generation systems is the basis of analyzing the
stability of a power grid. An inverter is the core component of a PV power generation system, and
the accuracy of its model depends on the accuracy of the control parameters obtained. As a part of
the control parameters of the inverters, the low voltage ride through (LVRT) control parameters are
important to ensure the continuous operation of the PV system under voltage drop conditions. During
the period of power grid failure, if the deviation of LVRT control parameters is large, the inverters
cannot provide the correct reactive power, which may lead to the failure of the inverters, making the
grid-side overcurrent, direct-current (DC) side overvoltage, or even causing large-scale disconnection
and serious transfer of power flow in the system, resulting in the loss of guiding significance of
simulation results for real operation. Therefore, the accurate acquisition of LVRT control parameters
is very important. However, in general, because of factories’ confidentiality or changes in operating
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environments, it is impossible to ensure the accuracy of control parameters, thus affecting the accurate
analysis of grid-connected characteristics of single inverters and PV stations.

At present, the main way to accurately obtain the simulation parameters of a new energy system
is to identify the parameters of the model with the real operation data and appropriate algorithms.
The commonly used methods to obtain parameters are theoretical analysis and system identification.
The theoretical analytic method can reproduce the internal process of the PV system to the greatest
extent. However, as the control system becomes more and more complex, the nonlinear calculus
equation brings great difficulties to the calculation, and some unmeasurable variables will affect the
calculation results. As a result, the obtained parameters often need to be adjusted many times before
they can be used in PV control [1]. The system identification method uses the input and output of
the model to solve unknown parameters, including the time domain identification method [2], the
frequency domain identification method [3], and the intelligent optimization method [4–7]. The time
domain identification method first sampled and analyzed the time domain information of the system,
and then identified the unknown parameters according to the time domain sampling information.
The commonly used method is the least square method [8]. The frequency domain identification
method first converts the time domain information of the system to the frequency domain according
to the fast Fourier change, and then identifies the unknown parameters according to the frequency
response characteristics of the system [9]. Intelligent optimization algorithm is widely used. It is
based on the global optimization characteristics of the algorithm itself, calculating the fitness of the
objective function to determine the optimal value of model parameters. The commonly used intelligent
optimization algorithms are the ant colony algorithm [10], particle swarm optimization [11], and
genetic algorithm [12].

Intelligent optimization algorithm has been widely used in the field of power system parameter
identification, such as in the works of [13–16]. In identification data, most of the existing studies
use simulation data to verify the validity of the identification algorithm, but simulation data cannot
be applied to parameter identification of actual engineering. In identification methods, the existing
research focuses on the validation of single parameter identification methods, and does not consider
how to extract the optimal results from multiple identification results, which is of low practical value.
Moreover, the existing reference only identifies the parameters of PV array, the parameters of PI control
link, and the limiting link of PV inverters [17–21]. There is no report on the identification of LVRT
control parameters of the PV power generation system. In view of the above situation, this paper
obtains the real test data by designing the test scheme, and identifies the LVRT control parameters of
PV inverters multiple times using the real test data, which makes up for the shortcoming that most
of the existing literature uses simulation data to identify, but cannot solve the practical engineering
problems. Multiple identification can adapt to the randomness of the operating environment, and is
more reliable than the single identification result.

In this paper, a parameter identification method for LVRT control of PV units is proposed, which
combines sensitivity analysis with real test scheme. Firstly, the sensitivities of the parameters to be
identified in PV units are analyzed, and the test scheme of the data to be identified is proposed. Then,
the adaptive inertia weight particle swarm optimization algorithm and multi-group real operation
data are used to identify the LVRT control parameters of the grid-connected PV system, and the
optimal values are extracted from the multi-group identification results. Finally, the optimal values are
substituted into the model and the error between the output of the model and the actual measurement
is calculated to verify the accuracy of parameter identification results.

2. Introduction of Parameters to be Identified

2.1. Low Voltage Ride Through Requirements

LVRT control is an important part of the control system of grid-connected PV inverters. In order
to ensure the stable operation of the grid-connected PV system during the voltage sag of the grid,
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the state promulgated the relevant national standard GB/T 19964-2012 “Technical Regulations for the
Access of Photovoltaic Stations to Power Systems”, which stipulates the grid-connected curve during
the LVRT period, as shown in Figure 1.
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Figure 1. The requirement of low voltage ride through (LVRT) for photovoltaic (PV) power plants.

As can be seen from the above analysis, when the grid-connected point voltage drops as a result of
the power system fault and the grid-connected voltage of PV power generation system is above curve 1,
the system needs to maintain uninterrupted grid-connected operation; when the grid-connected point
voltage drops to zero, the system should keep the grid-connected state running for 0.15 s continuously;
when the grid-connected voltage drops below the curve, beyond the fault crossing requirements, the
PV power generation system should cut out of the grid and stop sending electricity.

2.2. Control Strategy and Structure of Low Voltage Ride Through

When a voltage drop fault occurs on the grid-side, the PV inverters switch the control mode
according to the degree of voltage sag: normal control strategy–LVRT control strategy–normal control
strategy, as shown in Figure 2.
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Figure 2. Control switching flow chart of inverter.

In order to ensure the realization of LVRT, during the voltage drop period, the inverters need to
realize the priority control of reactive power according to the grid-side voltage, and send out reactive
power to support the grid voltage recovery. The specific LVRT control structure is shown in Figure 3.
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Figure 3. LVRT control.

Iq_ref is the reference value of reactive current, Id_ref is the reference value of active current, Id_cmd

is the output active current of inverters, Iq_cmd is the output reactive current of inverters, IN is the rated
current, Uterm is the per-unit value after voltage sag at grid-connected points, and Kq is the reactive
current support coefficient during LVRT. Kq (zero) is the support coefficient of reactive current when
zero voltage passes through.

For PV power generation systems that are not off-grid during the fault period, the active power
should be restored to normal working state at a rate of at least 30% rated power per second after the
fault is cleared, this value is reflected in the simulation model by the parameters of the active current
recovery slope of PV.

2.3. Low Voltage Ride Through Parameters to be Identified for Photovoltaic Unit

For PV inverters, the active current recovery slope determines the speed of active power recovery
after fault clearance and the reactive current support coefficient determines the amount of reactive
power generated by the inverters during the fault period, which are key control parameters during the
LVRT period. Although the control structures of different brands of inverters in the market are similar,
the specific control parameters are different, which leads to great differences in LVRT characteristics.
Therefore, it is necessary to identify the active current recovery slope and reactive current support
coefficient to obtain the LVRT control parameters required by the simulation model, as shown in
Table 1.

Table 1. Contents to be tested. LVRT—low voltage ride through; PV—photovoltaic.

Test Object Parameters to be Identified Parameters’ Meanings

PV Inverter LVRT control parameters:
Kq, dIp

Kq: reactive current support coefficient
dIp: active current recovery slope

3. Design for Data Testing Scheme

Through sensitivity analysis, the degree of correlation between system parameters and external
characteristics can be understood, and the test scheme can be designed according to the degree of
correlation to obtain the real operation data needed for parameter identification.
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3.1. Trajectory Sensitivity Analysis of Parameters to be Identified

3.1.1. Trajectory Sensitivity

The trajectory sensitivity refers to the degree to which the external characteristics of the system
are sensitive to changes in system parameters or surrounding conditions. The expression of trajectory
sensitivity is as follows:

Sθi = lim
∆θi→0

y(t,θ 1,...,θi+∆θi,...,θm)−y(t,θ 1,...,θi,...,θm)
y(t,θ 1,...,θi,...,θm)

∆θi
θi0

, (1)

where Sθi is the trajectory sensitivity of the i-th parameter θi, θi0 is the given value of the parameter θi,
y is one of the observed quantities, and m is the number of parameters to be identified.

Generally, the sensitivity calculation can be used to estimate the degree of correlation between
system parameters and external characteristics, which is helpful to determine the identifiability of
parameters. “The greater the disturbance, the higher the accuracy of parameter identification” [22],
that is, the parameters with high sensitivity are easy to identify and the identification accuracy is high,
whereas the parameters with small sensitivity are difficult to identify and the identification accuracy
is low.

3.1.2. Sensitivity Analysis

In this paper, the active power and reactive power at the grid-connected point of the PV power
generation system are selected as observed quantity, the sensitivity of active current recovery slope,
and reactive current support coefficient are calculated, and the correlation degree of the observed
quantity to the identification parameters is analyzed. The PV model used can be found in Guidelines
for Modeling of PV Power Systems GB/T 32826-2016.

Set the power reference value as shown in Figure 4, and the sensitivity of the parameters to be
identified is shown in Figure 5.
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Figure 5. Sensitivity curve of the parameter to be identified: (a) sensitivity curve of active power of the
parameter to be identified; (b) sensitivity curve of reactive power of the parameter to be identified.

From the trajectory sensitivity shown in Figure 5, it can be seen that the response of active current
recovery slope is intense and the response of reactive current support coefficient is small at the instant
of active power change, while the response of reactive current support coefficient is intense and the
response of active current recovery slope is small at the instant of reactive power change. It can be
concluded that active power is highly sensitive to active current recovery slope and reactive power is
highly sensitive to reactive current support factor. On this basis, a test scheme can be designed, as
shown in the next section.

3.2. Test Scheme

The test platform is a 1000 kW PV power generation system, and the test point is the alternating
current (AC) side of the inverter, as shown in Figure 6. The model of the inverters to identify the LVRT
control parameters is CP-1000-B, and the internal parameters are shown in Table 2.
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Table 2. Parameters of photovoltaic inverters to be measured.

DC Side Parameters

Direct current (DC) Bus Start Voltage
(Vdc) 500

Minimum DC Bus Voltage (Vdc) 300

Maximum DC Bus Voltage (Vdc) 850

Full load Maximum Power Point
Tracking (MPPT) voltage range (Vdc) 750~820

Optimum MPPT Operating Point
Voltage (Vdc) 780

DC Bus Capacitor (µF) 12,600

Alternating Current (AC) Side
Parameters

Rated output power (kW) 1000

Maximum output power (kW) 1100

Rated grid-side voltage (Vac) 520

Allowable voltage range at grid-side
(Vac) 468~572 (Settable)

Rated grid frequency (Hz) 50

Allowable frequency range of power
grid (Hz) 45~55

AC side rated output current (A) 1110

Power factor (leading~lagging) leading 0.9~lagging 0.9

Direct power control is adopted in PV inverters to achieve a fast power control response. The
basic control ideas are as follows: Firstly, the instantaneous active power and instantaneous reactive
power of PV grid-connected inverters are detected and calculated. Secondly, the deviation between
the measured value and the given instantaneous power reference value is fed into the controller.
Thirdly, the switching state of the switch is determined according to the output of the controller and
the judgment of the voltage vector position of the power grid.

According to the GB/T32892-2016 "Photovoltaic Power System Model and Parameter Test Rules",
the grid-side disturbance experiment is carried out in three sets of active power range, and six sets
of test conditions are set. The three sets of active power range are as follows: (a) high power output
range: P > 0.7 Pn; (b) intermediate power output range: 0.5 Pn = < P < 0.7 Pn; (c) 0.1 Pn =<P < 0.5
Pn. Therefore, the active power instructions in the test scheme are set to 0.2 Pn, 0.6 Pn, and 0.8 Pn
respectively, and the voltage disturbances are set by voltage disturbance generator devices, which are
0.1 Un, 0.4 Un, 0.7 Un, and 0.8 Un, respectively, as shown in Table 3.

Table 3. Test cases.

Operating Mode P/pu U/pu Test Data

1 0.2 0.1 P,Q,U
2 0.2 0.4 P,Q,U
3 0.6 0.4 P,Q,U
4 0.6 0.7 P,Q,U
5 0.8 0.7 P,Q,U
6 0.8 0.8 P,Q,U

3.3. Real Operation Data for Identification

The six working conditions in Table 3 are tested one by one on the test platform. The instantaneous
active power reference value of PV inverters and the disturbance parameters of voltage disturbance
generator on AC-side of PV inverters are set respectively according to the six working conditions in
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Table 3. The reference value of reactive power is set to 0 uniformly. After setting up the working
condition, the transient simulation of the test platform is carried out to complete all the working
conditions and collect electrical data under six working conditions: the fundamental component of the
grid-side voltage, the per-unit value of active power, and the per-unit value of reactive power. The
characteristic curve is shown in the Figure 7.
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4. Adaptive Weighted Particle Swarm Optimization

Among the adjustable parameters of particle swarm optimization algorithm, inertia weight is
the most important parameter. Because the particle swarm optimization algorithm is prone to lose
population diversity and local convergence in the later stage of operation, the larger inertia weight is
conducive to the global search ability of the algorithm, while the smaller inertia weight is conducive to
enhance the local search ability of the algorithm. Therefore, the inertia weight based on the dynamic
change of particle operation state is conducive to the improvement of the search ability of the algorithm.
According to different weight change formulas, different particle swarm optimization algorithms can
be obtained, such as the linear decreasing weight method, adaptive weight method, and random
weight method [23].

In this paper, the adaptive weighted particle swarm optimization (AWPSO) algorithm is used to
identify the parameters. The expression of inertia weight is as follows:

w =

 wmin −
wmax−wmin×(f−f min)

favg−fmin
, f ≤ favg

wmax , f > favg
. (2)
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In the formula, wmax and wmin are the maximum and minimum values of w, respectively, which
are generally set to 1.2 and 0.4, respectively, representing the current objective function values of
particles. favg and fmin represent the average and minimum objective values of all particles, respectively.
In the above formula, the inertia weight changes automatically with the particle’s objective function
value, which not only balances the global search ability and local improvement ability of particle
swarm optimization, but also has high accuracy in parameter identification. The identification process
of LVRT parameters based on the AWPSO algorithm is shown in Figure 8.Processes 2019, 7, x FOR PEER REVIEW 9 of 15 
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5. Case Study

The LVRT control parameters are identified by the real test data collected under six typical working
conditions on the test platform. A single-stage grid-connected PV model is built by MATLAB/simulink
simulation platform (R2018a, mathworks, Natick, MA, USA, 2018 ), in which the parameters of the
inverters are shown in Table 2.
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5.1. Identification Results

The data of six typical working conditions are identified and the preliminary results of parameter
identification are shown in Table 4.

Table 4. Preliminary result of parameter identification.

Operating Mode/Parameter Active Current Recovery Slope (dIp) Reactive Current Support Coefficient (Kq)

1 19.56254 1.441337
2 19.97261 1.769143
3 1.97195 1.672297
4 20.05121 2.13746
5 0.455699 2.077852
6 20 2.377938

In Table 4, the real operation data under each working condition correspond to a set of parameters
to be identified.

5.2. Calculation and Analysis of Errors

In order to extract the most suitable parameters for all working conditions from the six sets of
parameters in Table 2, the parameters corresponding to each working condition are substituted into
the model respectively, and the errors between the output of the model and the corresponding test
operation data are calculated.

5.2.1. Error Formula

According to GB/T 32892-2016 "Photovoltaic Power System Model and Parameter Testing
Rules", the disturbance process can be divided into three intervals, namely, the pre-disturbance,
the time-disturbance, and the post-disturbance, as shown in Figure 9.
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The formula for calculating the deviation of each interval is as follows:

Fn =

∣∣∣∣∣∣∣∣ 1
KS_End −KS_START + 1

KS_End∑
i=KS_START

XS(i)−
1

KM_End −KM_START + 1

KM_End∑
i=KM_START

XM(i)

∣∣∣∣∣∣∣∣. (3)
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In the formula, Fn represents the deviation of each interval; and n = 1, 2, 3 represent the
pre-disturbance, the time-disturbance, and the post-disturbance, respectively. XS is the per-unit value
of model simulation data for electrical quantity to be assessed. XM is the per-unit value of the test
operation data of the electrical quantity to be assessed. KS_Start and KS_End are the first and last
serial numbers of model simulation data in the calculation error interval, respectively. KM_Start and
KM_End are the first and last serial numbers of the test operation data in the calculation error interval,
respectively. The electrical quantities to be assessed are the fundamental component of grid-side
voltage, active power, reactive power, reactive current, and total current.

The weighted mean deviations of the three intervals are as follows:

FG = 0.1× F1 + 0.6× F2 + 0.3× F3, (4)

where FG is the weighted average total deviation of all intervals.
The formula for calculating relative error is shown in Formula (5):

error =
x1−xmin

xmin
. (5)

In the formula, x1 is the weighted average deviation of active power and reactive power, which is
an n × 2n dimension matrix; the first n column is classified as the weighted average deviation of active
power, and the second n column is classified as the weighted average deviation of reactive power;
xmin is the minimum value of weighted average deviation of active power or reactive power under the
same operating conditions, which is an n × 1 order matrix; and error is the relative error of weighted
mean deviation.

5.2.2. Error Formula

The optimum parameters are extracted from the preliminary identification results of six sets
of parameters obtained using the real operation data under six working conditions. According to
Formula (3) and Formula (4), the weighted average deviations of active power and reactive power
are calculated respectively and the relative errors of the weighted average deviations of active power
and reactive power corresponding to each group of parameters are calculated. According to the
working condition corresponding to the minimum relative errors of the weighted average deviations
of active power, the active current recovery slope corresponding to the working condition is selected
as the optimal parameter and according to reactive power and according to the working condition
corresponding to the minimum relative error of the weighted average deviation of reactive power, the
reactive current support coefficient corresponding to the working condition is selected as the optimal
parameter. Finally, the optimal parameters are determined: dIp = 20, Kq = 1.769143.

By substituting the optimal parameters obtained from the current calculation into the model and
comparing simulation data with the real operation data, it can be seen that the simulation values can
approximate the real operation curves by comparing the electrical quantity of the simulation values
and the real operation values under the six working conditions shown in Figure 10.
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Figure 10. Contrast diagram between simulated data and real test data: (a) contrast diagram between
simulated data and real test data under operation mode 1; (b) contrast diagram between simulated data
and real test data under operation mode 2; (c) contrast diagram between simulated data and real test
data under operation mode 3; (d) contrast diagram between simulated data and real test data under
operation mode 4; (e) contrast diagram between simulated data and real test data under operation
mode 5; (f) contrast diagram between simulated data and real test data under operation mode 6.

As can be seen from Figure 10, the simulation data can approximate the real test data under
most operating modes. Therefore, in order to directly judge the accuracy of parameters, the weighted
average deviations of five electrical quantities under six working conditions are calculated according
to formulas (3) and (4). The error results are as Table 5.

Table 5. Weighted mean deviation.

Operating
Mode\Deviation Voltage Deviation Current

Deviation
Active Power

Deviation
Reactive Current

Deviation
Reactive Power

Deviation

1 0.0468 0.0290 0.0324 0.0743 0.0140
2 0.0097 0.0437 0.0391 0.0942 0.0403
3 0.0085 0.0078 0.0374 0.0719 0.0308
4 0.0033 0.0239 0.0165 0.0809 0.0573
5 0.0050 0.0410 0.0506 0.0793 0.0558
6 0.0024 0.0220 0.0224 0.0580 0.0465

Referring to GB/T32892-2016 "Photovoltaic Power System Model and Parameter Test Rules", the
upper limit of weighted average deviation of voltage in error range is 0.05 and the upper limit of
weighted average deviation of total current, active power, reactive power, and reactive current is 0.15.
Table 5 shows that although the error of simulation comparison chart under some working conditions is
large, the specific error is within the allowable range of the national standard. It verifies the strategy is
feasible by designing a test scheme to obtain the real test data instead of the simulation data to identify
the parameters and extracting the optimal value of the minimum relative error from the identification
results of multiple measured data. The obtained identification results are more adaptable to the
randomness of the operating environment and applicable to the actual typical working conditions.
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6. Conclusions

In view of the determination of LVRT parameters for PV units, this paper proposes a parameter
identification method based on sensitivity analysis and test scheme, which is important for accurate
modeling of a grid-connected PV system. The conclusions obtained in this paper and issues that
require further study include the following:

(1) The key to accurate modeling of a PV grid-connected system is that the data used for parameter
identification are consistent with the real operation data. On the basis of the results of sensitivity
analysis of parameters, this paper designs a test scheme to obtain the real test data, and uses the
real test data to replace the simulation data for parameter identification, which ensures the validity
of parameter identification data and makes the result of parameter identification more conducive to
practical engineering application.

(2) From the six sets of parameters identified from six sets of real test data in this paper, the
operation conditions have a greater impact on the identification results. This paper identifies the
parameters of several sets of real test data, and extracts the optimal parameters that minimize the
relative errors of six sets of working conditions from the identification results. Compared with the single
identification results, the multiple identification results are more suitable for the random operation
environment. The identification results are more reliable.

(3) Taking the actual PV inverter model as an example, the LVRT control parameters are identified.
The simulation curve of parameter identification results can approximate the measured data, which
verifies the effectiveness of the method described in this paper.

(4) In this paper, a general model is used to identify the LVRT parameters. If other control needs
to be studied, the test scheme and algorithm need to be further improved.
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Nomenclature

PV photovoltaic
LVRT low voltage ride through
PSO particle swarm optimization
AWPSO adaptive weighted particle swarm optimization
Kq reactive current support coefficient
dIp active current recovery slope
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