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Abstract: To make full use of the flexible charging and discharging capabilities of the growing number
of electric vehicles (EVs), a bidding strategy for EV aggregators to participate in a day-ahead electricity
energy market is proposed in this work. The proposed bidding strategy is able to reduce the operating
cost of the EV aggregators and to handle the uncertainties of day-ahead market prices properly at the
same time. Agreements between the EV owners and the aggregators are discussed, and a hierarchical
market structure is proposed. While assuming the aggregators as economic rational entities, the
bidding strategy is established based on the market prices, extra battery charging/discharging
costs and the expected profits. The bidding clearing system will display the current/temporal
market clearance results of the day-ahead market before the final clearance, and hence the market
participants can revise their bids and mitigate the risks, to some extent, of forecasted market price
forecast errors. Numerical results with a modified IEEE 30-bus system have demonstrated the
feasibility and effectiveness of the proposed strategy.

Keywords: electricity market; electric vehicle (EV); electric vehicle aggregator; economic dispatch;
bidding strategy

1. Introduction

As a promising means of transportation to replace conventional petroleum fuel vehicles and
reduce greenhouse gas emissions, electric vehicles (EVs) have become increasingly popular around
the world in recent years [1–3]. In addition to their transportation function, the integration of EVs
will also introduce additional electricity consumption into the affected power system. It has been
demonstrated by existing research that EV charging and discharging behaviors can have both positive
and negative impacts on the power system [4–7]. Thus, suitable mechanisms are required to integrate
and handle EVs to accommodate their charging requirements and improve the efficiency of power
system operation at the same time.

Some research has already been done on the optimal dispatching and control strategies of EVs
to make the best use of the charging/discharging flexibilities of EV batteries and to mitigate possible
negative impacts on power systems. For example, optimal dispatch and control approaches for EVs
are discussed in [8–11]; the vehicle-to-grid (V2G) potentials of EVs in energy trading and ancillary
services are studied in [12–16]; the coordination of EVs and the volatile renewable energy sources are
examined in [17–20]; the impacts of flexible EVs on generation expansion planning [21,22]; the EV
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charging control in the electricity market environment is investigated in [23]; EVs are considered as
price responsive demands, and their flexibilities and impacts on the power system concerned are
examined in [24].

Generally, each EV owner is unlikely to respond to the control/market signals and shift the
charging load or provide the V2G service individually. Thus, a hierarchical or decentralized structure by
introducing EV aggregators or retailers appears necessary for dispatching the charging and discharging
of EVs in power system operation [8]. Each aggregator with a certain number of EVs can act as a
unique flexible power demand or an energy storage unit. To encourage cooperation between the EV
aggregators and the power system operators in power system dispatch, economic incentives appear
necessary as aggregators are generally rational economic entities. Thus, market mechanisms are more
promising for scheduling the EVs, as the EV aggregators will be automatically motivated to maximize
their profits based on the price signals in the concerned electricity market.

Given this background, a bidding strategy for EV aggregators to participate the day-ahead
electricity energy market is proposed in this paper. The aggregators are authorized to control the EVs
through signing contracts with the EV owners. The bids of the aggregators will be formulated based
on their preferred charging/discharging schedules, the market price profiles, and their capabilities
and costs to adjust their charging plans. However, certain uncertainties exist in the day-ahead
electricity market, and could result in financial risks in the decision-making of the aggregators.
Some existing research, such as [25–29], depends on the price predictions, which are not always
accurate and reliable. A robust optimization model-based optimal scheduling strategy for EV
charging/discharging behaviors is presented in [30] to deal with the price uncertainties, while the
results might be conservative due to the nature of robust optimization. The behaviors of plug-in EVs
in electricity market environment is analyzed in [31] based on game theory, and the result is affected
by the accuracy of market price forecasting.

In this work, a bidding strategy for electric vehicle aggregators in a day-ahead electricity market
is investigated. It is assumed that both the EV aggregators and other market participants such as
generating companies are permitted to revise their day-ahead market bids/offers any time before the
electricity market is cleared, and this market mechanism is employed in some practically operating
electricity markets, such as the well-known California electricity market in USA [32], and the National
Electricity Market (NEM) in Australia [33]. Besides, this market mechanism was also employed
in Zhejiang Province (China) during the power industry restructuring in early 2000s. The bidding
clearing system displays the current/temporary market clearance results periodically based on the
received bid/offers, which will serve as references for aggregators and generating companies to
adjust their optimal bidding strategies/schedules. Once the day-ahead market closes for bids/offers,
no market entities can modify their bids/offers anymore, and the final day-ahead market clearing
results will be obtained based on the latest updated bids/offers before the day-ahead market is cleared.
The temporary market clearance results will not affect the final results. As a result, the market provides
equal opportunities to all bidding participants, and the uncertainties of market prices can be handled
in this procedure. In general, the time window for day-ahead electricity energy market bidding lasts
for at least 2 h, and market participants are entitled to revise their bids/offers if the market provides
temporary market clearance results every30 min.

The major contributions of this paper mainly include the following two points: (1) the interactions
between EVs and EV aggregators are examined based on the stochastic characteristics and charging
requirements of EVs; (2) a bidding strategy is presented for EV aggregators participating in the
day-ahead electricity market without requiring accurate price predictions, and hence can be utilized to
alleviate the financial risks caused by the uncertainties of market clearing prices. The remainder of this
paper is organized as follows: the EV charging and discharging models and the contracts between
the EV owners and the aggregators are developed in Section 2. In Section 3, the day-ahead electricity
market clearance mechanism is presented. In Section 4, the market clearing procedure is described, and
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the bidding strategy of EV aggregators established. Numerical results with a modified IEEE 30-bus
system are given in Section 5, and conclusions presented in Section 6.

2. Electric Vehicle (EV) Charging and Discharging Models

2.1. EV charging and Discharging Behaviors

For private EVs, the charging requirements of EV batteries generally depend on the following
factors: battery performance, driving distances, users’ driving patterns, driving/parking periods,
users’ charging preferences and seasonal impacts. The EV charging demands are determined by all
these factors together.

For a specific EV, the influences can be attributed to four indexes as the battery capacity can be
regarded as a constant: (1) the time when EV connected to the grid, denoted as Tst; (2) the time when
EV disconnected from the grid, denoted as Ten; (3) the State-of-Charge (SoC) level at Tst, denoted as
SE0; (4) the desired SoC level at Ten, denoted as S⊕E .

If the SoC level of the EV battery at time t, denoted as SE(t), is selected to represent the charging
status of the battery, its relationship with the charging power Pch(τ) and the feedback power Pdis(τ) to
the power system concerned in the V2G mode can be formulated as (∀t ≥ Tst):

SE(t) = SE0 +
1

BE

∫ t

Tst
(κchPch(τ)−

Pdis(τ)

κdis
)dτ (1)

Since each EV owner expects to charge its battery to a desired level S⊕E at Ten to meet its driving
requirements, the EV charging and discharging constraint at Ten can be formulated as:

SE(Ten) = SE0 +
1

BE

∫ Ten

Tst
(κchPch(t)−

Pdis(t)
κdis

)dt ≥ S⊕E (2)

It has been confirmed that battery discharging has a negative impact on the battery life [34,35],
and this means that the EV customer will suffer from extra economic loss than in the ordinary charging
mode without V2G, if no compensation is provided. The degradation process of EV batteries are
modeled in detail and analyzed based on factors such as the driving patterns of EVs, impacts of
the depth-of-discharge and ambient temperatures in [35,36]. In this paper, a simplified equation is
employed to model the EV battery degradation cost due to battery discharging [37] as:

cdis =
CPB

BELBDod
(3)

In (3), the battery life loss is assumed to be affected by the depth-of-discharge Dod, the battery
purchase cost CPB, the capacity of the battery BE and its designed life cycles LB. The calculated cdis
denotes the economic cost per unit discharging energy, and can be used to approximately estimate the
cost for providing V2G services.

2.2. Interactions between the EVs and the Aggregators

In this work, a hierarchical structure is employed, and the EV aggregators are assumed to act as
the third entity between the power system and the EV customers. The aggregators can be the operators
in charging stations, charging service providers, or others. Each aggregator schedules the charging and
discharging statuses of all EVs concerned, and further participates in the electricity market on behalf
of these EV users. As a practical way to protect the customers’ privacies, the usage information of the
EVs will be encapsulated between the users and the aggregators concerned, while the system operator
(SO) can only get the overall load profiles from the aggregators other than the detailed charging and
discharging behaviors of each EV [38].
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Through an EV charging contract, each aggregator is able to control the charging schedules of the
EV batteries concerned, and agrees with the EV customers on certain terms, such as the charging prices.
Besides, the EV charging contract should also contain the charging requirements and characteristics
of the EVs. For simplicity of presentation, each EV aggregator is assumed to provide local charging
services for all the EVs at the same bus of the transmission system concerned. Although the EVs
may choose to charge at different distribution feeders, the aggregators will not have to consider the
uncertainties associated with the charging locations of the EVs if all the distribution transformers and
feeders have sufficient capacities [39].

Tst, Ten, SE0 and S⊕E are stochastic parameters, as the user’s driving behavior may change based
on his/her willingness, thus the EV charging requirements may vary from day to day. While in
the EV charging contract, the expected values of these indexes can be settled through negotiations.
For example, the contents of an EV charging contract may include the following terms:

(1) The EV charging price λch. λch can be either fixed price or time-of-use (TOU) prices. In a perfectly
competitive market, it is likely that each aggregator will provide a competitive charging price to
attract more EV customers.

(2) The expected Tst, Ten and S⊕E . Each aggregator will guarantee that the EV battery concerned will
be charged above the S⊕E by Ten, if the EV is plugged in no later than Tst. Otherwise, the aggregator
is subject to a certain penalty. However, if the EV customer cannot hand over the EV to the
aggregator by Tst, or the customer has to use the EV before Ten, then the aggregator will not be
punished even if the SE(Ten) is lower than S⊕E .

(3) The battery charging/discharging limits. To reduce the battery life losses, the SoC level of the
battery should be kept within Smax

E and Smin
E during the plugged-in period, and the maximum

charging/discharging power should not exceed Pmax
ch and Pmax

dis , respectively. It should be noted
that if the customer is not willing to discharge its battery, Pmax

dis must be set to zero.
(4) The estimated battery discharging cost cdis and expected discharging revenue rdis for EV owners.

If an EV discharged a certain amount of power during the plugged-in period, the aggregator has
to compensate the EV owner with the extra battery loss, as well as to offer economic rewards to
the customer for providing the V2G service.

Apart from the contents mentioned above, other terms may also be included if both the entities
consider them necessary and reasonable. For example, to encourage EV owners to extend the length of
their plugged-in periods, the EV owners with longer available periods (i.e., larger Ten and smaller Tst)
will receive lower charging prices. However, only the listed four terms are considered in this paper,
although the developed methodological framework could be extended to accommodate other terms.

2.3. Aggregated EV Charging and Discharging Model

By controlling the charging and discharging behaviors of EV batteries, the aggregators can
schedule the controllable EV demand in response to market price signals to maximize their revenues.
The profit of the aggregators mainly depends on the power purchasing costs in the electricity energy
markets and the power supply incomes through EV charging contracts. Without loss of generality, the
objective of aggregator a with NE(a) EVs can be expressed to maximize its profit, as shown in (4):

Maximize(RCI(a) + RDI(a))− (RCC(a) + RDC(a)) (4)

where RCI(a), RDI(a), RCC(a) and RDC(a) denote the income for providing EV charging services,
discharging services of aggregator a, the cost for providing EV charging services and discharging
services of aggregator a, respectively. It should be noted that the EV charging prices also contain other
costs such as distribution fees and various kinds of tariffs, apart from the energy prices, while the
discharging incomes only depend on the market prices. In this paper, the summation of distribution
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fees and tariffs, which is denoted as w, is assumed to have a positive correlation with the amount of
the charging power. Equation (4) can be calculated through (5)–(8).

RCI(a) =
T

∑
t=1

NE(a)

∑
e=1

λch(a, e, t)Pch(a, e, t) (5)

RDI(a) =
T

∑
t=1

ρ(t)
NE(a)

∑
e=1

Pdis(a, e, t) (6)

RCC(a) =
T

∑
t=1

(ρ(t) + w)
NE(a)

∑
e=1

Pch(a, e, t) (7)

RDC(a) =
T

∑
t=1

NE(a)

∑
e=1

(cdis(a, e) + rdis(a, e))Pdis(a, e, t) (8)

In this work, λch is assumed to be a fixed charging price, thus the charging price λch(a, e, t)
in (5) can be rewritten as λch(a, e). Besides, the EV user has to pay the market price and distribution
tariff for the excessive charged energy in case that SE(Ten) is greater than S⊕E , and this means that
the profit of this aggregator is breakeven if the battery is charged between S⊕E and its full capacity.
cdis(a, e) and rdis(a, e) denote cdis and rdis of the e-th EV from the a-th aggregator per unit discharging
power, respectively.

Moreover, in the EV charging contract, some constraints must be respected for aggregator a,
as shown in (9)–(13);

0 ≤ Pch(a, e, t) ≤ uch(a, e, t)Pmax
ch (a, e) ∀t ∈ [Tst(a, e), Ten(a, e)] (9)

0 ≤ Pdis(a, e, t) ≤ (1− uch(a, e, t))Pmax
dis (a, e) ∀t ∈ [Tst(a, e), Ten(a, e)] (10)

Smin
E (a, e) ≤ SE(a, e, t) ≤ Smax

E (a, e) ∀t ∈ [Tst(a, e), Ten(a, e)] (11)

SE(a, e, Ten) ≥ S⊕E (a, e) (12)

uch(a, e, t) ∈ {0, 1} ∀t ∈ [Tst(a, e), Ten(a, e)] (13)

where (9) and (10) respectively represent the EV charging and discharging power constraints,
(11) represents the battery SoC constraints, (12) represents the EV charging requirements, and the
binary variable uch(a,e,t) constrains that an EV cannot charge and discharge power at the same time,
as shown in (9), (10) and (13). Tst(a,e) and Ten(a,e) denote Tst and Ten of the e-th EV per unit discharging
power from the a-th aggregator, respectively.

It should be noted that the uniform market clearing price ρ(t) is employed to calculate the costs
of local EV aggregators with the impact of congestion ignored. However, the proposed model can
be modified by introducing locational marginal prices (node prices) in (6) and (7) before applying
to large regional aggregators who provide charging services at multiple buses of the transmission
system concerned.

3. Day-Ahead Market Clearing Model

With more and more EVs being integrated into the power system, their charging and discharging
behaviors will have more significant impacts on the power demand characteristics and the power
system operation efficiency. Considered as market participants, the EV aggregators are asked to
submit their bids for charging and discharging power to the SO. The bidding clearance problem can
be formulated as an optimization of maximizing the social welfare associated. Certain power system
security constraints must be accommodated as well. In realistic cases, the market clearing model
should consider a series of constraints such as the AC power flow equations, the unit commitment and
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generator ramping limits. In this paper, the DC optimal power flow model that only considers the
capacity limits of transmission lines is employed for simplicity, since the study of this paper focuses on
the bidding strategy formulation for EV aggregators. The simplified DC optimal power flow model is
also able to demonstrate the full characteristics of market bidding and clearing process.

If the conventional power demands in the system are considered as inelastic, the objective function
of the day-ahead market clearance model with EVs can be described as:

MaximizeΓEV(Φbid
CH)−ΛEV(Φbid

DIS)−ΛG(Φbid
G ) (14)

ΓEV(Φbid
CH) =

T

∑
t=1

NA

∑
a=1

f1(Φbid
CH(a, t),PCH(a, t)) (15)

ΛEV(Φbid
DIS) =

T

∑
t=1

NA

∑
a=1

f2(Φbid
DIS(a, t), PDIS(a, t)) (16)

ΛG(Φbid
G ) =

T

∑
t=1

NG

∑
g=1

f3(Φbid
G (g, t), PG(g, t)) (17)

where ΛG(Φbid
G ) denotes the surpluses of generating companies, ΓEV(Φbid

CH) and ΛEV(Φbid
DIS) represent

the surpluses of EV charging and discharging, respectively. Φbid
G , Φbid

CH and Φbid
DIS denote the bid curves

of generating companies, charging and discharging bids of EV aggregators, respectively. The payoff
function f1 and the cost function f2 depend on the characteristics of Φbid

CH and Φbid
DIS of the a-th

aggregator at time slot t, denoted as Φbid
CH(a, t) and Φbid

DIS(a, t) respectively. The payoff function f 3

generally depends on Φbid
G of the g-th generation company at time t, denoted as Φbid

G (g, t).
Both the conventional constraints such as generator output limits and the capacities of the EV

aggregators have to be accommodated in the market clearing model, as shown in (18)–(23):

NG

∑
g=1

PG(g, t)−
NB

∑
i=1

PD(i, t)−
NA

∑
a=1

(PCH(a, t)− PDIS(a, t)) = 0 (18)

NG

∑
g=1

ψi(g)PG(g, t)−
NA

∑
a=1

ϕi(a)(PCH(a, t)− PDIS(a, t))− PD(i, t) =
NB

∑
j=1

Bijδij(t) (19)

− PFmax
ij ≤ Bijδij(t) ≤ PFmax

ij (20)

Pmin
G (g) ≤ PG(g, t) ≤ Pmax

G (g) (21)

Pmin
CH (a, t) ≤ PCH(a, t) ≤ Pmax

CH (a, t) (22)

Pmin
DIS(a, t) ≤ PDIS(a, t) ≤ Pmax

DIS (a, t) (23)

where (18) represents the balance constraint between power supply and load demand; Equation (19)
denotes the DC power flow equations, and δij(t) denotes the voltage angle difference between bus
i and j at time t; Equation (20) represents the transmission capacity constraints based on DC power
flow; Equations (21)–(23) represent the power output limits of the generating units, charging and
discharging power limits of the aggregators, respectively. ψi(g) and ϕi(a) are binary parameters; if the
generating unit g or the aggregator a is located at bus i, then ψi(g) or ϕi(a) equals to 1, respectively.

In the above day-ahead market clearing model, both the EV aggregators and generating companies
are exposed to potential risks introduced by unexpected day-ahead market clearing price profiles.
Generally, the market clearing price fluctuations have more influences on the revenue of EV aggregators,
as they do not have specific cost functions, while generating companies have more clear cost
functions. The issue of mitigating negative impacts of uncertain market prices will be addressed
in the next section.
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4. Market Clearing Procedure and Bidding Strategy for EV Aggregators

4.1. Market Clearing Procedure

It is assumed that the day-ahead market opens for bids/offers from time T1 to T2 ahead of the
operating day, and the procedures are detailed as follows. In the aforementioned bidding strategy
model, the market price ρ(t) is included and deemed known. Take the day-ahead electricity market as
an example, the actual ρ(t) profiles will remain unknown to all the market participants before market
clearing. As a result, the aggregators normally have to predict ρ(t) in determining the EV charging and
discharging schedules. Since prediction error always exists, some economic risks will be inevitable.
To mitigate such risks, a multi-auction based bidding strategy is introduced here, and the procedures
are detailed as follows:

(1) Both generating companies and EV aggregators are able to submit their bids/offers for the
next trading day during the period from T1 to T2. The bidding clearing system displays the
current/temporary market clearing results based on the received bids/offers at T1 and the
maximum social welfare model discussed in Section 3.

(2) Based on the current/temporary market clear results and market price ρ⊗(T1), generating
companies and EV aggregators can then update their bids/offers {Φbid

CH(a, t), Φbid
DIS(a, t)} or

Φbid
G (g, t) if necessary.

(3) The bidding clearing system displays the current/temporary results based on the updated
bids/offers from market participants periodically before T2. Similarly, EV aggregators and
generating companies can revise their bids/offers before T2, when the day-ahead market
eventually clears.

(4) The bidding clearing system clears the day-ahead market after T2, and publishes the final market
clearing results. The EV aggregators will formulate the detailed charging and discharging
schedules, denoted as {P∗ch(a, e, t), P∗dis(a, e, t)}, for each EV concerned based on the final
successful bids.

The flowchart of the market clearing procedure is demonstrated in Figure 1. Many papers
have developed bidding strategies for generating companies [40–42]. Due to space limitations,
the generating companies are assumed to submit supply offers that are based on their actual cost
functions and expected profit margin. It is also assumed that the generating companies prefer to
exaggerate their supply offers at first, and gradually lower their bid prices if their provisional cleared
results have not reached their full capacities. The bidding strategy for EV aggregators will be discussed
in the following sections.
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4.2. Bidding Constraints for EV Aggregators

Each aggregator’s bids for EV charging and discharging schedules are always limited by the
availabilities, capabilities and statuses of the EVs concerned. For the e-th EV from the a-th aggregator
with an initial optimal schedule of {P∗ch(a, e, t), P∗dis(a, e, t), S∗E(a, e, t)}, its flexibility throughout the
trading period can be formulated as:

Pup
ch (a, e, t) = min{

BE(Smax
E (a, e)− S∗E(a, e, t))

κch∆t
, Pmax

ch (a, e)− P∗ch(a, e, t)} (24)

Pdw
ch (a, e, t) = min{

BE(S∗E(a, e, t)− Smin
E (a, e))

κch∆t
, P∗ch(a, e, t)} (25)

Pup
dis(a, e, t) = min{

κdisBE(S∗E(a, e, t)− Smin
E (a, e))

∆t
, Pmax

dis (a, e)− P∗dis(a, e, t)} (26)

Pdw
dis (a, e, t) = min{

κdisBE(Smax
E (a, e)− S∗E(a, e, t))

∆t
, P∗dis(a, e, t)} (27)

where ∆t denotes the specified time interval.
Equations (24)–(27) can be used to calculate the schedulable capacities of the EV. However, in these

equations the inter-temporal characteristics of the EV charging process are not taken into account.
Thus, the results obtained by (24)–(27) can be seen as optimistic estimations.

The optimal schedule of aggregator a can be obtained through (28) and (29):

P∗CH(a, t) =
NE(a)

∑
e=1

P∗ch(a, e, t) (28)
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P∗DIS(a, t) =
NE(a)

∑
e=1

P∗dis(a, e, t) (29)

Nevertheless, the schedulable charging and discharging power of a fleet of EVs is much harder
to estimate than that of a single EV. Even with the EV charging contracts, Tst and SE0 are still flexible
parameters. In this work, these two parameters are assumed to follow normal distributions, and their
mean values will be employed by the aggregators in bidding to the market. An adaptive estimation
can be done through (30) and (31), while the risk factors χ

up
CH , χdw

CH , χ
up
DIS and χdw

DIS with ranges from 0
to 1 can be introduced based on the aggregator’s risk preference:

Pup
CH(a, t) = χ

up
CH

NE(a)

∑
e=1

Pup
ch (a, e, t), Pdw

CH(a, t) = χdw
CH

NE(a)

∑
e=1

Pdw
ch (a, e, t) (30)

Pup
DIS(a, t) = χ

up
DIS

NE(a)

∑
e=1

Pup
dis(a, e, t), Pdw

DIS(a, t) = χdw
DIS

NE(a)

∑
e=1

Pdw
dis (a, e, t) (31)

4.3. Bidding Strategy

For any given electricity market price ρ(t), each EV aggregator could attain its optimal EV
charging and discharging schedule based on the model demonstrated in (4)–(13). Thus, different ρ(t)
profiles will result in various optimal EV charging schedules that significantly differ from one another.
An appropriate strategy is vital for the aggregators to adjust bidding prices and EV charging and
discharging schedules so as to cover the possible fluctuations of ρ(t).

With the optimal schedule {P∗CH(a, t), P∗DIS(a, t)} of aggregator a, the bidding curves demonstrated
in Figure 2 can be employed by this aggregator to attain its optimal solution. Generally, two cases are
likely to occur:

Case 1: P∗CH(a, t) ≥ 0, P∗DIS(a, t) = 0. This means that aggregator a prefers to purchase power
from the market to charge its EVs. A bidding block with the optimal charging power of P∗CH(a, t) and
the bid price higher than ρ(t) will be employed so as to win the bid. At the same time, aggregator a
also has the capability to increase its charging power by Pup

CH(a, t) if the price is lower than ρ(t). If the
price is high enough for compensating the discharging cost, the aggregator may also discharge power
to the power system with a maximum power output of Pup

DIS(a, t).
Case 2: P∗DIS(a, t) ≥ 0, P∗CH(a, t) = 0. This means aggregator a prefers to sell power to the market

by discharging its EVs. Similarly, a bidding block with the discharging power of P∗DIS(a, t) and a bid

price lower than ρ(t) will be employed. The discharging power may be added up by Pup
DIS(a, t) with

a bid price higher than ρ(t). If the price is lower than the bid price for discharging P∗DIS(a, t), the

aggregator may instead purchase power from the system with a maximum capacity of Pup
CH(t).

The next step is to determine the bid price of each power block. To accommodate the charging
requirement of EV customers, the total needed energy of an aggregator is approximately a fixed value.
Consequently, the increase/decrease of charging power at one time slot implies the decrease/increase
of charging power at another time slot. In this work, the bid prices are derived from ρ(t) at the
‘marginal’ period Tmar. Define Tmar(a) as the set of the marginal time slots for aggregator a, and
Tmar(a) ⊆ T, and (32) must be respected for ∀t ∈ Tmar:

Pup
CH(a, t)Pdw

CH(a, t) + Pup
DIS(a, t)Pdw

DIS(a, t) > 0 (32)

Equation (32) represents that at any given time slot t, if the aggregator a has the possibility to
increase/decrease its original charging/discharging schedules without violating the requirements of
its customers, t will be seen as a marginal time slot, and vice versa. For example, the time periods
that the aggregator has to fully charge their EVs to accommodate the demand of EV owners, and
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the periods that not a single EV is parked for charging/discharging services, will not be considered
as marginal time periods. Thus, the price data at these non-marginal period will be ignored by the
aggregators, as they will not influence the shifting of EV charging/discharging schedules.

Energies 2017, 10, 144 10 of 21 

 

its customers, t will be seen as a marginal time slot, and vice versa. For example, the time periods 
that the aggregator has to fully charge their EVs to accommodate the demand of EV owners, and 
the periods that not a single EV is parked for charging/discharging services, will not be considered 
as marginal time periods. Thus, the price data at these non-marginal period will be ignored by the 
aggregators, as they will not influence the shifting of EV charging/discharging schedules. 

 
Figure 2. Bidding curves for the a-th aggregator with given market prices of electricity: (i) bids to 
charge the EVs; (ii) bids to discharge the EVs. 

The bid prices for the charging demand can be calculated as: 

( , ) min{ ( ) | ( )}
( , ) max{ ( ) | ( )}

up
CH mar
dw
CH mar

a t t t T a

a t t t T a

λ ρ
λ ρ
 = ∈
 = ∈

 (33)

As mentioned before, battery discharging will incur extra cost to the aggregator, hence in the 
bid prices for the discharging power this extra cost should be considered and further the bid prices 
can be calculated as follows: 

( , ) max{ ( ) | ( )}
( , ) min{ ( ) | ( )}

up
DIS dis dis mar
dw
DIS dis dis mar

a t t c r t T a

a t t c r t T a

λ ρ
λ ρ

 = + + ∈
 = + + ∈

 (34)

However, the bid prices in (34) underestimate the cost for providing or scheduling V2G power. 
If aggregator a increases its discharging power by ( , )DISP a tΔ , it will have to purchase an additional 
charging power of ( , )CHP a tΔ  to meet the customers’ charging requirement, as shown in (35): 

1( , ) ( , )CH DIS
ch dis

P a t P a t
κ κ

Δ = Δ  (35)

Besides, w  in (7) should also be considered in determining the discharging bid prices, then 
(34) can be modified as: 

Figure 2. Bidding curves for the a-th aggregator with given market prices of electricity: (i) bids to
charge the EVs; (ii) bids to discharge the EVs.

The bid prices for the charging demand can be calculated as:{
λ

up
CH(a, t) = min{ρ(t) | t ∈ Tmar(a)}

λdw
CH(a, t) = max{ρ(t) | t ∈ Tmar(a)}

(33)

As mentioned before, battery discharging will incur extra cost to the aggregator, hence in the bid
prices for the discharging power this extra cost should be considered and further the bid prices can be
calculated as follows: {

λ
up
DIS(a, t) = max{ρ(t) + cdis + rdis | t ∈ Tmar(a)}

λdw
DIS(a, t) = min{ρ(t) + cdis + rdis | t ∈ Tmar(a)}

(34)

However, the bid prices in (34) underestimate the cost for providing or scheduling V2G power.
If aggregator a increases its discharging power by ∆PDIS(a, t), it will have to purchase an additional
charging power of ∆PCH(a, t) to meet the customers’ charging requirement, as shown in (35):

∆PCH(a, t) =
1

κchκdis
∆PDIS(a, t) (35)

Besides, w in (7) should also be considered in determining the discharging bid prices, then (34)
can be modified as:  λ

up
DIS(a, t) = max{ρ(t) | t∈Tmar(a)}+w

κchκdis
+ cdis + rdis

λdw
DIS(a, t) = min{ρ(t) | t∈Tmar(a)}+w

κchκdis
+ cdis + rdis

(36)
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Thus, Φbid
CH(a, t) and Φbid

DIS(a, t) can be obtained through (33) and (36), as well as Figure 2. cdis and
w are very expensive compared with the average day-ahead energy prices, and this makes the bid
prices for discharging much higher than that for charging. In general, it is only possible for the EV
owners to discharge their batteries in real-time, balancing or ancillary service markets for high prices
to compensate the discharging costs. Nonetheless, the bid prices in (33) and (36) are applicable not
only in day-ahead market, but also in real-time and ancillary service markets.

If the aggregators do not get enough power supply from the day-ahead electricity market or
bilateral contract market to supply their EV charging demands, they will have to purchase in the
real-time market or balancing market with high and volatile electricity prices, and hence more cost will
be incurred for the aggregators. Thus, the accommodation of the constraint shown in (37) is desirable
in the bidding procedure so as to meet the total energy requirements of the aggregators:

T

∑
t=1

(κchP∗CH(a, t)−
P∗DIS(a, t)

κdis
) =

T

∑
t=1

(κchP∗0CH(a, t)−
P∗0DIS(a, t)

κdis
) (37)

However, (37) cannot be automatically guaranteed during the market clearing process. Thus,
correction terms that consider the successful bids in the previous published market clearance results
are introduced to revise the bids in (33) and (36). Binary variables µo(a,k) and µu(a,k) are assumed to
have positive values if the k-th provisional cleared total EV charging energy of the a-th EV aggregator
is higher or lower than the estimated daily energy requirement. Equation (33) can be modified as:{

λ
up
CH(a, t) = min{ρ(t) | t ∈ Tmar(a)} × (1 + µu(a, k)(1− k+1

Kmax
)ϑ)

λdw
CH(a, t) = max{ρ(t) | t ∈ Tmar(a)} × (1− µo(a, k)(1− k+1

Kmax
)ϑ)

(38)

where Kmax denotes the maximum rounds that the bidding clearing system will display provisional
market clearing results, ϑ denotes the correction coefficient. If µo(a,k) = 1, λdw

CH(a, t) will be decreased
to reduce the successful EV charging energy; If µu(a,k) = 1, λ

up
CH(a, t) will be increased so that more

charging power is likely to be cleared. The bid prices in (37) can be handled similarly.

4.4. Bidding Procedures of EV Aggregators

Based on the market clearing process discussed in Section 4.1 and the bidding strategy proposed
in Section 4.3, the bidding procedure of the a-th EV aggregator in day-ahead market can be summarized
as follows.

(1) Aggregator optimizes its initial energy schedules {P∗0CH(a, t), P∗0DIS(a, t)} for the next operating
day based on the forecast day-ahead market price and the estimated behaviors of EVs based
on (5)–(13).

(2) Formulate the energy bids/offers {Φbid
CH(a, t), Φbid

DIS(a, t)} based on the calculated {P∗0CH(a, t),
P∗0DIS(a, t)} and bidding strategy shown in (33)–(38), and submit the bids/offers to the system
operator when the day-ahead market opens at T1.

(3) Revise the energy bids/offers based on the temporary market clearing price based on (33)–(38),
until the day-ahead market closes at T2. It should be noted that the modification of {Φbid

CH(a, t),
Φbid

DIS(a, t)} does not require solving the model (5)–(13), which reduce the computational burdens.

5. Numerical Results

A modified version of the IEEE 30-bus system with six generating units is used for demonstrating
the proposed model and method. The data of generating units are listed in Table 1, and MU stands for
the monetary unit associated. Several assumptions are adopted in the simulation:

(1) There are three EV aggregators, respectively, located at buses 7, 17 and 26, and each aggregator
has 5000 registered EVs.
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(2) For all EVs registered with an aggregator, Ten and S⊕E follow the normal distributions of N(7 a.m.,
1 h) and N(80%, 3%), respectively. Tst and SE0 follow the normal distributions of N(6.5 p.m., 1 h)
and N(30%, 5%), respectively. Ten and S⊕E are fixed values in the EV charging contracts, while Tst

and SE0 are estimated by each aggregator.
(3) It is assumed that all EVs are the same, and share same parameters as well as charging and

discharging limits. Detailed EV data are listed in Table 2.
(4) All generating companies will exaggerate their bid prices by 10% at first. The exaggerated

parts will be lowered to 0 during the market clearing process, if their full capacities have not
been reached.

The proposed bidding strategy of EV aggregators and the day-ahead market clearing model are
solved by the commercial solver AMPL/CPLEX [8]. The estimated travel pattern data of EVs are
sampled based on the abovementioned normal distributions before optimizing the day-ahead energy
schedules. The actual data of EVs at the operating day will be separately sampled, and used by the
aggregators to allocate their successful day-ahead bids.

Table 1. Data of generating units.

Generator No. Bus No. ag
(MU)

bg
(MU/MW)

cg

(MU/MW2)
Pmin

G
(MW)

Pmax
G

(MW)
Expected Profit

Margin (%)

1 1 4650 216 4.48 30 80 10
2 2 4400 198 5.12 30 80 10
3 13 3550 192 4.8 10 50 8
4 22 3220 172 6.48 15 45 7
5 23 2830 240 4.2 10 30 5
6 27 2670 233 4.88 10 40 5

Table 2. Data of EV parameters.

Pmax
ch (kW) 3.3 Smax

E 100%
Pmax

dis (kW) 3.3 Smin
E 10%

κch 93% cdis + rdis (MU/kWh) 0.90
κdis 90% w (MU/kWh) 0.30

BE (kWh) 28

5.1. Simulation Results

A typical load curve with an afternoon peak of 245.1 MW and a night valley of 152.3 MW is
selected as the uncontrollable load profile. The maximum charging load of all EVs is 49.5 MW, and
is around 20% of the maximum uncontrollable load. χ

up
CH , χdw

CH , χ
up
DIS and χdw

DIS in (30) and (31) are all
set to 1 (the most optimistic value). The day-ahead market opens for bids/offers during 08:00~12:00,
and the bidding clearing system publishes the provisional market clearance results in every half hour.
The system load profiles during the bidding process are demonstrated in Figure 3. The error between
the final cleared results and the provisional market clearing results at 11:00 is less than 1.0%, which
means that the bidding process converges in six iterations. Three EV aggregators are assumed to
have different market forecasts at the beginning of the day-ahead market bidding period, and are
demonstrated in Figure 4 with the final day-ahead market clearing price. Their temporary cleared
energy bids at 08:00 and final cleared bids after 12:00 are shown in Figure 5. The average SoC profile of
each EV aggregator based on the final cleared day-ahead market bids is demonstrated in Figure 6.

The SoC profiles of four EVs of the third EV aggregator are demonstrated in Figure 7. The EV
charging will be scheduled based not only on the stochastic parameters such as Tst and Ten, but also on
the proposed strategies considering the market bidding process and clearing prices. In Figure 7, EV-2
started charging its battery as soon as it plugged into the grid, while EV-1 waited for a couple of hours
before the charging finally started. On the other hand, EV-2 will be charged to S⊕E hours ahead of Ten,
thus the charger will stay idle in the early morning.
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As can be clearly observed from Figure 7, the charging behaviors of EVs have been scheduled
and shifted through the proposed strategies.

5.2. Analysis of Simulation Results

Statistics of the simulation results are demonstrated in Table 3, where the social welfare is
calculated assuming that the inelastic loads will bid at a fixed price of 1000 (MU/MWh). In the test
cases, three EV aggregators have different forecasts of the day-ahead market prices in determining
their initial EV charging schedules. Thus, their initial successful bids vary significantly from one
another, as shown in Figure 5. However, their final cleared energy bids are more similar in Table 3.
The current/temporary bidding clearing results are helpful for the aggregators to formulate reasonable
market bids/offers with the absence of perfect market price estimation. At the same time, the social
welfare will be improved as well. The daily charging requirements of EV aggregators can be mostly
accommodated, with an average error of 2.8%. In Table 3, the cleared energy for the 3rd aggregator is
less than its daily requirement, thus its average SoC profile is lower than the other aggregators at the
end of the charging period in Figure 6. As a result, it has to make additional purchase in other markets
such as the real-time market to fulfill the charging demand of its EVs.
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Table 3. Statistics of the simulation results.

EV Aggregator
Required

Daily Energy
(MWh)

Cleared Daily
Energy (MWh)

Total Charging
Cost (MU)

Social Welfare
(MU)

Provisional market
clearance at 08:00

1st aggregator 75.50 57.17 3.55 × 104

9.97 × 1052nd aggregator 75.34 121.13 7.52 × 104

3rd aggregator 75.15 0.00 0.00

Final market
clearance after 12:00

1st aggregator 75.50 76.96 4.36 × 104

1.30 × 1062nd aggregator 75.34 77.86 4.41 × 104

3rd aggregator 75.15 72.60 4.12 × 104

As shown in Figure 5 and Table 3, the daily energy demands of all the aggregators are satisfied
practically based on proposed bidding strategy, despite the fact that their forecasted day-ahead market
prices before have great differences. In this case study, both the 2nd and the 3rd aggregator have
extremely bad predictions on the shape of market clearing price, thus their initial cleared energy bids
are either way above or below their required daily energy demand for EV charging services. The 1st
aggregator, on the other hand, only clears 76% of its daily energy demand with its good knowledge of
the final market clearing prices. Through the proposed bidding strategy, the successful energy bids of
EV aggregators become much closer to their actual daily demand, which are irrelevant to their forecast
accuracies of market clearing prices. Several conclusions can be drawn based on the results in Figure 5
and Table 3:

(1) Market clearing prices are influenced synthetically by the behaviors of generation companies
and users, and their volatilities and uncertainties make it difficult for EV aggregators to make
perfect estimation of. As a result, even the aggregators with near-perfect price estimations are not
guaranteed to fulfill their energy demand due to the uncertainties of market clearing prices.

(2) The proposed bidding strategy enables the EV aggregators and other market participants to
modify their bids/offers through updated market information, so that EV aggregators are capable
to get their desirable energy bids in the market without the necessity to predict market clearing
prices. In this way, the aggregators are freed from the consideration of market price uncertainties
and the accompanied financial risks, like the 2nd and 3rd EV aggregators in the case study.

With the clearing results in the day-ahead electricity market, the aggregators will try to follow
their successful bids. On the other hand, as the aggregators submit their bids based on the overall
capacities of the EVs, it is possible that they are not able to strictly follow their cleared charging or
discharging bids. This can be explain from two aspects: (1) the predictions in (30) and (31) are too
optimistic; (2) the cleared day-ahead market bids may not be sufficient for the EV aggregators to charge
all their EVs to the agreed level based on the contracts. Thus, aggregators may have to deviate from
their successful day-ahead market bids to compensate the charging energy vacancy as well as the
unachievable EV charging/discharging power. In the test case, the maximum error between the load
curve in the situation with market clearing and the final load curve that the aggregators can achieve is
about 0.88MW. If the values of χ

up
CH , χdw

CH , χ
up
DIS and χdw

DIS are set to 0.8, the daily charging requirements
can be met for all three EV aggregators, while the maximum error can be reduced to 0.32 MW as well.

The results in Section 5.1 show that all the three EV aggregators will not discharge their batteries
in the day-ahead market, as the battery discharging cost (cdis + rdis) as well as all the distribution fees
and tariffs play important roles in determining the final bidding results of the EV aggregators. In this
test case, the day-ahead market price profile is relatively smooth, with the highest and lowest clearing
prices at 701.8 (MU/MWh) and 562.9 (MU/MWh), respectively. According to the battery discharging
bids shown in (36), the discharging of EV batteries is very economic-inefficient. Figure 8 demonstrates
two ideal cases where the overall battery discharging costs and distribution fees are considerably lower
than those in Table 2. As can be seen in Figure 8, with lowered discharging costs and distribution fees,
the system load during peak hours (16:00–20:00) will be decreased due to the EV battery discharging
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behaviors, and the discharged energy will be compensated at late night. Thus, the EV aggregators may
have incentives to discharge their batteries if the discharging costs and grid tariffs are significantly
lowered. However, EV aggregators generally are not willing to providing discharging services in
day-ahead energy markets considering cdis, rdis and w, as discussed in Section 4.3. Nonetheless, the
simulation results also illustrate that the battery discharging cost and the distribution tariffs must be
respected to attain an appropriate level of revenue for the aggregators and EV owners in deregulated
electricity markets.
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Moreover, two benchmark methods are introduced here to make comparisons with the proposed
bidding strategy:

Benchmark I: A traditional economic dispatch model minimizing the total system operating cost,
where the generating companies are paid by their true generating costs;

Benchmark II: Day-ahead market clearing without the proposed bidding clearing display
procedure, while each EV aggregator bids with the information of the final market price as described
in Figure 4. The optimal energy schedules of aggregators are obtained based on the final market price,
and the single block bid price for the optimized charging power is set to 1000 MU/MWh.

The schedule results of EVs attained by different methods and market frameworks are listed in
Table 4, where M1, M2, M3 and M4 represent the results of the provisional market clearing at 08:00,
final market clearing after 12:00, the results of Benchmark I, and II, respectively. The charging price λch
that EV aggregators offers their EV customers is set to 1000 MU/MWh.

Table 4. Comparisons of the EV schedule efficiencies with different strategies.

Strategy M1 M2 M3 M4

Total generated energy (MWh) 5040.1 5089.3 5087.9 5091.0
Total generating cost (MU) 2.463 × 106 2.487 × 106 2.486 × 106 2.489 × 106

Total generating income (MU) 3.979 × 106 3.702 × 106 2.486 × 106 3.706 × 106

Total generating profit (MU) 1.516 × 106 1.215 × 106 0.0 1.217 × 106

Total EV charging energy (MWh) 178.30 227.42 225.99 229.08
Total EV charging cost (MU) 1.11 × 105 1.29 × 105 1.19 × 105 1.33 × 106

Average EV charging price (MU/MWh) 622.55 567.23 526.57 578.67
Total EV charging income (MU) 1.78 × 105 2.27 × 105 2.26 × 105 2.29 × 105

Aggregators’ total profit (MU) 0.67 × 105 0.98 × 105 1.07 × 105 0.96 × 105

Computational time (s) 17.44 30.17 1059.04 16.92
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From Table 4, the following several points are noted:

(1) EV aggregators in M1 employ their estimated market prices in optimizing their energy schedules
and market bids, and the cleared results are generally much worse than the other strategies due
to price forecast errors. Nonetheless, the total generating profit is the highest, as the generating
companies tend to exaggerate their bids at first. Generating companies will prefer to decrease
their bidding prices in order to increase their cleared capacities at certain periods, which will
result in lower generating income in M2 eventually.

(2) The total EV charging energy with the strategy M2 is slightly higher than that with M3, since
the constraint (37) cannot be guaranteed through market bidding. Moreover, the results of M2

is comparable to the benchmark results of M3, which is an ideal case without the consideration
of deregulated market environments. As a consequence, the effectiveness of proposed market
bidding strategy demonstrates has been validated.

(3) M3 is considered the best strategy among all the strategies, in terms of the total generating cost,
total EV charging cost and the average EV charging price. It is reasonable since the SO in strategy
M3 will have perfect information of generating cost functions and EV driving behavior. However,
the centralized control structure ignores the surpluses of both the generating companies and
the EV aggregators, and the privacy of the EV customers cannot be protected at the same time.
Besides, it is also the most time consuming strategy, and more time will be required if even more
EVs are integrated into the power system. In comparison, the computational demand of the
proposed strategy M2 is significantly lower, as multiple small problems are solved instead of a
large problem.

(4) The result of M4 is quite similar to M2 by the proposed strategy. As the proposed market clearing
procedure proceed, the provisional market clearing prices will be stabilized, thus the reference
price of M2 is generally very close to the final market clearing price used for M4. It should
be noted that it is impractical that market participants are able to make perfect market price
predictions. The price forecast of the 1st EV aggregator is quite accurate, as shown in Figure 4.
However, its initial cleared bids can hardly be regarded satisfactory, as the daily charging demand
haven’t been met. As a result, the proposed market clearing procedure and bidding strategy
is feasible in helping EV aggregators and other market participants to alleviate financial risks
caused by market price forecast errors.

6. Conclusions

The problem of developing optimal bidding strategies for EV aggregators in a day-ahead electricity
energy market is addressed in this paper. The possible losses for scheduling EV charging and
discharging loads as well as the extra cost of EV battery life cycle losses are taken into account
in the proposed strategy. Simulation results with a revised version of the IEEE 30-bus system have
demonstrated the feasibility and effectiveness of the proposed bidding strategies in a decentralized
market structure, and the results are almost as good as those of the centralized structure with perfect
information. Thus, the proposed bidding strategies are effective in helping market participants such as
EV aggregators to handle the risks in day-ahead electricity energy markets.

The V2G function by discharging EV batteries does not make economic sense for EVs and their
aggregators in the electricity energy market considering the high discharging costs and distribution
tariffs. On the other hand, simulation results also show that V2G is economically feasible if discharging
costs and distribution tariff become considerably lower. Another promising business for EV battery
discharging is to participate in ancillary markets, where charging/discharging behaviors may bring
extra profits for the aggregators and the EV owners.
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Nomenclatures

BE Battery capacity of a single electric vehicle (EV)
Bij Element i-j of the susceptance matrix
CPB Battery purchase cost of a single EV
Dod Permitted battery discharging depth of each EV
LB Designed EV battery life cycles
NA Number of EV aggregators
NB Number of buses in the studied power system
NE(a) Number of EVs of aggregator a
NG Number of generating companies
PCH(a, t), PDIS(a, t) EV charging and discharging schedule of aggregator a
P∗CH(a, t), P∗DIS(a, t) Optimal EV schedule of aggregator a in the bidding process
P∗0CH(a, t), P∗0DIS(a, t) Optimal EV schedule of aggregator a before the bidding process starts
Pmax

CH (a, t), Pmin
CH (a, t) Maximum and minimum charging power of aggregator a at time t, respectively

Pup
CH(a, t), Pdw

CH(a, t)
Maximum increasable and reducible EV charging loads of aggregator a at time t,
respectively

Pmax
DIS (a, t), Pmin

DIS(a, t) Maximum and minimum discharging power of aggregator a at time t, respectively

Pup
DIS(a, t), Pdw

DIS(a, t)
Maximum increasable and reducible EV discharging loads of aggregator a at time t,
respectively

PD(i, t) Uncontrollable load of bus i at time t
PFmax

ij Maximum power flow limit of line i-j
PG(g, t) Active power output of generator g at time t
Pmax

G (g), Pmin
G (g) Maximum and minimum power output limits of generator g, respectively

Pch(a, e, t), Pdis(a, e, t) Charging and discharging power of EV e under aggregator a at time t, respectively
P∗ch(a, e, t), P∗dis(a, e, t) Optimal EV charging and discharging schedule of EV e under aggregator a
Pmax

ch (a, e), Pmax
dis (a, e) Maximum charging and discharging power of EV e under aggregator a, respectively

Pup
ch (a, e, t), Pdw

ch (a, e, t)
Maximum increasable and reducible EV charging loads of EV e under aggregator a
at time t, respectively

Pup
dis(a, e, t), Pdw

dis (a, e, t)
Maximum increasable and reducible EV discharging loads of EV e under
aggregator a at time t, respectively

SE(a, e, t) State-of-Charge (SoC) level of EV e under aggregator a at time t
S∗E(a, e, t) SoC profiles of EV e under aggregator a in its optimal schedule

Smax
E (a, e), Smin

E (a, e)
Maximum and minimum acceptable SoC levels of EV e under aggregator a,
respectively

T Time horizon considered
cdis Battery life cycle loss cost per unit discharging power
rdis Expected revenue per unit discharging power

uch(a,e,t)
Binary variable denoting the charging/discharging status of EV e of aggregator a at
time t

λ
up
CH(a, t), λdw

CH(a, t)
Bid prices to increase and decrease EV charging loads of aggregator a at time t,
respectively

λ
up
DIS(a, t), λdw

DIS(a, t)
Bid prices to increase and decrease EV discharging loads of aggregator a at time t,
respectively

κch, κdis EV battery efficiencies for charging and discharging, respectively
ρ(t) Day-ahead market price at time t
ρ⊗(t) Temporary day-ahead market clearing price during the bidding process
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