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Abstract: The uncertain and variable nature of renewable energy sources in modern power systems
raises significant challenges in achieving the dual objective of reliable and economically efficient
system operation. To address these challenges, advanced scheduling strategies have evolved during
the past years, including the co-optimization of energy and reserves under deterministic or stochastic
Unit Commitment (UC) modeling frameworks. This paper presents different deterministic and
stochastic day-ahead UC formulations, with focus on the determination, allocation and deployment
of reserves. An explicit distinction is proposed between the uncertainty and the variability reserve,
capturing the twofold nature of renewable generation. The concept of multi-timing scheduling is
proposed and applied in all UC policies, which allows for the optimal procurement of such reserves
based on intra-hourly (real-time) intervals, when concurrently optimizing energy and commitments
over hourly intervals. The day-ahead scheduling results are tested against different real-time dispatch
regimes, with none or limited look-ahead capability, or with the use of the variability reserve, utilizing
a modified version of the Greek power system. The results demonstrate the enhanced reliability
achieved by applying the multi-timing scheduling concept and explicitly considering the variability
reserve, and certain features regarding the allocation and deployment of reserves are discussed.

Keywords: deterministic programming; multi-timing scheduling; real-time dispatch; stochastic
programming; uncertainty reserve; variability reserve; wind integration

1. Introduction

Uncertain and variable conditions associated with increasing renewable generation in modern
power systems introduce prominent challenges in the optimal system operation and necessitate the
reinforcement of flexible resources to maintain appropriate levels of reliability. Unlike conventional
generating units, the production of renewable energy sources, like wind and solar power, cannot
be predicted with perfect accuracy (uncertainty) even with state-of-the-art forecasting methods [1–5],
especially as the lead-time between real conditions and relevant forecasts is increased [6,7]. Even
if renewable production were accurately forecasted, it still varies with time (variability) depending
on weather conditions, and these variations often occur at higher time resolutions [8–10] than the
ones considered in the market domain where the relevant schedules are produced. The impacts of
renewable uncertainty and variability have been studied extensively by researchers and industry [11–15],
universally recognizing the increasing need for power system flexibility, namely sufficient ramping
capability provided by conventional generation or possibly other resources in order to follow the
unpredictable and steep movements of the net load (load net of renewable production) in real-time
conditions. A failure to meet the system flexibility requirements is multifaceted; it can manifest as
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power balance violations, price spikes and high volatility of electricity prices, frequency deviations and
Area Control Error (ACE) augmentation, extensive use of regulation services to resolve the issue in
real time or undesirable out-of-market corrections (e.g., committing/keeping additional units online),
and often eventually relying on unavoidable curtailments of renewable generation.

To face these reliability challenges in an economically efficient manner with existing power
system infrastructure, advanced short-term scheduling strategies have evolved during the past years,
enriching the Unit Commitment (UC) paradigm [16]. Co-optimization of energy and ancillary services
in a deterministic modeling framework has been widely utilized by researchers and system operators,
to attain improved efficiency and derive price incentives for the actual provision of these services [17,18].
In deterministic UC (DUC), the net load is modeled as a single forecast and the associated uncertainty
is handled using ad-hoc reserve requirements, which can be fixed during the course of a day [19],
or vary on a multi-hourly [20] or hourly [21,22] basis. In [23–25], the load, conventional and wind
generation are considered as uncorrelated variables and the method of convolution is used to determine
the reserve amount for different LOLP values; however, the load and wind power variability is not
taken into account. Reference [26] presents a dynamic reserve quantification method for rolling
UC models with variable time resolution, like the one proposed in [27]; the approach takes into
account contingency events, as well as both load and wind power uncertainty and variability using the
standard deviation measure. In many cases, the literature underlines the need for defining different
reserves associated with normal operation of the power system (i.e., operating reserves), like the
regulating, load-following and ramping reserves. References [26,28–31] provide a comprehensive
review of probabilistic methodologies to quantify requirements for such operating reserves under
increased penetration of renewable generation.

Focusing on real-time operations, some United States system operators have lately introduced
in their deterministic real-time UC (RTUC) and dispatch (RTD) processes a specific ramping reserve
product (CAISO [32], MISO [33]). This product, commonly called “flexiramp”, is intended to reduce
the frequency of ramp shortages caused by renewable variability and uncertainty in the real-time market,
while producing sufficient price incentives for the eligible resources to actually provide their ramping
capacity. The reduction of ramp shortages and relevant price spikes in RTD upon the introduction of
the ramp product in CAISO is demonstrated in [34]. Navid et al. [35] analyze the trade-offs between
the additional costs of procuring ramp capability, and the respective cost savings achieved in the
real-time market. The operational implications of the ramp product on costs and system reliability
are further examined by Krad et al. in [36]; simulations corroborate the reduction in scarcity pricing
events caused by insufficient ramping capacity. In [37], Ela and O’Malley assessed the efficiency and
the incentive structure (for providing ramp) of time-coupled (look-ahead) real-time market clearing
models, as compared to incorporating ramp products and respective constraints in economic dispatch;
look-ahead optimization horizon in real-time markets can prove more efficient in terms of reliability,
however it may lack incentives as compared to the utilization of the ramp product. An efficient design
of the requirements for the ramp product, which utilizes Monte Carlo simulation, is proposed by
Wang et al. in [38]. References [32–38] focus on the incorporation of the ramp product in the real-time
markets. A dedicated analysis for a respective provision at the day-ahead stage is proposed in [31],
considering an efficient allocation of the real-time (intra-hourly) system ramping requirements within
the coarser (hourly) DUC optimization intervals utilized in day-ahead.

Stochastic programming [39] has gained significant attention as an alternative scheduling strategy
for handling the uncertainty associated with renewable generation. Instead of arranging a single net
load forecast and allocating pre-determined amounts of reserves, stochastic UC (SUC) considers a set
of possible net load realizations (scenarios) along with their respective probabilities of occurrence, and
minimizes the operating cost over all scenarios considered. The driving factor for SUC is that—by
actually accounting for different scenario realizations—the expected operating cost over all scenarios
can be reduced [40], as compared to DUC policies which do not consider the potential operating
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conditions explicitly. This omission in the DUC policies can be further deteriorating, if the actual
conditions deviate substantially from the assumptions made when determining the respective reserves.

Various researchers have proposed two-stage SUC formulations, where wind uncertainty is
arranged by either finding the optimal commitment of slow-start units in the first stage so that the
system can cope with all possible realizations of wind output at the second (real-time) stage [41–44],
or explicitly determining the required level of load-following reserves [45–47]. Bouffard et al. [45]
were among the first to present a two stage stochastic programming formulation that utilizes explicit
decision variables for reserves while considering external reserve bids by the various resources.
A similar two-stage formulation is utilized in [46] by Morales et al. for the quantification and economic
valuation of load-following reserves. Reserve procurement at the day-ahead (first) stage is treated
as a here-and-now decision, while reserve deployment is a wait-and-see decision determined at the
real-time (second) stage, after the scenarios are revealed. Sahin et al. [47] presented a stochastic
model for quantifying the appropriate spinning reserves, which can be provided by both generating
units and demand response providers. In [48], Wang et al. formulated a two-stage SUC model also
incorporating demand response, where demand response resources can be scheduled both in the
day-ahead and intra-day stage, depending on their relative responsive costs in each stage and their
particular operating constraints. A respective security-constrained stochastic approach by Wu et al. [49]
incorporates ramping costs and demonstrates the benefits of applying hourly demand response
in managing the increasing renewable variability. In [50–52], rolling stochastic unit-commitment
models are presented and tested against their deterministic counterparts, either utilizing coarse
(hourly or larger) time intervals [50] and making aggregations per generating unit technology [51],
or using higher and variable time resolution to achieve more robust results [52]. Focusing on the
utilization of the “flexiramp” product in RTUC [53] and RTD [54], Wang and Hobbs compared
costs between the deterministic model with ramping reserve requirements as in [32,34] and an ideal
stochastic model, which endogenously determines the optimal amount of ramp capability to be
acquired. Finally, Lee and Baldick [55] formulated a two-stage stochastic programming economic
dispatch model for the determination of the optimal energy and reserve schedules, while adding
simplified frequency constraints.

In this paper, we examine both deterministic and stochastic day-ahead UC policies with focus
on the determination, allocation and deployment of reserves. A fundamental distinction is proposed
between (a) the uncertainty reserve, the procurement of which is intended to arrange the net load
forecast errors, and (b) the variability reserve, the explicit procurement of which is intended to reduce
the probability for ramp shortages and relevant price spikes in RTD. The mathematical problem
formulations proposed for DUC and SUC policies minimize the costs of meeting the hourly net load
forecasted in day-ahead, including the costs of uncertainty and variability reserve procurement, as well
as the commitment costs. To enhance reliability, the concept of multi-timing scheduling is proposed and
applied appropriately in all UC policies, which allows for the determination and optimal allocation
of the uncertainty and variability reserves based on an intra-hourly (“real-time”) resolution, when
concurrently optimizing energy and the commitment status of the resources over longer scheduling
intervals (hours). A modified version of the Greek power system is utilized in the case studies and
detailed discussion is provided on the optimal allocation of the day-ahead uncertainty and variability
reserves to the available resources, based on the resources’ specific capacity and ramp rate capabilities
and their respective economic offers. Finally, in order to better simulate the real operation of the
power system and evaluate the attained margins of safety, the UC results (both DUC and SUC) are
tested against different RTD regimes, with none or limited look-ahead capability, or with the use of the
variability reserve determined by UC, to reveal several implications relative to the nature of RTD.
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The results demonstrate the enhanced reliability achieved in RTD by applying the multi-timing
scheduling concept and explicitly considering the variability reserve in day-ahead. The SUC policies
tend to allocate the reserves in lower cost resources (as compared to DUC policies) considering their
relative deployment cost, thus leading to cost reductions in RTD. However, SUC may occasionally
provide a more ramp-constrained schedule leading to ramp shortage augmentation in RTD. Also, the
correlation between the awarded uncertainty reserves in day-ahead UC and the deployed uncertainty
reserves (by the awarded resources) in RTD has proven higher in the stochastic cases.

The main contributions of this paper are summarized as follows: (a) an explicit distinction is
made between the uncertainty and the variability reserve, both falling into the general category of
operating reserves; (b) comparable methodologies and mathematical formulations are developed for
the DUC and SUC policies, based on the proposed multi-timing scheduling concept, utilizing a detailed
modeling of various generating unit operating states; (c) the two-stage SUC policy incorporates the
variability reserve extending previous literature, which mainly focuses on the arrangement of renewable
generation uncertainty; (d) a specific proposal is made for the quantification of the uncertainty and
variability reserve requirements in the DUC policy; and (e) the mathematical formulation of different
real-world RTD modes is presented and utilized for evaluating the UC results, instead of simply
interpreting the day-ahead scheduling outcome.

The remaining of this paper is organized as follows: Section 2 presents the problem formulation
of SUC and DUC policies, as well as the structure of different RTD regimes. Sections 3 and 4 describe
the case study and the scenario generation technique, respectively, utilized for the scope of this paper.
Numerical examples are provided in Section 5, whereas Section 6 concludes the paper.

2. Mathematical Problem Formulation

2.1. General Description

The aim of the day-ahead UC phase is to provide the available resources with their optimal
commitment status, their hourly energy schedules, and the binding reserve awards which will serve as
a tool (for the TSO) to hedge against uncertainty and inherent variability of the net load in real-time
conditions. To this end, a fundamental distinction is considered between (a) the uncertainty reserve,
the procurement of which is intended to address the net load forecast errors, and (b) the variability
reserve, the procurement of which is intended to reduce the probability of ramp (cf. capacity) shortages
and relevant price spikes in RTD. Other ancillary services such as contingency reserves, along with
possible unexpected outages in RTD, are not considered in this paper to maintain focus on normal
operating conditions.

In this context, the UC model (stochastic and deterministic approach) is formulated as
a co-optimization problem of energy, uncertainty and variability reserves, and constitutes a Mixed Integer
Linear Programming (MILP) model. External bid-costs are considered during cost minimization for
the provision of uncertainty and variability reserves, to allow for the commoditization of reserves
and sufficiently incentivize flexible resources to develop and provide their fast ramp capability.
For simplicity, the resources correspond to conventional thermal and hydro generating units; the
inclusion of other possible eligible resources such as storage, renewables and demand response in
the proposed models is straightforward. A detailed modeling of the generating unit start-up and
shut-down procedures is utilized at the day-ahead UC stage, which is followed accurately in RTD.

Most notably, the concept of multi-timing scheduling is proposed and applied appropriately in
the stochastic and deterministic UC policies. Multi-timing scheduling allows for the determination
and optimal allocation of the uncertainty and variability reserves based on an intra-hourly (real-time)
resolution, when simultaneously optimizing energy and the commitment status of the resources
over longer scheduling intervals (hours). Figure 1 depicts the fundamental concept of determining
the system uncertainty and variability reserve requirements (either inherently in the SUC policy,
or exogenously in the DUC policy) in the above context. As can be seen, the uncertainty reserve
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is aimed to cover the net load forecast errors, namely the possible mismatches between the hourly (h)
net load level forecasted day-ahead and the net load realized in each instance (t) of RTD, while the
variability reserve is aimed to cover the net load variations between successive intervals (t) in RTD,
with each variation being assigned as a respective requirement to the preceding real-time interval.Energies 2017, 10, 140 5 of 25 
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Figure 1. Definition of uncertainty and variability reserves.

We thereby maintain the legitimate simplicity of the hourly commitment and scheduling solutions
during the day-ahead stage. However, the utilization of real-time information and the coordination
with the time resolution of RTD when procuring the respective reserves (a) brings more accuracy and
efficiency on the system scheduled flexibility, by securing a dedicated capacity and ramping headroom
per each specific real-time interval; (b) enhances incentives for the provision of fast (real-time) ramp
capability at the scheduling stage, and thereof; (c) optimally arranges the increased net load variations
in RTD associated with high penetration levels of renewable generation.

2.2. Stochastic Unit Commitment (SUC)

The structure of the SUC model is divided into two stages (two-stage stochastic programming).
The first stage describes the day-ahead scheduling decisions (optimal commitment, hourly energy
schedules, uncertainty and variability reserve awards), while the second considers various possible
realizations of the power system operation through a set of net load scenarios, in order to determine the
optimal reserve awards of the first stage in an accurate and economic (in terms of actual deployment)
manner. Since the second stage models real-time operation, and in order to attain advanced flexibility
features in the scheduling results, the utilization of finer time resolution is proposed at this stage,
coordinated with the time-step of the RTD function, which addresses both the increased intra-hourly
forecast errors (uncertainty) and the steep intra-hourly system ramping requirements (variability) that
may occur during RTD.

2.2.1. Objective Function

The TSO total cost (1) to be minimized over the scheduling period consists of (in order of
appearance of the various terms): (a) the resources’ commitment (start-up and shut-down) costs; (b)
the hourly procurement (as-bid) costs of energy; (c) uncertainty and (d) variability reserves at the first
stage, as well as; (e) the intra-hourly deployment cost of the uncertainty reserve, along with the load
shedding and wind spillage cost, at the second stage, weighted by the respective probability of each
net load scenario:
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4 in case a quarterly resolution is applied.

2.2.2. Day-Ahead Market Constraints (1st Stage)

The constraints utilized in the first stage of the SUC model are scenario independent and apply to
each hourly interval h of the daily scheduling horizon. The following set (2)–(6) models the generating
unit operating states of synchronization (2), stepwise soak (3) based on hourly energy soak steps (4) as
pre-defined by the producer, and stepwise desynchronization (5) following a linear decrease rate (6).
For an analytical description of these constraints the reader is referred to [56].

usyn
ih =

h
∑

τ=h−Tsyn
i +1

yiτ ∀ i ∈ I, h ∈ H (2)

usoak
ih =

h−Tsyn
i

∑
τ=h−Tsyn

i −Tsoak
i +1

yiτ ∀ i ∈ I, h ∈ H (3)

psoak
ih =

Tsoak
i
∑

f=1
Psoak

i f · yi,h−(Tsyn
i + f−1) ∀ i ∈ I, h ∈ H (4)

udes
ih =

h+Tdes
i −1

∑
τ=h+1

ziτ ∀ i ∈ I, h ∈ H (5)

pdes
ih =

h+Tdes
i −1

∑
τ=h

ziτ · (τ − h) · Pmin
i

Tdes
i

∀ i ∈ I, h ∈ H (6)

Inequalities (7) and (8) denote the minimum up and down time constraints of the generating
units, respectively,

h
∑

τ=h−UTi+1
yiτ ≤ uih ∀ i ∈ I, h ∈ H (7)

h
∑

τ=h−DTi+1
ziτ ≤ 1− uih ∀ i ∈ I, h ∈ H (8)

while (9)–(13) describe the logical relations of the commitment binary variables.

uih = usyn
ih + usoak

ih + udisp
ih + udes

ih ∀ i ∈ I, h ∈ H (9)

yih − zih = uih − ui(h−1) ∀ i ∈ I, h ∈ H (10)

yih + zih ≤ 1 ∀ i ∈ I, h ∈ H (11)

uih ≥ yih ∀ i ∈ I, h ∈ H (12)

uih ≥ zi(h+1) ∀ i ∈ I, h ∈ H (13)

In (14) and (15), the hourly day-ahead energy schedule of each unit (pih) is coordinated with
the respective upward and downward uncertainty reserve, within the unit technical limits in every
operating state (i.e., synchronization, soak, normal dispatch or desynchronization). Apparently, the
uncertainty reserve can be allocated only during the phase of normal dispatch (i.e., unit operation
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between its technical minimum and maximum limit). The last term in the right-hand side of (14) is
used to equalize the output of a unit with its technical minimum production at the hour prior to the
desynchronization process, and is omitted for units with desynchronization time less than one hour.

pih + runcup

ih ≤ 0 · usyn
ih + psoak

ih + pdes
ih + Pmax

i · udisp
ih +

(
Pmin

i − Pmax
i

)
· zi(h+Tdes

i ) ∀ i ∈ I, h ∈ H (14)

pih − runcdn

ih ≥ 0 · usyn
ih + psoak

ih + pdes
ih + Pmin

i · udisp
ih ∀ i ∈ I, h ∈ H (15)

In (16), the hourly energy schedule of a unit is derived from the cleared quantities of all steps k of
the associated unit offer, while in (17) the cleared quantity of each step is limited by the offered size of
the step.

pih = ∑
k∈K

qihk ∀ i ∈ I, h ∈ H (16)

0 ≤ qihk ≤ Qmax
ihk ∀ i ∈ I, h ∈ H, k ∈ K (17)

Constraints (18) and (19) enforce the ramp rate limits on the unit power output between
consecutive hourly (∆UC) time intervals. The last terms in the right-hand side of (18) and (19) relax the
ramp limits during the synchronization, soak and desynchronization phases.

pih − pi(h−1) ≤ ∆UC · RUi · u
disp
ih + B ·

(
usyn

ih + usoak
ih

)
∀ i ∈ I, h ∈ H (18)

pi(h−1) − pih ≤ ∆UC · RDi · u
disp
ih + B ·

(
zih + udes

ih

)
∀ i ∈ I, h ∈ H (19)

Finally, in power balance Equation (20) the energy procured from all conventional generating
units covers the hourly net load forecasted at the day-ahead stage.

∑
i∈I

pih = Lh −Wh ∀ h ∈ H (20)

Within the scope of this paper, renewable generation is represented by wind production, which is
assumed to be a regulated (non-competitive) activity given dispatch priority, as is currently the case for
existing wind plants in most energy systems around the world. Thus, wind producers do not submit
offers in the market and the forecasted wind generation Wh is considered as negative demand in (20).
However, there is the possibility for wind generation to be spilled at extreme scenarios considered in
the second stage of the SUC model (see power balance Equation (31)).

2.2.3. Real-Time Operation Constraints (2nd Stage)

The multi-timing scheduling concept requires that the second stage of the SUC model (a) considers
the realization of a number of possible net load scenarios s based on the finer (intra-hourly) time
resolution t applying in RTD; (b) calculates the optimal uncertainty and variability reserve quantities
that are actually deployed in each real-time interval t and scenario s; and thereby (c) determines the
respective hourly uncertainty and variability reserves to be allocated to the various resources at the
day-ahead (first) stage.

More specifically, in equality (21), the upward (downward) uncertainty reserve deployed is
essentially the incremental (decremental) energy procured by unit i in scenario s and real-time interval
t, over the unit day-ahead schedule (pih) for the corresponding hour h. The resulting real-time schedule
pits is placed within the unit technical limits in every operating state, in constraints (22) and (23).
Note the special handling for the coordination of the real-time (t) variables with the respective hourly
(h) variables in the formulation of (21)–(23) (i.e., these constraints apply ∀ h ∈ H and simultaneously
∀ t ∈ Th).
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pits = pih + runcup

its − runcdn

its ∀ i ∈ I, h ∈ H, t ∈ Th, s ∈ S (21)

pits ≤ 0 · usyn
ih + psoak

ih + pdes
ih + Pmax

i · udisp
ih ∀ i ∈ I, h ∈ H, t ∈ Th, s ∈ S (22)

pits ≥ 0 · usyn
ih + psoak

ih + pdes
ih + Pmin

i · udisp
ih ∀ i ∈ I, h ∈ H, t ∈ Th, s ∈ S (23)

Note also, that by summing each side of (21) for all units i, the term in the left-hand side essentially
provides the real-time net load for scenario s and time interval t, the first term of the right-hand side
provides the hourly net load forecasted at the day-ahead stage, while the two latter terms provide the
respective system uncertainty reserve requirements in each direction, respectively, for the given scenario
s and real-time interval t. That is, the uncertainty reserve requirements per scenario s are determined
as the difference between the real-time net load and the respective hourly net load forecasted at the
day-ahead stage, in line with the relevant description provided in Figure 1.

Accordingly, in (24), the variability reserve deployed by unit i in each real-time interval t − 1 is
essentially the variation of the unit’s power output pits between the successive intervals t − 1 and t,
for a given scenario s. In case of positive variations, upward variability reserve is deployed, and vice
versa. The variability reserve deployed is in turn limited by the unit ramp capability over the length of
the real-time interval (∆RTD) in (25) and (26) for the upward and downward direction, respectively.

pits − pi(t−1)s = rvarup

i(t−1)s − rvardn

i(t−1)s ∀ i ∈ I, t ∈ T , s ∈ S (24)

0 ≤ rvarup

its ≤ ∆RTD · RUi ∀ i ∈ I, t ∈ T , s ∈ S (25)

0 ≤ rvardn

its ≤ ∆RTD · RDi ∀ i ∈ I, t ∈ T , s ∈ S (26)

Note again, that by summing each side of (24) for all units i, the left-hand side provides the
net load variations between successive real-time intervals t in each scenario s, while the right-hand
side provides the corresponding system variability reserve requirements; each net load variation
(i.e., between t − 1 and t) is assigned as a respective requirement to the preceding real-time interval
(i.e., t − 1), in line with the relevant description provided in Figure 1.

In order for the hourly uncertainty and variability reserves of the first stage to be calculated over
all (independent of the) scenarios considered at the second stage, the linking constraints (27) and (28)
are applied. In (27), the largest uncertainty reserve deployed by unit i among all real-time intervals
t belonging to hour h, and among all scenarios s of the second stage, defines the respective hourly
uncertainty reserve award of that unit for the given hour h. A similar approach is also applicable for
the variability reserve in (28). In this case, the hourly (first-stage) variability reserve award of a unit
(right-hand side of (28)) is defined based on the largest algebraic summation of the variability reserves
deployed by that unit within the given hour h, among all scenarios s of the second stage. In this context,
the unit is remunerated through the hourly variability reserve award for all real-time variations of
its power output expected to realize within said hour in RTD (since the TSO has hedged its position
against all real-time variations of the net load, respectively), acquiring stronger incentives to provide
its ramp capability in real-time conditions.

rm
its ≤ rm

ih ∀ i ∈ I, h ∈ H, t ∈ Th, s ∈ S, m ∈
{

uncup, uncdn
}

(27)

∑
t∈Th

rm
its ≤ rm

ih ∀ i ∈ I, h ∈ H, s ∈ S, m ∈
{

varup, vardn
}

(28)

With regard to the additional cost of deployment of the uncertainty reserve at the second stage, the
right-hand side of (29) determines the quantity deployed (positive if upward reserve is deployed, and
vice versa) per step k of the associated energy offer, and the relevant cost of deployment (energy cost)
is considered in the last term of the objective function (1). Note that a similar deployment (energy) cost
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for the variability reserve shall not explicitly be defined in (1), put it differently, the deployment of the
variability reserve refers to the variations of the unit output between consecutive real-time intervals
and not to the actual energy level in each specific interval. Inequalities (30) calculate the remaining
margins (in both directions) for uncertainty reserve deployment per step k of the unit energy offer,
as compared to the energy procured by that unit at the first stage (qihk).

runcup

its − runcdn

its = ∑
k∈K

runc
itsk ∀ i ∈ I, t ∈ T , s ∈ S (29)

−qihk ≤ runc
itsk ≤ Qmax

ihk − qihk ∀ i ∈ I, h ∈ H, t ∈ Th, s ∈ S, k ∈ K (30)

Finally, (31) enforces the power balance equation at the second stage of the SUC model, where the
possibility for load shedding and wind spillage in extreme scenarios is also considered.

∑
i∈I

pits =
(

Lts − lSh
ts

)
−
(

Wts − wSp
ts

)
∀ t ∈ T , s ∈ S (31)

2.3. Deterministic Unit Commitment (DUC)

In contrast to the SUC model, which determines the day-ahead uncertainty and variability reserve
awards inherently (i.e., through the consideration of different possible net load scenarios at the second
stage and the linking constraints), the DUC model calculates the optimal reserve allocation through
pre-determined reserve requirements defined rather exogenously. That is, the DUC model is similar to
the one presented in Section 2.2, but with the following exceptions: (a) constraints (21)–(31) pertaining
to the second stage of the SUC model are replaced by (32), (33) and (38)–(42) presented hereinafter;
and (b) the last term of the objective function (1) (regarding the deployment cost of the uncertainty
reserve) is apparently omitted. Then, the DUC problem formulation is as follows:

Min FDUC, subject to (2)–(20), (32), (33), (38)–(42)

Constraints (32) and (33) ensure that the total contribution in each type of reserve meets the
associated system requirements:

∑
i∈I

rm
ih ≥ Reqm

h ∀ h ∈ H, m ∈
{

uncup, uncdn
}

(32)

∑
i∈I

rm
it ≥ Reqm

t ∀ t ∈ T , m ∈
{

varup, vardn
}

(33)

The multi-timing scheduling concept in the DUC policy requires that the reserve requirements
are determined as per the following formulas (34)–(37) utilizing real-time information for both types
of reserves (uncertainty and variability), according to the relevant description of Figure 1. In (34)/(35),
the largest difference between the hourly net load forecasted at the day-ahead stage and the real-time
net load (considering all corresponding intervals t and scenarios s) determines the upward/downward
uncertainty reserve requirement for hour h. Accordingly, in (36)/(37), the largest variation of the net
load between successive real-time intervals t and t + 1 (considering all scenarios s) determines the
upward/downward variability reserve requirement for real-time interval t.

Requncup

h = Max
s∈S, t∈Th

[0, (Lts −Wts)− (Lh −Wh)] ∀ h ∈ H (34)

Requncdn

h = Max
s∈S, t∈Th

[0, (Lh −Wh)− (Lts −Wts)] ∀ h ∈ H (35)

Reqvarup
t = Max

s∈S

[
0,
(

L(t+1)s −W(t+1)s

)
− (Lts −Wts)

]
∀ t ∈ T (36)



Energies 2017, 10, 140 10 of 25

Reqvardn
t = Max

s∈S

[
0, (Lts −Wts)−

(
L(t+1)s −W(t+1)s

)]
∀ t ∈ T (37)

Note that the load and wind power dataset utilized for the quantification of the deterministic
reserves essentially comprises the same real-time scenarios s also considered in the stochastic approach
(second stage), for homogeneity purposes. Nevertheless, the same methodology (34)–(37) can also
be implemented on the initial (historic) load and wind power dataset utilized for the creation of
scenarios (Section 4), replacing the Max criterion by a certain percentile (e.g., 99%) of the respective
error/variation probability distributions. In any case, the herein approach provides an accurate method
of quantifying the deterministic reserves, which is comparable to the respective SUC functionality at
the second stage, as compared to utilizing trial-based values [41] or simplified/heuristic approaches
for determining the reserve requirements (e.g., a constant requirement representing a certain fraction
of the peak load [43], or the 3 + 5 rule [12]), or not imposing reserve requirements in the DUC policy
at all.

Moreover, the variability reserve requirements are explicitly determined in (36) and (37) per
real-time interval t, and allocated to the eligible resources based on their real-time ramp capability
through the following constraints (38) and (39). These constraints are similar to (25) and (26) of the
SUC model, and are used to allocate the variability reserve to faster resources in case of increased
intra-hourly net load variations expected in RTD:

rvarup

it ≤ ∆RTD · RUi · u
disp
ih ∀ i ∈ I, h ∈ H, t ∈ Th (38)

rvardn

it ≤ ∆RTD · RDi · u
disp
ih ∀ i ∈ I, h ∈ H, t ∈ Th (39)

The respective hourly variability reserve award of each unit is then calculated in (40) (similarly to
constraint (28) of the SUC model):

∑
t∈Th

rm
it = rm

ih ∀ i ∈ I, h ∈ H, m ∈
{

varup, vardn
}

(40)

Finally, the following constraints (41) and (42) are additionally enforced in the DUC model, in order
to delimit the upward and downward variability reserve award of a unit in the range Pmax

i − Pmin
i .

pih + rvarup

ih − runcdn

ih ≤ 0 · usyn
ih + psoak

ih + pdes
ih + Pmax

i · udisp
ih ∀ i ∈ I, h ∈ H (41)

pih − rvardn

ih + runcup

ih ≥ 0 · usyn
ih + psoak

ih + pdes
ih + Pmin

i · udisp
ih ∀ i ∈ I, h ∈ H (42)

The utilization of the downward uncertainty reserve in a counteractive manner to the upward
variability reserve in the left-hand side of (41) is motivated by the following possible outcome noticed
in the SUC model respectively: a unit is scheduled at its maximum level in a given hour at the first
stage, in parallel receives a downward uncertainty reserve award for that hour (obtained due to a low
scenario at the second stage), while at the same time the unit receives an upward variability award
(i.e., the unit was ramping up in said low scenario at the second stage). That is, in case the low scenario
actually materializes in real time, the unit is expected to be producing at a lower level, thereby also
being able to ramp-up in the given hour. A respective concept also applies to constraint (42) for the
downward direction.

2.4. Real-Time Dispatch (RTD)

The RTD function is utilized in this paper in order to evaluate the scheduling results of any UC
policy (stochastic and deterministic approach). Elsewhere, the literature often determines the expected
cost in real-time operation directly from the solution of the SUC model (cost of each scenario at the
second stage multiplied by the respective probability of occurrence), e.g., [46], or by implementing
additional Monte Carlo simulations for a number of net load realizations, each one solved one-shot
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for the whole scheduling horizon based on the commitments produced by the UC process, e.g., [41].
In order to replicate more accurately the RTD applications in real world and reveal some implications
relative to the nature of the RTD regime used, the deterministic RTD, herein, is simulated as a rolling
dispatch procedure (i.e., solved sequentially for each real-time interval), with none or limited [57]
look-ahead capability, or with the use of the variability reserve [32–35] determined by the UC application.
The baseline RTD mathematical formulation is the following:

MinFRTD = ∆RTD

∆UC ·
{

∑
i∈I

∑
t∈T RTD

∑
k∈K

(
qitk · Cen

itk
)
+ ∑

t∈T RTD

(
lSh
t · CSh

t + wSp
t · C

Sp
t

)
+ ∑

i∈I
∑

t∈T RTD

(
de f varup

it + de f vardn

it

)
· Cde f

t

}
(43)

pit = pih + runcup

it − runcdn

it ∀ i ∈ I, t ∈ T RTD
h (44)

pit ≤ 0 · usyn
ih + psoak

ih + pdes
ih + Pmax

i · udisp
ih ∀ i ∈ I, t ∈ T RTD

h (45)

pit ≥ 0 · usyn
ih + psoak

ih + pdes
ih + Pmin

i · udisp
ih ∀ i ∈ I, t ∈ T RTD

h (46)

pit − pi(t−1) ≤ ∆RTD · RUi · u
disp
ih + B ·

(
usyn

ih + usoak
ih

)
∀ i ∈ I, t ∈ T RTD

h (47)

pi(t−1) − pit ≤ ∆RTD · RDi · u
disp
ih + B ·

(
udes

ih + zih

)
∀ i ∈ I, t ∈ T RTD

h (48)

pit = ∑
k∈K

qitk ∀ i ∈ I, t ∈ T RTD
(49)

0 ≤ qitk ≤ Qmax
itk ∀ i ∈ I, t ∈ T RTD, k ∈ K (50)

∑
i∈I

pit =
(

Lt − lSh
t

)
−
(

Wt − wSp
t

)
∀ t ∈ T RTD (51)

pit + rvarup

it ≤ 0 · usyn
ih + psoak

ih + pdes
ih + Pmax

i · udisp
ih ∀ i ∈ I, t ∈ T RTD

h (52)

pit − rvardn

it ≥ 0 · usyn
ih + psoak

ih + pdes
ih + Pmin

i · udisp
ih ∀ i ∈ I, t ∈ T RTD

h (53)

rvarup

it + de f varup

it ≥ rvarup

it ∀ i ∈ I, t ∈ T RTD (54)

rvardn

it + de f vardn

it ≥ rvardn

it ∀ i ∈ I, t ∈ T RTD (55)

For each subsequent RTD execution, the energy, load shedding and wind spillage costs are
minimized in the objective function (43) over the given dispatch horizon T RTD. In the constraints
following objective (43), the value of all variables denoted with an upper dash, like the commitment
status, has already been determined by the UC solution and is not re-optimized in RTD. In that respect,
(44) describes the actual deployment of the uncertainty reserve by each unit in RTD as compared to
its hourly day-ahead energy schedule, (45) and (46) impose the unit power output limits in every
operating state, (47) and (48) enforce the ramping constraints, (49) and (50) determine the unit output
based on the maximum offered quantity per step of the associated energy offer, while (51) describes the
power balance equation. The latter constraints (52)–(55) are used only in the RTD mode RTD_SI_Var
(explained below) to consider the variability reserve as an alternative way of “looking ahead” in RTD.

In this context, five RTD modes are used to evaluate the UC outcome, as follows:

1. RTD_SI (model (43)–(51)): RTD economically dispatches the committed resources for each
subsequent real-time interval without future expectation of the net load (single-interval or blind
mode); set T RTD essentially comprises only one element, i.e., the current interval.

2. RTD_LA_1 (model (43)–(51)): RTD economically dispatches the committed resources for each
subsequent real-time interval, while also looking ahead to the following interval. In each clearance,
the dispatch solution for the first interval is binding, while the solution for the look-ahead interval
is only advisory.
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3. RTD_LA_4 (model (43)–(51)): Similar to RTD_LA_1, however the look-ahead horizon is extended
to four real-time intervals.

4. RTD_SI_Var (model (43), (44), (47)–(55)): Similarly to RTD_SI, a single-interval dispatch is
implemented, however the variability reserve awards determined by the UC application are
used in (52)–(55) to keep the dispatch schedule of the eligible resources “away” from their
technical maximum (52) (or minimum (53)) limit in previous RTD intervals, so as they can
provide their upward (or downward) ramping headroom in future intervals, when mostly
needed. The variability reserve product has been introduced along with variability reserve
requirements in RTD by the CAISO [32,34] and the MISO [33,35] in a similar way. The new
product, commonly called “flexiramp”, is intended to establish sufficient ramping margins
between consecutive time intervals of the optimization process and thereby reduce the frequency
of temporary ramp shortages in the real-time market, while also producing a sufficient revenue
for economic resources being held back in previous RTD intervals in order to provide their
ramping capacity towards future intervals. Note that when a similar situation takes place
by implementing multi-interval (look-ahead) RTD (instead of utilizing the variability reserve),
for example when the generation of an economic unit is held back from its maximum limit in
the current real-time interval due to the need to provide upward ramping towards the following
(look-ahead) interval, the resource suffers from a lost revenue in the first interval which is never
settled upon, thereby receiving weaker incentives to actually provide the required flexibility [37].
It is that price-incentivizing structure that brings an increasing interest to the use of the flexiramp
product. The only difference, herein, is that the variability reserve requirements are not re-allocated
in RTD. Instead, the variability reserve variable of each unit in the left-hand side of (52) and (53) is
determined by the respective day-ahead UC award through (54) and (55). We thereby examine
the pure impact of the UC pre-determined variability reserve quantities on the outcome of RTD.
The only case that the variability reserve quantity of a unit in a given interval is not fulfilled by
the respective UC award is when such quantity is actually dispatched in order to avoid a power
balance violation in the current interval, rather than being secured to meet the expected variability
in future intervals. This is achieved in RTD_SI_Var by imposing a lower penalty price on variability
reserve deficits incurred in (54) and (55) (see the last term of objective (43)), as compared to the
penalty prices imposed for load shedding and wind spillage.

5. RTD_Oneshot (model (43)–(51)): RTD economically dispatches the committed resources in
an one-shot solution for the whole daily scheduling horizon, for comparison purposes; set T RTD

essentially comprises all real-time intervals of the daily horizon.

3. Case Study

The proposed UC policies are tested using a modified version of the Greek interconnected
power system for the daily scheduling period of 31 March 2014. A summary of the conventional
generating unit techno-economic characteristics is presented on Table 1. The basic modifications concern
(a) a reduction in the hydro installed capacity—which is actually utilized mainly for peak-shaving
reasons in Greece—from approximately 3 GW to 300 MW; (b) an increase in the Open Cycle Gas Turbine
(OCGT) generating potential from approximately 150 MW to triple its size; and (c) a reduction in the
ramping capability of the various resources by approximately 70%. The aim of the reductions is to
create a more constrained case in terms of reliability in real-time operation, since the Greek generation
fleet is currently flexible enough to absorb the inherent uncertainty and variability of the load and
the wind generation typically existing in Greece. It should be stressed however, that the available
generating potential is enough to cover the peak load of this case study, as well as the peak load of
the Greek interconnected power system during 2014, which was equal to 9263 MW. Note also that the
constrained case created affects negatively the solution times (Section 5.3), especially regarding the
SUC approach.
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Table 1. Summary of the generation techno-economic data for the modified Greek power system.

Unit
Categ. Num Pmax

i
(MW)

Pmin
i

(MW)
RUi/RDi
(MW/min)

UTi
(h)

DTi
(h)

Tsyn
i

(h)
Tsoak

i
(h)

Tdes
i

(h)
SUi (€) Cen

ihk(€/MWh) Cunc
ih

1

(€/MW)
Cvar

ih
1

(€/MW)

Lignite 14 300–450 150 0.5 24 10 3 3 1–2 8 × 104 36–49 3 0.3
CCGT 10 400 10 1–2 4 1 1 1 - (1–4) × 103 56–73 1.5 0.6–0.7
OCGT 3 150 10 3–4 1 1 - - - 333 80–82 1.2 0.8
Hydro 3 100 10 5 - - - - - - 92–94 2 1.1 1

1 Same offers for the upward and downward direction submitted by each unit; 2 Cost of replacement of a thermal
MWh (hydro units are used as peakers, as is the typical case in Greece); this cost has been considered slightly higher
than the energy offer of the most expensive thermal unit.

The energy offers are based on incremental steps above the units’ minimum variable costs.
The offers for uncertainty reserve reflect the unit opportunity costs (foregone energy revenues), thus
they increase inversely to the respective energy offers, while the offers for variability reserve increase in
accordance with the unit ramping capability. The load shedding and the wind spillage cost are set to
the typical value of 1000 €/MWh, while the variability reserve deficit cost in RTD is set to the lower
value of 200 €/MWh.

Four UC policies are executed for comparison purposes:

1. SUC_15: The SUC model is executed with a 15-min real-time resolution t at the second stage.
2. SUC_60: The SUC model is executed with a 60-min real-time resolution t at the second stage

(uniform hourly resolution throughout the model).
3. DUC_15: The DUC model is executed with a 15-min real-time resolution t, wherever set t is

applicable (i.e., in DUC constraints or in the determination of the reserve requirements (34)–(37)).
4. DUC_60: The DUC model is executed with a 60-min real-time resolution t (uniform hourly

resolution throughout the model); for example, the reserve requirements (34)–(37) are determined
based on hourly net load averages (day-ahead forecasts and realizations per scenario), and the
variability reserves are allocated to the various resources in (38) and (39) based on their hourly
ramp capability.

Each UC policy (SUC_15, SUC_60, DUC_15, DUC_60) is tested against all RTD modes (RTD_SI,
RTD_LA_1, RTD_LA_4, RTD_SI_Var, RTD_Oneshot), with each RTD mode having a 15-min time-step
and solved for any separate net load scenario considered in UC. The results focus on uncertainty and
variability reserve allocation, total expected costs, power balance violations (load shedding or wind
spillage), and certain features relative to the functionality of the RTD mode executed.

4. Scenario Generation

The load and wind power scenarios are calculated via a data-driven scenario generation method
presented in [52], that uses historic load and wind power forecast errors of the Greek power system
for the year 2013. The initial dataset contains min-to-min load and wind power measurements of the
Greek interconnected power system, as well as hourly day-ahead load and wind power forecasts,
provided by the Greek TSO [58] for year 2013. The wind power measurements and day-ahead forecasts
have been doubled in order to consider a case with increased wind generation. Then, the 15-min load
and wind forecast errors are determined, as the difference between measurements (15-min averages)
and forecasts, and classified based on certain qualitative criteria. The load forecast errors are classified
into lead time and time-of-day classes, and the wind forecast errors into lead time and wind forecast
level classes; for each class element the Empirical Cumulative Distribution Function (ECDF) of forecast
errors is calculated.
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The scenario generation technique considers the temporal correlation of the forecasted time series,
using the Gaussian copula approach presented in [59,60] and further explored in [61]. More specifically,
the following procedure is performed separately for the generation of load and wind power scenarios.
For each day, 500 random realizations are generated from a multivariate normal distribution generator
using a covariance matrix. An inverse transform method for sampling is then applied to the appropriate
ECDF of the forecast errors to calculate 500 respective error scenarios. A scenario reduction technique
is subsequently employed to attain computational tractability, based on the probabilistic distance
(Kantorovich distance), using the fast forward selection algorithm as presented in [62]. Three load error
and three wind error scenarios are obtained for each day, along with their probabilities of occurrence;
the respective load and wind power scenarios are calculated by adding the forecast error scenarios
to the relevant point forecasts. Finally, each load scenario is combined with each wind scenario into
a respective net load (load minus wind) scenario, with probability of occurrence equal to the product
of probabilities of the two associated scenarios.

Figure 2 presents the nine quarterly net load scenarios and their probabilities obtained in the
above context for the representative daily scheduling horizon of this case study, along with the hourly
day-ahead net load forecast. Regarding the cases SUC_60 and DUC_60 (hourly real-time resolution t),
it is noted that the respective hourly averages of the scenarios presented in Figure 2 are utilized.
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Figure 2. Net load: Day-ahead forecast and real-time scenarios with probabilities.

5. Results and Discussion

5.1. Determination and Allocation of Reserves

The following Figure 3 presents the hourly uncertainty (left column diagrams) and variability (right
column diagrams) reserves determined by each UC policy (DUC_60, DUC_15, SUC_60, SUC_15),
for the upward (positive y-axis) and downward (negative y-axis) directions. The allocation of the
reserves to the various unit categories (lignite, CCGT, OCGT, hydro) is also depicted in each diagram,
with different color per unit category.
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Figure 3. Uncertainty and variability reserve allocation per unit category in various UC policies.

5.1.1. Determination and Allocation of the Uncertainty Reserve

As can be seen in Figure 3a, a similar profile of the system uncertainty reserve requirements
(i.e., blue and red lines) is noticed in all UC policies, throughout the daily scheduling horizon.
The uncertainty reserves generally increase in both directions as we move to the end of the scheduling
horizon, and especially in the noon hours 18–24. This is in part due to the larger forecast errors
expected as the lead-time between the day-ahead forecast and the relevant dispatch hour is increased.
Additionally, the overall requirements are almost identical in DUC_60 and SUC_60 policies, and
very similar in DUC_15 and SUC_15 policies, thanks to the accurate/comparable methodologies
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of quantifying the reserves in both the deterministic and stochastic approaches. Nevertheless, the
utilization of real-time information in the latter policies (DUC_15, SUC_15) provides with increased
requirements as compared to the former policies (DUC_60, SUC_60); that is, the uncertainty reserves
in DUC_15 (SUC_15) have been quantified greater by 33% (36.5%) in the upward direction and 37%
(39%) in the downward direction as compared to DUC_60 or SUC_60 (aggregated in a daily level).
This is due to the fact that the DUC_15 and SUC_15 policies reveal potential large intra-hourly (15-min)
forecast errors which are not captured by the respective hourly net load averages utilized in DUC_60
or SUC_60, while SUC_15 additionally considers the operational conditions of covering such errors at
its second stage. The increase of uncertainty reserve in DUC_15 or SUC_15 is more evident in times
of steep net load ramping, e.g., in hour 19 where the lower and higher values of the real (15-min)
net load scenarios within said hour differ significantly from the relevant hourly point forecast (see
Figure 2/hour 19). The opposite (i.e., similar uncertainty reserves in all policies) can be noticed in
times of peaks or valleys of the net load, e.g., in the morning hour 9 where the real (15-min) net load
scenarios considered in SUC_15 and DUC_15 do not deviate substantially from their respective hourly
averages considered in SUC_60 and DUC_60 (see Figure 2/hour 9).

Most notably, the allocation of the uncertainty reserves to the various resources differs at a great
extent between the stochastic and deterministic approaches. As illustrated in Figure 3a, DUC_60 and
DUC_15 allocate the upward requirements mainly to more expensive CCGT, OCGT and hydro units.
This is because these units (a) submit lower uncertainty reserve offers; (b) are optimally loaded at
an intermediate capacity factor (CCGTs) or close to technical minimum (OCGT and hydro units), thus
having enough headroom for upward reserve contribution; and (c) have lower commitment costs
(OCGT and hydro units) which allow for their commitment (close to their technical minimum) during
peak hours in order to contribute to upward uncertainty reserve. However, the deterministic approach
does not take into account the cost of actual deployment of the uncertainty reserve by such higher-cost
units in case a high net load scenario actually realizes. Instead, the lignite units are scheduled at
(or close to) their available capacity, undertaking almost zero up uncertainty reserves.

In contrast, SUC_60 and SUC_15 allocate a great portion of the upward uncertainty reserve to the
lignite units as can be seen in Figure 3a, despite their higher uncertainty reserve offers and the fact
that such allocation often drives down their economic energy schedule from capacity; the upward
reserve awards of CCGT, OCGT and hydro units are reduced equivalently in these policies. This is
due to the fact that the stochastic policies also consider the deployment (energy) cost of the uncertainty
reserve at the second stage, which is apparently lower in the case of lignite production. The expectation
of lower deployment costs in the stochastic cases is actually confirmed in many real-time intervals
when we proceed to RTD. For example, the total energy cost in the last 15-min interval of hour 18,
scenario 7 (probability 0.09) and RTD case RTD_LA_4 is 48,172 € for DUC_15 and 47,652 € for SUC_15.
The cost in the deterministic case is inflated mainly by an additional hydro unit committed (with
zero start-up cost) for the provision of 90 MW of upward uncertainty reserve at the day-ahead stage
(see Figure 3a/DUC_15/hour 18), the greater portion of which is actually dispatched at high cost
in RTD.

The opposite observation can be made in the downward direction, namely the stochastic policies
procure downward uncertainty reserve from higher-cost resources than the deterministic policies, since
the deployment of downward uncertainty reserve is considered as a negative cost (revenue) for the TSO
in objective function (1). Overall, the stochastic policies tend to commit lower cost units; in order to
hedge against all possible scenarios in RTD, they reduce the capacity factor of lignite units and increase
the capacity factor of CCGTs in a way that both upward and downward uncertainty and variability
reserves are covered mainly by these units, avoiding (wherever possible) the commitment of higher
cost production.
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Finally, another positive feature of the stochastic policies is the higher correlation between the
uncertainty reserve awards allocated at the day-ahead UC stage and the uncertainty reserve actually
deployed by the corresponding units per scenario s in RTD. That is, in the stochastic policies,
the deployment of the uncertainty reserve in RTD tends to take place from resources that were
actually scheduled (and therefore remunerated) to provide the uncertainty reserve, as compared
to the deterministic policies where such correlation is looser. This is depicted in the following Figure 4,
which provides the correlation coefficient between the procured uncertainty reserve at the day-ahead
stage in each direction (i.e., variables runcup

ih , runcdn

ih in objective (1)) and the deployed one in RTD

(i.e., variables runcup

it , runcdn

it in (44) per scenario s), for all UC-RTD combinations executed.
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5.1.2. Determination and Allocation of the Variability Reserve

A similar profile of the variability reserve requirements can also be noticed among all UC policies
in Figure 3b. The variability reserve requirements are sizeable during (a) the night hours 21–4 and
morning hours 10–12 in the downward direction; and (b) the early morning hours 6–8 and afternoon
hours 17–20 in the upward direction, due to the respective net load ramps occurring in these hours
(see Figure 2). The variability reserves increase from DUC_60 to DUC_15, SUC_60 and SUC_15,
by 21%, 53% and 65%, respectively, in the upward direction, and 36%, 59% and 76% in the downward
direction (aggregated in a daily level). The increase in the 15 min-based policies as compared to the
corresponding 60 min-based policies is due to the fact that the former policies reveal potential large
intra-hourly net load movements which are not captured by the hourly average movements utilized in
the latter policies; the increase is more evident in times of steep net load ramping, like hour 19 in the
upward direction and hour 12 in the downward direction. Moreover, the increase in the stochastic
policies as compared to the deterministic ones is due to the fact that the former determine the variability
reserve requirements through the actual output variations of the resources at the second stage, while
the latter simply allocate the pre-determined requirements to the eligible resources. For example,
the stochastic policies take into account a possible unit’s output increase in parallel with another
unit’s output decrease (in the same interval of the second stage) when determining the upward and
downward variability requirements, something which is apparently ignored in the deterministic cases.

With regard to the allocation of the variability reserve, both the deterministic and the stochastic
policies generally award lower-cost units (e.g., a great portion is allocated to lignite units in all policies,
as depicted in Figure 3b), since lower-cost resources have lower ramp rates and offer the variability
reserve at a respective lower price in this case study. There are certain hours however, where the
deterministic policies award higher-cost units than the stochastic ones, disregarding the (implicit)
deployment cost of the variability reserve in case of high ramp outcomes in RTD, as also observed
in [53]. For example, in hour 19, DUC_15 commits one OCGT and one higher-cost hydro unit to
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allocate a certain portion of the upward variability reserve (see Figure 3b/DUC_15/hour 19), while
SUC_15 commits two OCGT units instead (despite their higher start-up cost). As a result, when
we proceed e.g., in RTD case RTD_LA_4 and the first 15-min interval of hour 19, both DUC_15 and
SUC_15 are able to cope with the high net load ramp outcomes in all scenarios, however the expected
energy cost (i.e., cost attained over all scenarios executed in RTD, weighted by the respective scenario
probabilities) is 49,143 € for DUC_15 and 48,909 € for SUC_15.

Most notably, the higher ramping capability of flexible resources is valued more and awarded
accordingly, as the real-time ramping needs of the system are revealed at the UC scheduling stage;
that is, by adopting finer time resolution for the variability reserve from DUC_60 to DUC_15 or
SUC_60 to SUC_15. Table 2 presents an explanatory example for hour 17, comparing DUC_60
and DUC_15 policies. In DUC_60, the more economical (in terms of variability reserve offers)
lignite units are awarded 390 MW of upward reserve based on their maximum hourly ramp
capability (13 units·0.5 MW/min·60 min), the rest being allocated to one CCGT unit. In DUC_15,
however, the “real” ramping requirements revealed are mainly concentrated in the two latter
15-min intervals of hour 17 (i.e., 117 and 177 MW). The share of lignite units is now reduced
(325.5 MW), since the slower lignite resources become ramp limited in each of the two latter intervals
(13 units·0.5 MW/min·15 min = 97.5 MW) based on constraint (38). The same also applies for the CCGT
unit award for the fourth interval (1 unit·2 MW/min·15 min = 30 MW), and the remaining variability
reserves are now allocated to a more expensive but faster hydro unit. The result in RTD (e.g., case
RTD_SI in the last row of Table 2) is an average expected power balance violation of 2 MWh in the last
15-min interval of hour 17 for DUC_60 policy; this violation and the relevant price spike is avoided
in DUC_15. Note that the power balance violation occurring in RTD in DUC_60 is solely due to the
ramp inability of the committed resources to follow the large increase of the net load during the fourth
real-time interval, and not due to any capacity shortage (i.e., the committed capacity is enough to
cover the net load in t4). Finally, similar observations can be made in the downward direction between
DUC_60 and DUC_15 (e.g., hour 21/Figure 3b), and also between SUC_60 and SUC_15 policies.

Table 2. Variability reserve allocation: Comparison between DUC_60 and DUC_15 policies.

Hour 17 DUC_60 DUC_15

Up variability res. requir. (MW) 482.8 424.5 (t1: 66 t2: 64.5 t3: 117 t4: 177) 2

Lignite contrib. (MW) 390 {13} 1 325.5 {13} 1 (t1: 66 t2: 64.5 t3: 97.5 t4: 97.5) 2

CCGT contrib. (MW) 92.8 {1} 1 49.5 {1} 1 (t1: 0 t2: 0 t3: 19.5 t4: 30) 2

Hydro contrib. (MW) - 49.5 {1} 1 (t1: 0 t2: 0 t3: 0 t4: 49.5) 2

Power balance violation in RTD_SI 3 (MWh) t1: 0 t2: 0 t3: 0 t4: 2 t1: 0 t2: 0 t3: 0 t4: 0
1 Within braces: Number of committed units; 2 Within parenthesis: Variability reserve requirement or award

determined per 15-min interval in case DUC_15; 3 Determined as ∑
s∈S

πs ·
(

lSh
ts + wSp

ts

)
/4 per 15-min interval t.

5.2. Total Expected Costs

Figure 5a provides the total costs incurred in each UC policy and respective RTD mode for the
daily scheduling horizon in question. An additional UC policy is considered in this figure, named DUC,
which completely disregards the variability reserve, for comparison purposes. The total cost in each
UC-RTD combination consists of (a) the expected energy cost in RTD, determined as the sum of the
energy costs of all scenarios executed in RTD weighted by the respective scenario probabilities; (b) the
cost of uncertainty and variability reserve procurement at the day-ahead stage; (c) the commitment cost;
and (d) the cost penalizing power balance violations (load shedding and wind spillage) occurring
in RTD, determined again as the sum of the penalty costs of all scenarios executed in RTD weighted
by the respective scenario probabilities. As observed in Figure 5a, the total costs in this case study
decrease in the order DUC, DUC_60, DUC_15, SUC_60 and SUC_15, while for each specific UC policy
the costs decrease in the order RTD_SI, RTD_LA_1, RTD_LA_4 or RTD_SI_Var and RTD_Oneshot.
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Cost reductions in the 15 min-based policies as compared to the respective 60 min-based policies in
Figure 5a are achieved thanks to the reduction of ramp shortages in RTD, as a result of the increased
and more accurate reserve scheduling discussed in the previous Sections. Cost reductions in the
stochastic policies as compared to the deterministic ones also include the decreased deployment cost of
the uncertainty reserve in RTD. Finally, as intuitively expected, the longer the look-ahead optimization
horizon in RTD, the more efficient dispatch is achieved, which again leads to the reduction of ramp
shortages and relevant price spikes in RTD. It should be noted that the benefits of SUC_15 over
SUC_60, and DUC_15 over DUC_60 are not so evident in mode RTD_Oneshot, but this is actually not
a real-world case as mentioned before; in contrast, the benefits increase in RTD modes with limited
look-ahead capability as depicted in Figure 5a.

Energies 2017, 10, 140 19 of 25 

benefits of SUC_15 over SUC_60, and DUC_15 over DUC_60 are not so evident in mode 
RTD_Oneshot, but this is actually not a real-world case as mentioned before; in contrast, the benefits 
increase in RTD modes with limited look-ahead capability as depicted in Figure 5a. 

 
Figure 5. Total daily costs for all UC-RTD combinations. 

Notably, the efficiency of RTD_SI_Var (utilization of the variability reserve in RTD) is comparable 
with the efficiency of RTD_LA_4 (more than RTD_LA_1) for any UC policy (except DUC, where no 
variability reserve is considered), despite the fact that the variability reserve requirements cover the 
expected net load variations between two (and not four) successive real-time intervals. This is because 
the variability reserves are determined in UC so as to cover the maximum net load variations among 
all scenarios, and are not re-configured in RTD based on the expected variations in each specific 
scenario executed. Thus, the variability reserves are somehow increased in each specific scenario 
executed in RTD_SI_Var and lead to more efficient results in this constrained case study. 

The system reliability achieved in the various cases is better illustrated in Figure 6, which 
provides the daily power balance violations (load shedding and wind spillage) in each UC-RTD 
combination. For each combination, the range of the daily violations occurred among all scenarios 
executed in RTD (high-low diagram) is provided. Note in the stochastic policies, that although the 
same scenarios considered in UC are also utilized in RTD, violations do incur in RTD. In SUC_60, this 
is in part due to the coarser (hourly) time resolution used at its second stage as compared to the 15 
min resolution of RTD (as already discussed). Another factor for both SUC_60 and SUC_15 is the 
limited look-ahead horizon in RTD as compared to the daily scheduling horizon utilized at the second 
stage of these policies. The only RTD mode that resembles the second stage of SUC_15 is 
RTD_Oneshot, where very small violations are observed in certain scenarios as per Figure 6; such 
violations remained also unhedged by the least-cost dispatch determined at the second stage of 
SUC_15. 

 
Figure 6. Daily power balance violations for all UC-RTD combinations. 

0,0

1,0

2,0

3,0

4,0

High Low CloseScen. 1 (Probability 0.25)

Po
w

er
 b

al
an

ce
 v

io
la

tio
ns

 (G
W

h)

DUC DUC_15 SUC_60 SUC_15DUC_60
4.0

3.0

2.0

1.0

0.0

Figure 5. Total daily costs for all UC-RTD combinations.

Notably, the efficiency of RTD_SI_Var (utilization of the variability reserve in RTD) is comparable
with the efficiency of RTD_LA_4 (more than RTD_LA_1) for any UC policy (except DUC, where no
variability reserve is considered), despite the fact that the variability reserve requirements cover the
expected net load variations between two (and not four) successive real-time intervals. This is because
the variability reserves are determined in UC so as to cover the maximum net load variations among all
scenarios, and are not re-configured in RTD based on the expected variations in each specific scenario
executed. Thus, the variability reserves are somehow increased in each specific scenario executed in
RTD_SI_Var and lead to more efficient results in this constrained case study.

The system reliability achieved in the various cases is better illustrated in Figure 6, which provides
the daily power balance violations (load shedding and wind spillage) in each UC-RTD combination.
For each combination, the range of the daily violations occurred among all scenarios executed in RTD
(high-low diagram) is provided. Note in the stochastic policies, that although the same scenarios
considered in UC are also utilized in RTD, violations do incur in RTD. In SUC_60, this is in part due to
the coarser (hourly) time resolution used at its second stage as compared to the 15 min resolution of
RTD (as already discussed). Another factor for both SUC_60 and SUC_15 is the limited look-ahead
horizon in RTD as compared to the daily scheduling horizon utilized at the second stage of these
policies. The only RTD mode that resembles the second stage of SUC_15 is RTD_Oneshot, where very
small violations are observed in certain scenarios as per Figure 6; such violations remained also
unhedged by the least-cost dispatch determined at the second stage of SUC_15.
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In fact, the limited look-ahead optimization horizon in RTD may deteriorate the reliability
achieved in the stochastic policies under certain circumstances. Figure 5b presents the total costs
attained in a second case study, which considers larger start-up costs for the CCGT units. In this case,
the SUC policies avoid to commit the most expensive CCGT unit, which is—contrariwise—committed
in the deterministic policies in hours 17–22 in order to contribute to upward variability reserves.
Instead, SUC policies reduce the capacity factor of the committed lignite units (from technical
maximum) and increase the capacity factor of the committed CCGT units (to maintain power balance),
in a way that the overall ramp headroom in the upward direction during said hours 17–22 is able to
meet the steep net load increase for all scenarios at the second stage. However, when we proceed to
RTD, the economic lignite units are dispatched at (or close to) their maximum capacity in the beginning
of said period in contrary to the second stage results of SUC, since the limited look-ahead horizon of
previous RTD intervals fails to detect the increasing needs for upward ramping towards following
intervals and produce a similar dispatch with the second stage of SUC. The result is an augmentation of
ramp (and not capacity) shortages in RTD, and an overall higher cost as compared to the deterministic
policies, for all RTD modes with limited look-ahead horizon (see Figure 5b). The only RTD mode that
provides better results for the stochastic policies in this case study is RTD_Oneshot, which resembles
the dispatch outcome attained in the second stage of SUC, as previously discussed. Overall, this case
study shows that, in their effort to avoid high commitment costs or expensive (thus often also fast)
generation committed for the provision of reserves, the stochastic UC policies may provide a more
“risky” schedule, which, combined with the limited optimization horizon in RTD, may ultimately
result in ramp shortages and higher overall costs.

5.3. Computational Requirements

All UC policies were modeled in GAMS© 24.3.3 [63] and solved using solver CPLEX 12.6 [64].
The net load scenarios and the deterministic uncertainty and variability reserve requirements were
calculated using MATLAB© R2013b [65]. The case studies were executed on a 2.6-GHz Intel Quad Core
i7 processor with 16 GB of RAM, running 64-bit Windows. The deterministic UC policies provided
proven optimal solutions, while the stochastic UC policies were solved with a relative optimality gap
of 0.05%. Table 3 summarizes the computational complexity and the total execution time for each UC
policy examined in this section (base case).
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Table 3. Size of UC models and total execution times.

UC Policy Constraints Continuous Variables Binary Variables Total Execution Time (s)

DUC_60 18,249 12,715 5014 16
DUC_15 24,729 19,051 5014 38.5
SUC_60 107,568 55,915 5014 240
SUC_15 343,440 185,515 5014 3307

The results demonstrate that both DUC_60 and DUC_15 provide proven optimal solutions at
fast execution times, thus their application to medium-sized systems like the Greek power system or
even larger power systems comprising several tens of units is practicable. Computational complexity
somehow increases in SUC_60, but still a reasonable execution time is attained for a limited number of
scenarios, as in this case study. Notwithstanding the benefits of SUC_15, the computational burden
and the execution time increases drastically due to the scenarios utilized and the finer time resolution
at the second stage for both the uncertainty and variability reserve. Advances in optimization software
and computer hardware are required for more practical execution times to be attained in SUC_15
policy. Nevertheless, decreasing the scheduling horizon in the order of 4–6 h (or less, in the case of
RTUC), implementing a less detailed modeling for the generating unit operating states, or using other
techniques [46] like grouping generating units by type, considering must-run units, or implementing
“warm-start” strategies, shall reduce execution times to a great extent.

6. Conclusions

This paper presented and evaluated different deterministic and stochastic day-ahead UC policies,
with focus on the determination, allocation and deployment of reserves, by making an explicit
distinction between the uncertainty and the variability reserve. The main conclusions are:

(a) The inclusion of the variability reserve in the day-ahead UC reduces the possibility for ramp
shortages and relevant price spikes in RTD and enhances system reliability.

(b) The consideration of higher time resolution when procuring the reserves in both the deterministic
and stochastic approaches, according to the proposed multi-timing scheduling concept, reveals
potential large intra-hourly net load forecast errors and variations, and often awards faster
resources, leading again in increased system reliability and lower expected costs.

(c) The comparable formulations developed between the deterministic and stochastic policies derive
similar overall reserve requirements, however the (upward) reserves tend to be allocated in
lower cost units in the stochastic policies, considering their relative deployment cost. Also, the
correlation between procured (in UC) and deployed (in RTD) uncertainty reserves has proven
higher in the stochastic cases.

(d) The utilization of the variability reserve in RTD brings efficiencies in managing the steep net load
movements, which can be comparable with the use of look-ahead functionality in RTD.

(e) Finally, in their effort to avoid high commitment costs or expensive (thus often also fast) generation
committed for the provision of reserves, the stochastic UC policies may occasionally provide a more
“risky” schedule, which, combined with the limited optimization horizon in RTD, may ultimately
deteriorate reliability in real-time conditions.

Notwithstanding the contributions of this paper, certain issues can be further investigated in
our ongoing research, among which are the following: (a) incorporation of the transmission network
constraints; (b) consideration of techniques that will help to reduce the execution times of the SUC
model (especially case SUC_15), e.g., decomposition techniques; and (c) execution of the case study for
the days of a larger representative period (e.g., yearly simulation) to attain more robust results.
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Abbreviations

CCGT Combined Cycle Gas Turbine
DUC Deterministic Unit Commitment
ECDF Empirical Cumulative Distribution Function
LOLP Loss of Load Probability
OCGT Open Cycle Gas Turbine
RTD Real-Time Dispatch
RTUC Real-Time Unit Commitment
SUC Stochastic Unit Commitment
UC Unit Commitment

Nomenclature

Sets and Indices

h ∈ H Hours
t ∈ Th Real-time intervals within hour h; Th ⊆ T
i ∈ I Conventional thermal and hydro generating units
k ∈ K Steps of unit priced energy offer
f ∈ F Steps of unit soak process

m ∈ M Reserve typesM =
{

uncup, uncdn, varup, vardn
}

s ∈ S Net load (load minus wind) scenarios

Parameters

Pmax/min
i Maximum/minimum power output of unit i (MW)

Tsyn/soak/des
i Synchronization/soak/desynchronization time of unit i (h)

Psoak
i f Power output level for step f of unit’s i soak process (MW)

RUi/RDi Ramp-up/down rate of unit i (MW/min)
UTi/DTi Minimum-up/down time of unit i (h)
SUi/SDi Start-up/Shut-down cost of unit i (€)
Qmax

ihk (Qmax
itk ) Size of step k of unit’s i energy offer for hour h (interval t) (MW)

Cen
ihk (C

en
itk) Price of step k of unit’s i energy offer for hour h (interval t) (€/MWh)

Cm
ih Price of unit’s i offer for reserve type m, for hour h (€/MW/h)

Csh
t /CSp

t Load shedding/Wind spillage cost in interval t (€/MWh)

Cde f
t Variability reserve deficit cost in interval t (€/MWh)

Reqm
h (Reqm

t ) System requirement for reserve type m, during hour h (interval t) (MW)
Lh (Lts) Load day-ahead forecast for hour h (realized in interval t and scenario s) (MW)
Wh (Wts) Wind day-ahead forecast for hour h (realized in interval t and scenario s) (MW)
∆UC (∆RTD) Constant equal to the length of the time interval in UC (RTD) (min)
πs Probability of occurrence of scenario s
B Large constant
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Variables

pih (pits) Power output of unit i at hour h (interval t and scenario s) (MW)
psoak/des

ih Power output of unit i during the soak/desynchronization state at hour h (MW)
qihk (qitk) Cleared quantity of step k of unit’s i energy offer, at hour h (interval t) (MW)
rm

ih (rm
its) Contribution of unit i in reserve type m, for hour h (interval t and scenario s) (MW)

runc
itsk Deployed uncertainty res. at step k of unit’s i energy offer for inter. t, in scen. s (MW)

lSh
ts /wSp

ts Load shedding/Wind spillage in interval t and scenario s (MW)

de f varup/vardn

it Upward/downward variability reserve deficit of unit i in interval t (MW)
(y/u/z)ih Binary variable; equal to 1 if unit i starts-up/is online/shuts-down during hour h

usyn/soak/disp/des
ih

Binary variable; equal to 1 if unit i is in operating state synchronization/soak/normal
dispatch/desynchronization during hour h
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