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Abstract: Improving the estimation accuracy for the energy consumption of electric vehicles (EVs)
would greatly contribute to alleviating the range anxiety of drivers and serve as a critical basis for
the planning, operation, and management of charging infrastructures. To address the challenges
in energy consumption estimation encountered due to sparse Global Positioning System (GPS)
observations, an estimation model is proposed that considers both the kinetic characteristics from
sparse GPS observations and the unique attributes of EVs: (1) work opposing the rolling resistance;
(2) aerodynamic friction losses; (3) energy consumption/generation depending on the grade of the
route; (4) auxiliary load consumption; and (5) additional energy losses arising from the unstable power
output of the electric motor. Two quantities, the average energy consumption per kilometer and the
energy consumption for an entire trip, were focused on and compared for model fitness, parameter,
and effectiveness, and the latter showed a higher fitness. Based on sparse GPS observations of 68 EVs
in Aichi Prefecture, Japan, the traditional linear regression approach and a multilevel mixed-effects
linear regression approach were used for model calibration. The proposed model showed a high
accuracy and demonstrated a great potential for application in using sparse GPS observations to
predict the energy consumption of EVs.

Keywords: electricity consumption; electric vehicle (EV); sparse Global Positioning System (GPS)
observations; linear regression model; multilevel model

1. Introduction

For reducing the world’s dependency on fossil fuels and their harmful emissions, electric vehicles
(EVs) have attracted significant attention in recent years. However, the driving range of EVs is
not competitive compared with that of internal combustion engine vehicles because of significant
technological barriers, and this can make drivers feel anxious about their remaining energy. It has been
widely accepted that accurate range prediction is the key to minimizing range anxiety and helping
drivers make the best use of their limited electricity [1,2]. More importantly, the energy consumption
of vehicles is a critical aspect to consider both in transportation planning and in evaluating the energy
impacts of operational-level projects [3]. In particular, EV energy consumption data serve as a critical
basis for the spatial planning, operation, and management of charging infrastructures.

According to previous studies, a variety of factors affect energy consumption, including
travel-related factors [4,5], environment-related factors [6–9], vehicle-related factors [10–14],
roadway-related factors [15], traffic-related factors [16–18], driver-related factors [3,19–22], the health
and degradation condition of the battery [23–26], the efficiency of braking energy recovery [27–31],
and the charge and discharge character of the battery [32]. Some previous studies collected the
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information through driving-cycle experiments in the lab [4,24] and Global Positioning System
(GPS) observations in the real world [32–34], but some results showed the significant difference
between experiments and real-world conditions [35,36], leading to a relative low accuracy and poor
practicality of models. Particularly, it is very difficult for the experimental design of predetermined
conditions to take some real-world conditions into consideration, including the behaviors of drivers
on air-conditioner and heater usage, the influence of driving environment, real-world aerodynamic
friction loss, lane changing behaviors, car following behaviors, driving behaviors, etc. Thus, for a high
accuracy of energy consumption estimation, the collection of extremely detailed and comprehensive
information on the operation of EVs in the real world is required.

In practice, detailed and comprehensive field observations of daily travel are extremely difficult
to obtain because of the high costs of implementation and privacy issues. However, sparser and
more fragmentary data on EVs are relatively easy to obtain from simple devices implemented in
such vehicles, such as GPS devices. Nevertheless, energy consumption estimation based on sparse
observations of EVs faces many challenges. First, with sparse GPS data, many slight changes in the
level of stored energy and the finer details of driving behavior characteristics and traffic conditions,
which might be derived from real-time location information, will remain unobserved [37]. Moreover,
without continuous observations of vehicle movement, the kinetic characteristics that most strongly
influence the energy consumption of EVs are difficult to model, and the quantization of these factors
may readily introduce large errors. In particular, sparse GPS observations increase the difficulty of and
errors in map matching [38,39].

To overcome these challenges, improving the accuracy of energy consumption estimation,
based on sparse observations, would make an important contribution to practical applications.
Thus, the purpose of the present work is to improve the accuracy of electricity consumption estimation,
based on sparse spatial-temporal behavior observations of EVs. An energy consumption model is
proposed that considers the kinetic characteristics and unique attributes of EVs: (1) work opposing
the rolling resistance; (2) aerodynamic friction losses; (3) energy consumption/generation depending
on the grade of the route; (4) auxiliary load consumption; and (5) additional energy losses arising
from the unstable power output of the electric motor. The traditional linear regression approach and
a multilevel mixed-effects linear regression approach are used for model calibration based on GPS
observations of 68 EVs.

For the energy consumption estimations, either the energy consumption for an entire trip [35]
or the energy consumption per unit distance [5] is used as the research object in previous studies.
An estimation for an entire trip gives drivers an overview of the electricity costs for future travel,
while an estimation for per unit distance provides a detailed view of the electricity consumed when
driving. In the present work, energy consumption models for both are built, and the results are
compared and analyzed from the aspects of model fitness, parameters, and effectiveness.

The paper is organized as follows. The second section provides a detailed description of the
data collection procedures used to obtain the EV energy consumption observations. The energy
consumption estimation models and the results of the study are then successively discussed in the
following sections (Sections 3 and 4, respectively). Finally, a summary of our findings is presented.

2. Data Collection

GPS trajectory data were collected for approximately 500 EVs in Japan from February 2011 to
January 2013. Among these data, those for 39,685 trips of 68 EVs in Aichi Prefecture, collected from
February 2012 to January 2013, were used in this study. The vehicle coordinates, the timestamps,
the vehicle odometer records, the vehicle ID, the state of charge (SOC) of the battery, and the usage
states of the air conditioner and heater were collected once per minute. It should be noted that
the odometer records distance in integer kilometers, which makes it impossible to model energy
consumption on a road link basis.
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With the help of map matching, the trips completed by each vehicle were identified. The travel
distance, travel time, SOCs before and after travel, and so on were acquired. Furthermore, based on
elevation data for the road network in Aichi Prefecture, the gradients of the travel routes were also
determined. To investigate the influence of the ambient environment, the ambient temperature for
each trip was recorded, except for 208 trips with the temperature missing. In total, 39,477 trips of
68 EVs were employed in the present study.

The polling frequency of the EVs’ GPS reports was relatively low (once per minute), and therefore
the data could not provide detailed information on actual driving behavior or the moments at which
the SOC changed (which occurred in steps of 0.5% during operation). It would be extremely difficult
to compare the energy consumption of vehicles under varying driving conditions or to estimate the
actual SOC values at the start and end nodes of each link; thus, we focused on the energy consumption
per trip. In total, 39,477 trips completed by 68 EVs were investigated in this study.

3. Energy Consumption Estimation Models

The energy consumption model for an internal combustion engine vehicle is formulated in terms
of the work of the tractive force necessary to overcome acceleration resistance, air resistance, gradient
resistance, and rolling resistance and is also used for EVs [15,40] and given by:

∆Ei = Eaci + Eroi + Eaei + Egri (1)

where ∆Ei is the energy consumption for trip i, Eaci is the work necessary to overcome the acceleration
resistance, Eroi is the work opposing the rolling resistance, Eaei is the aerodynamic friction loss,
and Egri is the energy consumed or generated depending on the grade of the route (this value will be
positive when the vehicle is travelling uphill and negative during downhill travel).

Nevertheless, for an EV, these four components corresponding to the work opposing various
resistances will always underestimate the true energy consumption in the real world. The electricity
consumed by auxiliary loads represents a non-negligible contribution. In particular, the effect of the
ambient temperature is seldom considered. Because of the particularities of the dynamic system,
the energy loss arising from the unstable power output of the electric motor, as influenced by the
ambient temperature, must also be included in the energy consumption model. Thus the energy
consumption model in the present work is formulated as follows:

∆Ei = Eroi + Eaei + Egri + Eaui + Etei (2)

where Eaui is the auxiliary load consumption and Etei is the additional energy loss due to the unstable
power output of the electric motor under the influence of the ambient temperature, which most
previous studies have ignored. Notably, the once-per-minute polling frequency of the GPS devices
used in this study resulted in considerable difficulty in measuring acceleration. The work necessary
to overcome the acceleration resistance is actually correlated with other parts of power output and
therefore will shift to other terms when the model is calibrated by a regression model [35].

3.1. Average Energy Consumption Estimation per Unit Distance

An estimation of energy consumption per unit distance provides a detailed view of the electricity
consumed while driving. However, because of the low polling frequency of the GPS observations in
this study (once per minute) and because the prevalence of dropping interruptions in the residual SOC
records was 0.5%, corresponding to intervals of approximately 1–3 min during continuous driving,
the energy consumption per kilometre could not be directly observed. Thus, the average electricity
consumption per kilometre was estimated, as described in this section.

When the average energy consumption per kilometre is considered, ∆Ei on the left-hand side of
Equation (1) is replaced with ∆ei. The work opposing the rolling resistance [15,40] is formulated as:
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Eroi = ϕ ∗M ∗ g ∗ li ∗ cos θ ≈ ϕ ∗M ∗ g (3)

ϕ = η1 + η2 ∗Vi (4)

where ϕ is the rolling resistance coefficient, which is a function of the vehicle speed, Vi [41]; M is the
mass of the vehicle, which is taken to be a constant because all vehicles investigated were of the same
type; g is the gravitational constant; and θ is the road grade angle. The product ϕ ∗M ∗ g is the rolling
resistance, and li is the unit distance, i.e. one kilometre in this study. Most of the road grade angles in
the urban area of Aichi Prefecture are less than 5%; therefore, Eroi is approximately equal to ϕ ∗M ∗ g.
For ϕ, a simple linear function of the average travel speed is applied. η1 and η2 are the two parameters
of this function, which are estimated in the regression model.

The aerodynamic friction loss [15,40] is given by:

Eaei = 0.5 ∗ q ∗ K ∗V2
i ∗ li ∝ V2

i (5)

where q is the air density, which is estimated in the regression model; K is the frontal area of the vehicle;
and Vi is the average travel speed for trip i. In fact, Eaei is proportional to V2

i when li = 1 km.
Regarding the energy consumed for hill climbing, previous studies [15,40] formulate it as:

Egri = ∑ M ∗ g ∗ ls ∗ sin θ (6)

where ls is the traveling distance in a second and θ is the road grade angle. The product of ls ∗ sin θ

is the height difference in this second. In fact, even with a same height difference but a different
road grade angle, the electricity consumptions are not identical [5,18]. In order to quantify the
influence of different gradients, the gradient should be classified into several gradient intervals [18].
The observations indicate that most trips had their origins and destinations in urban areas and were
relatively short in length. If the range of each interval is too small, the coefficients estimated for
two adjacent intervals may be same. While if the range of each interval is too wide, we can’t catch
continuous change of the coefficients on different grades. Thus after several experiments, 11 intervals
were classified, which are <−9%, −7%~−9%, −5%~−7%, −3%~−5%, −1%~−3%, −1%~1%, 1%~3%,
3%~5%, 5%~7%, 7%~9%, and >9% (where ‘−’ indicates a downwards gradient). Furthermore, ten of
them (except −1%~1%, which is a flat slope) were used to formulate Egri to avoid multicollinearity in
the model:

Egri = τT ∗ p = τ1 ∗ p<−9% + τ2 ∗ p−7%∼−9% + τ3 ∗ p−5%∼−7% + τ4 ∗ p−3%∼−5%
+τ5 ∗ p−1%∼−3% + τ6 ∗ p1%∼3% + τ7 ∗ p3%∼5% + τ8 ∗ p5%∼7% + τ9 ∗ p7%∼9% + τ10 ∗ p>9%

(7)

pj = Gj/li ∗ 100% (8)

where pj is the percentage of the link length per kilometre with grade angle j (j ∈ (<−9%, −7%~−9%,
−5%~−7%, −3%~−5%, −1%~−3%, 1%~3%, 3%~5%, 5%~7%, 7%~9%, and >9%)), τ1 to τ10 are the
influence coefficients for the different gradient, Gj is the link length with grade angle j for trip i, and li
is the total travelled distance.

The auxiliary load consumption consists of two main components in this study, (1) the air
conditioning load consumption and (2) the heating load consumption. This is expressed as follows:

Eaui = ζ1 ∗ Ai + ζ2 ∗ Hi (9)

Ai =
ti
li
∗ ai

ni
(10)

Hi =
ti
li
∗ hi

ni
(11)
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where Ai and Hi are the average service times per kilometer of the air conditioner and heater,
respectively, which are calculated as shown in Equations (10) and (11), respectively; ti is the total travel
time; ai and hi are the numbers of GPS points at which the air conditioner and heater, respectively,
are switched on; ni is the total number of GPS points recorded for trip i; and ζ1 and ζ2 are the effects of
the air conditioner and heater, respectively, on the EV’s energy consumption.

As illustrated in Reference [42], the relationship between energy efficiency and ambient
temperature exhibits an asymmetrical ‘U’ shape, which is best fit by a third-order polynomial.
Thus, the additional energy loss due to the unstable power output of the electric motor under the
influence of the ambient temperature is formulated as:

Etei = α1 ∗ Ti + α2 ∗ T2
i + α3 ∗ T3

i (12)

where α1–α3 are the influence coefficients, which are estimated during model calibration, and T is the
ambient temperature.

3.2. Energy Consumption Estimation for an Entire Trip

The ability to accurately estimate the energy consumption for an entire trip would help drivers
to better manage and use the limited electricity stored in their vehicle batteries. Thus, the electricity
consumption for an entire trip (∆Ei) is the focus of this section. The work opposing the rolling
resistance for an entire trip is formulated as:

Eroi = ϕ ∗M ∗ g ∗ li ∗ cos θ (13)

For a small road grade angle, Equation (13) can be simplified to:

Eroi = (η1 + η2 ∗Vi) ∗M ∗ g ∗ li ∝ η1 ∗ li + η2 ∗Vi ∗ li (14)

where Eroi is proportional to η1 ∗ li + η2 ∗Vi ∗ li.
The aerodynamic friction loss is given by:

Eaei = 0.5 ∗ q ∗ K ∗V2
i ∗ li ∝ V2

i ∗ li (15)

whereas Egri is formulated as:

Egri = τT ∗G = τ1 ∗ G<−9% + τ2 ∗ G−7%∼−9% + τ3 ∗ G−5%∼−7% + τ4 ∗ G−3%∼−5%
+τ5 ∗ G−1%∼−3% + τ6 ∗ G1%∼3% + τ7 ∗ G3%∼5% + τ8 ∗ G5%∼7% + τ9 ∗ G7%∼9% + τ10 ∗ G>9%

(16)

The auxiliary load consumption is given by:

Eaui = ζ1 ∗ ACi + ζ2 ∗ HTi (17)

ACi = ti ∗
ai
ni

(18)

HTi = ti ∗
hi
ni

(19)

where ACi and HTi are the service times of the air conditioner and heater, respectively, during trip i.
The additional energy loss due to the unstable power output of the electric motor under the

influence of the ambient temperature is again formulated as shown in Equation (12).

3.3. Model Calibration

A linear regression model was employed to calibrate the energy consumption model. The model
for the average energy consumption per unit distance was formulated as:
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∆ei = β0 + η1 + η2 ∗Vi + β1 ∗V2
i + τT ∗ p + ζ1 ∗ Ai + ζ2 ∗ Hi + α1 ∗ Ti + α2 ∗ T2

i + α3 ∗ T3
i + εi (20)

where ∆ei is the average electricity consumption per kilometre during trip i (dependent variable);
Vi, p, Ai, Hi, and Ti are the independent variables described in Section 3.4; and η2, β1, τT, ζ1, ζ2, α1,
α2, and α3 are the coefficients of the variables. β0 + η1 is the intercept term of the regression model;
particularly, τ and p, in particular, are the vectors of the influence coefficients for the different grade
angle categories and the link length percentages at the different grade angles, respectively; and εi is
the residual term.

Furthermore, the model for the energy consumption for an entire trip was formulated as:

∆Ei = β0 + η1 ∗ li + η2 ∗Vi ∗ li + β1 ∗V2
i ∗ li + τT ∗G + ζ1 ∗ ACi + ζ2 ∗ HTi + α1 ∗ Ti + α2 ∗ T2

i + α3 ∗ T3
i + εi (21)

where ∆Ei is the energy consumption for the entire trip i; β0 is the intercept term; τ and G are the
vectors of the influence coefficients for the different grade angle categories and the link lengths at the
different grade angles, respectively; and εi is the residual term.

To address the heterogeneity of drivers [18], another regression model based on multilevel
mixed-effects regression was also employed to capture the potential correlations and non-constant
variability of the energy consumption characteristics. The general form of a two-level mixed-effects
regression model [43] is given by:

Eij = β0 +
π

∑
λ=1

βλ ∗ xλij+
ω

∑
m=1

um0j ∗ zmij + u0j + εij (22)

where Eij is the dependent variable, β0 is the fixed intercept term of the model, xλij is a variable with
a fixed coefficient βλ, π is the number of variables xλij that appear in the model, zmij is a variable with
a random coefficient um0j, ω is the number of variables zmij that appear in the model, u0j is the random
intercept, and εij is the residual term. Particularly, in this study, for average electricity consumption
per kilometre and the energy consumption in an entire trip, the dependent variable Eij in Equation (22)
will be replaced by ∆ei and ∆Ei respectively. Accordingly, the fixed independent variables are also
replaced by those in Equations (20) and (21), respectively, while the random effects for each will be
discussed in Section 4.

3.4. Variable Descriptions

All of the variables for the energy consumption estimation were calculated as discussed above and
are listed in Table 1. The average energy consumption was 0.752 kWh, and the energy consumption
per kilometre was 0.15 kWh/km. The mean trip distance was only 5.342 km, and the average speed
was less than 22 km/h. Regarding the gradient distribution, 75% of the road distance travelled was
at a grade of −1%–1%, whereas approximately 98% of the distance travelled fell within the range of
−5%–5%. Thus, the observations indicate that most trips had their origins and destinations in urban
areas and were relatively short in length. Moreover, the mean ambient temperature was approximately
18 ◦C, with a large variance among the different trips.

Table 1. Descriptive statistics of the variables.

Variable Description Mean Standard Deviation

∆ei Energy consumption per kilometre (kWh/km). 0.150 0.060
∆Ei Energy consumption for trip i (kWh). 0.752 0.580
Ai Average service time of the air conditioner per kilometre (min/km). 1.147 1.756
Hi Average service time of the heater per kilometre (min/km). 0.476 1.295

ACi Service time of the air conditioner during trip i (min). 5.223 8.124
HTi Service time of the heater during trip i (min). 2.244 6.105

li Travel distance (km). 5.342 4.402
Vi Average travel speed (km/h). 21.771 7.061
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Table 1. Cont.

Variable Description Mean Standard Deviation

Ti Ambient temperature (◦C). 18.352 9.159
G<−9% Link length at a road grade angle steeper than −9% (km). 0.007 0.040

G−7%∼−9% Link length at a road grade angle between −7%~−9% (km). 0.010 0.054
G−5%∼−7% Link length at a road grade angle between −5%~−7% (km). 0.039 0.109
G−3%∼−5% Link length at a road grade angle between −3%~−5% (km). 0.139 0.249
G−1%∼−3% Link length at a road grade angle between −1%~−3% (km). 0.499 0.675
G−1%∼1% Link length at a road grade angle between −1%~1% (km). 3.941 3.339
G1%∼3% Link length at a road grade angle between 1%~3% (km). 0.513 0.691
G3%∼5% Link length at a road grade angle between 3%~5% (km). 0.137 0.241
G5%∼7% Link length at a road grade angle between 5%~7% (km). 0.039 0.106
G7%∼9% Link length at a road grade angle between 7%~9% (km). 0.010 0.055

G>9% Link length at a road grade angle steeper than 9% (km). 0.007 0.041
p<−9% Percentage of the link length at a road grade angle steeper than −9%. 0.001 0.005

p−7%∼−9% Percentage of the link length at a road grade angle between −7%~−9%. 0.002 0.008
p−5%∼−7% Percentage of the link length at a road grade angle between −5%~−7%. 0.008 0.020
p−3%∼−5% Percentage of the link length at a road grade angle between −3%~−5%. 0.025 0.039
p−1%∼−3% Percentage of the link length at a road grade angle between −1%~−3%. 0.089 0.084
p−1%∼1% Percentage of the link length at a road grade angle between −1%~1%. 0.747 0.215
p1%∼3% Percentage of the link length at a road grade angle between 1%~3%. 0.092 0.087
p3%∼5% Percentage of the link length at a road grade angle between 3%~5%. 0.026 0.041
p5%∼7% Percentage of the link length at a road grade angle between 5%~7%. 0.007 0.019
p7%∼9% Percentage of the link length at a road grade angle between 7%~9%. 0.002 0.009

p>9% Percentage of the link length at a road grade angle steeper than 9%. 0.001 0.006

4. Results

Four regression models were constructed for calibrating the energy consumption models
discussed above. Specifically, Models 1 and 2 are related to the estimation of the energy consumption
per kilometre, whereas Models 3 and 4 are related to the energy consumption estimation for
an entire trip.

Moreover, Models 1 and 3 are traditional linear regression models, formulated as shown
in Equations (20) and (21), respectively, whereas the other two are multilevel mixed-effects
linear regression models that consider the heterogeneity among drivers, formulated as shown in
Equation (22).

In Models 1 and 2, both Vi and a constant are used to explain the work opposing the rolling
resistance, as described by Equation (3); V2

i is used to account for the aerodynamic friction loss;
the link length percentages corresponding to each gradient category per kilometre are used to
interpret the energy consumed for hill climbing; the service times of the air conditioner and
heater per kilometre (Ai and Hi respectively) are used to explain the auxiliary load consumption;
and a third-order polynomial with respect to Ti is used to consider the influence of the ambient
temperature. Additionally, the differing driving habits of different drivers lead to variations in energy
consumption characteristics. Thus, a number of variables related to driving behaviour, such as the
average travel speed, air-conditioner usage time, and heater usage time, may show heterogeneity.
The same average travel speed may contribute differently to the energy consumption depending on the
driving behaviour of the driver. The same holds true for the link length percentage corresponding to
a given gradient category. In addition, for air-conditioner usage and heater usage, some drivers prefer
rapid cooling/heating but others do not. Thus, in Model 2, a random coefficient is assigned to each
average travel speed, air conditioning time, heating time and grade angle category, with a random
intercept in terms of the driver level. For the 68 EVs in the present study, each EV is driven by no more
than two drivers for both private EVs and company EVs, and mostly there is only one main driver
for each vehicle. Although we cannot ensure that the same vehicle is driven by the same driver for
each trip, the performance of each EV may be similar with regard to the driver’s habits because the
travel patterns (origination and destination, number of trips) and travel routes are similar for daily
trips. The regression results are presented in Table 2.
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Table 2. Parameter estimation results for the four models.

Variable

Energy Consumption per km Energy Consumption for an Entire Trip

Model 1 Model 2 Model 3 Model 4

Coefficient
(Standard Error)

Coefficient
(Standard Error)

Coefficient
(Standard Error)

Coefficient
(Standard Error)

Air conditioning time per km (Ai) 0.0160 (0.0001) *** 0.0143 (0.0004) *** n.a. n.a.
Heating time per km (Hi) 0.0299 (0.0001) *** 0.0319 (0.0008) *** n.a. n.a.
Air conditioning time per trip (ACi) n.a. n.a. 0.0142 (0.0001) *** 0.0124 (0.0004) ***
Heating time per trip (HTi) n.a. n.a. 0.0320 (0.0001) *** 0.0316 (0.0007) ***
Average travel speed (Vi) −0.0027 (0.0001) *** −0.0034 (0.0001) *** n.a. n.a.
Product of speed and distance (Vi ∗ li) n.a. n.a. −0.0022 (0.0001) *** −0.0022 (0.0001) ***
Travel distance (li) n.a. n.a. 0.1387 (0.0010) *** 0.1419 (0.0013) ***
Square of speed (V2

i ) 3 × 10−5 (2 × 10−6) *** 5 × 10−5 (2 × 10−6) *** n.a. n.a.
Product for square of speed and distance (V2

i ∗ li) n.a. n.a. 3 × 10−5 (10−6) *** 3 × 10−5 (8 × 10−7) ***
Ambient temperature (Ti) −0.0011 (0.0002) *** −0.0014 (0.0002) *** −0.0056 (0.0008) *** −0.0078 (0.0007) ***
Square of temperature (T2

i ) −0.0001 (10−5) *** −0.0001 (10−5) *** −0.0004 (5 × 10−5) *** −0.0003 (4 × 10−5) ***
Cubic of temperature (T3

i ) 4 × 10−6 (2 × 10−7) *** 3 × 10−6 (2 × 10−7) *** 2 × 10−5 (10−6) *** 10−5 (8 × 10−7) ***
Percentage of link length at an angle <−9%
(p<−9%) −0.3524 (0.0292) *** −0.3289 (0.0568) *** n.a. n.a.

Percentage of link length at an angle −7%~−9%
(p−7%∼−9%) −0.2827 (0.0186) *** −0.2593 (0.0281) *** n.a. n.a.

Percentage of link length at an angle −5%~−7%
(p−5%∼−7%) −0.1647 (0.0086) *** −0.1629 (0.0148) *** n.a. n.a.

Percentage of link length at an angle −3%~−5%
(p−3%∼−5%) −0.1375 (0.0046) *** −0.1256 (0.0074) *** n.a. n.a.

Percentage of link length at an angle −1%~−3%
(p−1%∼−3%) −0.0751 (0.0020) *** −0.0773 (0.0038) *** n.a. n.a.

Percentage of link length at an angle 1%~3%
(p1%∼3%) 0.0743 (0.0019) *** 0.0685 (0.0036) *** n.a. n.a.

Percentage of link length at an angle 3%~5%
(p3%∼5%) 0.1564 (0.0044) *** 0.1340 (0.0075) *** n.a. n.a.

Percentage of link length at an angle 5%~7%
(p5%∼7%) 0.2363 (0.0092) *** 0.2080 (0.0140) *** n.a. n.a.

Percentage of link length at an angle 7%~9%
(p7%∼9%) 0.2693 (0.0167) *** 0.3163 (0.0304) *** n.a. n.a.

Percentage of link length at an angle >9% (p>9%) 0.4657 (0.0255) *** 0.4574 (0.0353) *** n.a. n.a.
Link length at an angle <−9% (G<−9%) n.a. n.a. −0.5461 (0.0230) *** −0.3556 (0.0648) ***
Link length at an angle −7%~−9% (G−7%∼−9%) n.a. n.a. −0.2789 (0.0165) *** −0.2340 (0.0277) ***
Link length at an angle −5%~−7% (G−5%∼−7%) n.a. n.a. −0.1915 (0.0089) *** −0.1836 (0.0156) ***
Link length at an angle −3%~−5% (G−3%∼−5%) n.a. n.a. −0.1166 (0.0045) *** −0.1362 (0.0103) ***
Link length at an angle −1%~−3% (G−1%∼−3%) n.a. n.a. −0.0840 (0.0018) *** −0.0738 (0.0041) ***
Link length at an angle 1%~3% (G1%∼3%) n.a. n.a. 0.0718 (0.0018) *** 0.0715 (0.0038) ***
Link length at an angle 3%~5% (G3%∼5%) n.a. n.a. 0.1821 (0.0045) *** 0.1583 (0.0096) ***
Link length at an angle 5%~7% (G5%∼7%) n.a. n.a. 0.2615 (0.0093) *** 0.2165 (0.0173) ***
Link length at an angle 7%~9% (G7%∼9%) n.a. n.a. 0.2293 (0.0160) *** 0.2602 (0.0383) ***
Link length at an angle >9% (G>9%) n.a. n.a. 0.6557 (0.022) *** 0.5298 (0.0523) ***
Intercept 0.1822 (0.0014) *** 0.1907 (0.0021) *** 0.1383 (0.0039) *** 0.1370 (0.0045) ***

Random Parameters

Stndard Deviation
(Standard Error)

Stndard Deviation
(Standard Error)

Stndard Deviation
(Standard Error)

Stndard Deviation
(Standard Error)

Vi coefficient n.a. 0.0004 (4 × 10−5) *** n.a. n.a.
li coefficient n.a. n.a. n.a. 0.0073 (0.0007) ***
Ai coefficient n.a. 0.0032 (0.0003) *** n.a. n.a.
Hi coefficient n.a. 0.0067 (0.0006) *** n.a. n.a.
ACi coefficient n.a. n.a. n.a. 0.0035 (0.0003) ***
HTi coefficient n.a. n.a. n.a. 0.0058 (0.0005) ***
p<−9% coefficient n.a. 0.2902 (0.0460) *** n.a. n.a.
p−7%∼−9% coefficient n.a. 0.1096 (0.0263) *** n.a. n.a.
p−5%∼−7% coefficient n.a. 0.0698 (0.0140) *** n.a. n.a.
p−3%∼−5% coefficient n.a. 0.0376 (0.0094) *** n.a. n.a.
p−1%∼−3% coefficient n.a. 0.0231 (0.0035) *** n.a. n.a.
p1%∼3% coefficient n.a. 0.0219 (0.0036) *** n.a. n.a.
p3%∼5% coefficient n.a. 0.0387 (0.0078) *** n.a. n.a.
p5%∼7% coefficient n.a. 0.0623 (0.0182) *** n.a. n.a.
p7%∼9% coefficient n.a. 0.1326(0.0290) *** n.a. n.a.
p>9% coefficient n.a. 0.1178 (0.0484) n.a. n.a.
G<−9% coefficient n.a. n.a. n.a. 0.3856 (0.0584) ***
G−7%∼−9% coefficient n.a. n.a. n.a. 0.1171 (0.0360)
G−5%∼−7% coefficient n.a. n.a. n.a. 0.0823 (0.0197) ***
G−3%∼−5% coefficient n.a. n.a. n.a. 0.0687 (0.0093) ***
G−1%∼−3% coefficient n.a. n.a. n.a. 0.0271 (0.0034) ***
G1%∼3% coefficient n.a. n.a. n.a. 0.0250 (0.0033) ***
G3%∼5% coefficient n.a. n.a. n.a. 0.0619 (0.0091) ***
G5%∼7% coefficient n.a. n.a. n.a. 0.0950 (0.0208) ***
G7%∼9% coefficient n.a. n.a. n.a. 0.2060 (0.0344) ***
G>9% coefficient n.a. n.a. n.a. 0.2715 (0.0635) ***
Intercept n.a. 0.0125 (0.0013) *** n.a. 0.0232 (0.0024) ***

R2 0.7799 0.8303 0.9501 0.9649
R2

adjusted 0.7798 0.8302 0.9501 0.9649
AIC −170,380 −178,829 −49,214 −60,857
MSE 0.0179 0.0140 0.0168 0.0118
Observations 39,477 39,477 39,477 39,477

Note: * p < 0.1; ** p < 0.05; *** p < 0.01; n.a. indicates a variable not included in the model.
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As shown in Table 2, all of the parameters estimated in Models 1 and 2 are highly significant.
The signs and magnitudes of the parameters in these two models are similar. The significant standard
deviations of Vi and the link length percentage corresponding to each gradient category reflect a notable
heterogeneity among different drivers. The fitness of each model was evaluated based on the adjusted
R2 and Akaike’s Information Criterion value (AIC). An improvement of more than 3% was achieved in
Model 2, which indicates a more appropriate model specification. The mean square error (MSE) of the
estimated energy consumption for an entire trip is calculated, which also shows a better effective of
estimation for Model 2.

In Models 3 and 4, both li and Vi ∗ li are used to account for the work opposing the rolling
resistance; V2

i ∗ li is used to consider the aerodynamic friction loss; the link lengths corresponding to
the different gradient categories for the trip are used to interpret the energy consumed for hill climbing;
the service times of the air conditioner and heater during the trip (ACi and HTi, respectively) are used
to explain the auxiliary load consumption; and, once again, the influence of the ambient temperature is
represented by a third-order polynomial in Ti. Moreover, similar to Model 2, the heterogeneity among
drivers is considered in Model 4. Specifically, a random intercept and random coefficients for travel
distance, air conditioning time, heating time, and link length at different grade angles are considered
for heterogeneity among different drivers.

Similar to Models 1 and 2, all the parameters in Models 3 and 4 are highly significant.
An improvement of 1.48% was achieved in Model 4. While the small MSE and AIC also show
Model 4 to be more effective.

All four models show that the impact of heating is about twice that of air conditioning per
minute. From the results of Models 3 and 4, it will consume about 0.14 kWh of electricity for every
kilometre driven. The product of speed and distance (Vi ∗ li) shows a negative impact on energy
consumption and a kilometre increase in travel distance will decrease the influence of average travel
speed by 0.0022Vi. The significant random coefficients of heating time and air conditioning time
indicate that thermal comfort habits vary among drivers significantly. The sign and magnitude of
gradient coefficients for these four models are similar and highly significant. As gradient angle rises,
energy consumption/generation increases linearly with a sharply increase at an angle of 8%.

The significant standard deviations of the random coefficients related to the link lengths at
different grade angles, the average travel speed, and travel distance in Models 2 and 4 reflect significant
heterogeneity in driving characteristics among the drivers. Trips with the same link length but different
grade angles or average travel speeds showed different energy consumption characteristics because
of differences in driving behaviour. With this unobserved heterogeneity, Models 2 and 4 show better
fitness ratings compared with Models 1 and 3, respectively. The high fitness ratings and the very
small MSE of the four models confirm that the proposed model can effectively estimate the energy
consumption of EVs based on sparse GPS observation, no matter which dependent variable is used,
either the average energy consumption per kilometer or the energy consumption for an entire trip.

For the energy consumption of an entire trip, all investigated factors directly influence the energy
consumption. By contrast, for the energy consumption per kilometre, the investigated factors (such as
the service time of the air conditioner and the link length percentage corresponding to each gradient
interval) are the spatially averaged values of those for an entire trip. Thus, the spatial averaging
process results in a relative reduction in the extent of correlation between the energy consumption and
the investigated factors.

5. Conclusions

To improve the accuracy of energy consumption estimation based on sparse GPS observations,
an electricity consumption model was proposed based on the kinetic characteristics and unique
attributes of EVs. The average energy consumption per kilometre and the energy consumption for an
entire trip were each treated as the dependent variable in separate analyses. Sparse GPS observations
of 68 EVs in Aichi Prefecture, Japan were collected, and two types of regression models were used for
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model calibration. The present work is novel because (1) a relatively comprehensive model for energy
consumption estimation is proposed considering work opposing the rolling resistance, aerodynamic
friction losses, energy consumption/generation depending on the grade of the route, auxiliary load
consumption, and additional energy losses arising from the unstable power output of EVs and (2) two
different dependent variables are examined for better understanding the mechanism of estimation
error. Results reveal that the proposed method demonstrates a great potential for application in using
sparse GPS observations to predict the energy consumption of EVs.

Among the results for the four proposed models, the differences in MSE between the first two
models and the second two models reflect the disadvantages of sparse observations for estimating
the average energy consumption per kilometre. Due the spatial averaging process, the extent of the
correlation between the energy consumption and the investigated factors is reduced.

By contrast, Models 2 and 4, in which the heterogeneity between drivers is considered, no matter
whether the average energy consumption per kilometre or the energy consumption for an entire trip
is taken as the dependent variable, show very high fitness values (of more than 96%) and highly
significant parameter estimations, implying appropriate model specification and a high potential for
application in using sparse GPS observations to predict the energy consumption of EVs.
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