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Abstract: The three-phase three-wire neutral-point-clamped shunt active power filter (NPC-SAPF),
which most adopts classical closed-loop feedback control methods such as proportional-integral
(PI), proportional-resonant (PR) and repetitive control, can only output 1st–25th harmonic currents
with 10–20 kHz switching frequency. The reason for this is that the controller design must make
a compromise between system stability and harmonic current compensation ability under the
condition of less than 20 kHz switching frequency. To broaden the bandwidth of the compensation
current, a Lyapunov stability theory-based control strategy is presented in this paper for NPC-SAPF.
The proposed control law is obtained by constructing the switching function on the basis of the
mathematical model and the Lyapunov candidate function, which can avoid introducing closed-loop
feedback control and keep the system globally asymptotically stable. By means of the proposed
method, the NPC-SAPF has compensation ability for the 1st–50th harmonic currents, the total
harmonic distortion (THD) and each harmonic content of grid currents satisfy the requirements
of IEEE Standard 519-2014. In order to verify the superiority of the proposed control strategy,
stability conditions of the proposed strategy and the representative PR controllers are compared.
The simulation results in MATLAB/Simulink (MathWorks, Natick, MA, USA) and the experimental
results obtained on a 6.6 kVA NPC-SAPF laboratory prototype validate the proposed control strategy.

Keywords: Lyapunov stability theory; neutral-point-clamped shunt active power filter (NPC-SAPF);
proportional-resonant (PR) controller; total harmonic distortion (THD)

1. Introduction

The increased application of power electronics (variable frequency drives, AC-DC converters, etc.)
causes serious harmonic pollution in power systems [1,2]. The active power filter (APF) is considered
an effective solution for harmonic elimination of nonlinear loads [3–15].

The classical closed-loop feedback control scheme of the shunt active power filter (SAPF) includes
indirect [3–9] and direct current control methods [10–14]. Proportional-resonant (PR) controllers are
the most popular method for SAPF, as they guarantee zero-state errors and achieve the required total
harmonic distortion (THD) performance at each specified frequency. The systematical design method
of PR controllers is described in [3] and the effects of different discretization methods are considered,
but the output harmonic order is below the 20th. An LCL-filter-based SAPF with PR controllers is
proposed in [4], and the grid current spectrum shows that it has good compensation performance below
the 25th harmonics but poor performance on eliminating switching frequency harmonics. A sensorless
control strategy with multiple quasi-resonant compensators for SAPF was presented in [5], which is
able to track an unknown grid frequency, reducing its sensitivity to this variable. However, the SAPF
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only outputs the 1st–15th harmonics and the THD of grid currents is up to 9.8%. In [6], a fixed-point
processor-based PR current control scheme in synchronous reference frame (SRF) is proposed.
It has a better response time compared with other frequency-selective current control methods,
but it only outputs 1st–19th harmonics. Repetitive controllers just designed below 1.25 kHz are
described in [7–9]. An improved repetitive controller which adds a proportional link in parallel with
the original repetitive control loop for SAPF is proposed in [7]. The SAPF obtains good performance
in simulation results, but only compensates to the 25th harmonics under experimental conditions.
A two-layer structure controller is designed in [8]. The outer layer uses a repetitive control algorithm
to provide good tracking of periodic signals and the inner layer achieves practically-decoupled control
of d-axis and q-axis currents, while the compensation current order only reaches to 19th harmonic.
A current control strategy integrating PR and odd-harmonic repetitive control (OHRC) is proposed
in [9]. The OHRC method provides better performance than the multiple resonant control scheme,
however these two methods only consider 1st–13th harmonics. SAPFs adopted hysteresis controllers
are presented in [10–12], which only output 1st–21st harmonics, moreover the output currents are
magnified between the 21st–33rd harmonics in [11,12].

The aforementioned SAPFs with closed-loop control methods only have good compensation
performance below the 25th harmonics. The reason for this is that the output bandwidth is determined
jointly by the control parameters, output inductance and switching frequency. The general switching
frequency of insulated gate bipolar transistors (IGBT) is 10–20 kHz. Under the specified switching
frequency, the output bandwidth is determined by the proportional gain of the controller and output
inductance. From their open-loop Bode plots, it can be concluded that a larger proportional gain
and smaller inductance means a wider output bandwidth, however this situation leads to worse
current ripple inhibition ability [16]. This compromise between system stability and harmonic current
compensation ability indicates that they cannot deal with the high-frequency harmonics. However,
in the metal processing industry, the Intermediate Frequency Induction Heating Device (IFIHD)
typically generate about 1st–49th harmonics. The high-frequency harmonics cannot satisfy the
requirements of IEEE Standard 519-2014 [17], which may cause interference with communication
circuits and increase total losses of transformers.

Lyapunov stability theory was introduced in inverters [18–24], since it can ensure the globally
asymptotical stability of nonlinear systems. Lyapunov stability theory-based method uses the reference
currents and system mathematical model to obtain gate signals, which overcomes the disadvantage of
the classical closed-loop feedback control method. As a result, Lyapunov stability theory is suitable for
improving the compensation ability on the premise of system stability.

In a neutral-point-clamped shunt active power filter (NPC-SAPF) system, the upper and lower
DC-capacitor voltages have to be maintained at half of the DC-link voltage, because the balance of
upper and lower DC-capacitor voltages is related to the system stability and compensation performance.
The carrier based pulse width modulation (CB-PWM) in [25–27] achieves the voltage-balancing task
and mitigates the voltage oscillations of neutral-point (NP) with lower switching losses than other
PWM methods. Moreover, it is easy to realize and saves more storage space in digital implementation
than the NP voltage balance method based on space-vector PWM (SVPWM). Therefore it is adopted
in this paper. A LCL type filter is usually employed to suppress the switching frequency harmonics.
An improved LLCL filter is proposed in [28–31], which can decrease the total inductance and eliminate
the switching harmonic currents preferably due to the only one tuned trap. Thus, the improved LLCL
filter is used in this paper.

The rest of this paper is organized as follows. Section 2 deduces the mathematical model of
the NPC-SAPF. Section 3 discusses the Lyapunov stability theory-based control strategy. The system
stability is analyzed and compared with the PR controllers in Section 4. The simulation results in
MATLAB/Simulink are given in Section 5. Section 6 describes experimental results on a 6.6 kVA
NPC-SAPF laboratory prototype. Finally, the conclusions are presented in Section 7.
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2. Mathematical Model

The configuration of NPC-SAPF is shown in Figure 1. The simulation and experimental system
consist of three phase grid voltages with grid impedance, nonlinear load and NPC-SAPF. We take one
phase as an example to define the variables. Rs and Ls are the grid equivalent resistor and inductor. iS
is the grid current. iL is the load current. iC is the output current. usn is the point of common coupling
(PCC) voltage. Lg is the grid side inductor of the output filter. Lf is the inverter side inductor of the
output filter. C1 is the upper DC-capacitor. C2 is the lower DC-capacitor. udc1 and udc2 are the voltages
of C1 and C2, while idc1 and idc2 are the currents of C1 and C2.
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Figure 1. Configuration of the neutral-point-clamped shunt active power filter (NPC-SAPF) system.

According to Kirchhoff’s laws, the relationship between voltage and current can be deduced
as follows: 

LT
dica
dt = uasn − Rfica − uao − uon

LT
dicb
dt = ubsn − Rficb − ubo − uon

LT
dicc
dt = ucsn − Rficc − uco − uon

Cd
dudc1

dt = idc1

Cd
dudc2

dt = idc2

(1)

where uasn, ubsn and ucsn are three phase PCC voltages. ica, icb and icc are three phase output
currents. uao, ubo and uco are voltages between nodes a, b, c to node o, respectively. uon is the voltage
between nodes o and n. LT can be equivalent to the sum of Lf and Lg in the useful frequency range
(50 Hz–2.5 kHz), which will be explained later. Rf is the line resistance of inductor Lf and C1 = C2 = Cd.
The uon meets Equation (2) because there is no zero sequence voltage, that is:

uon = −1
3
(uao + ubo + uco) (2)

The switching state of NPC-SAPF only includes three conditions, since only two IGBTs are on-state
at the same time, i.e., Tx1 and Tx2 (x = a, b, c) are on-state, Tx2 and Tx3 are on-state or Tx3 and Tx4 are
on-state, so the switching functions are defined as follows:

Sx1 =

{
1 Tx1 and Tx2 are on-state
0 Tx2 and Tx3 are on-state or Tx3 and Tx4 are on-state

Sx2 =

{
1 Tx3 and Tx4 are on-state
0 Tx1 and Tx2 are on-state or Tx2 and Tx3 are on-state

(3)
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Thus, the relevant expressions are described as:
uxo = Sx1udc1 − Sx2udc2
idc1 = Sa1ica + Sb1icb + Sc1icc

idc2 = −(Sa2ica + Sb2icb + Sc2icc)

(4)

Combining Equations (1)–(4), the mathematical expressions can be obtained as follows:

LT


dica
dt

dicb
dt

dicc
dt

 =

 uasn

ubsn
ucsn

− Rf

 ica

icb
icc

−M


 Sa1

Sb1
Sc1

udc1 −

 Sa2

Sb2
Sc2

udc2


Cd

[
dudc1

dt
dudc2

dt

]
=

[
Sa1 Sb1 Sc1

−Sa2 −Sb2 −Sc2

] ica

icb
icc


(5)

where the matrix M is:

M =
1
3

 2 −1 −1
−1 2 −1
−1 −1 2

 (6)

Equation (5) should be simplified because M is too complicated for digital implementation. Let: Daj
Dbj
Dcj

 =
1
3

 2 −1 −1
−1 2 −1
−1 −1 2


 Saj

Sbj
Scj

 (7)

where j = 1, 2. Equation (7) can be equivalent to:{
Saj − Sbj = Daj − Dbj
Sbj − Scj = Dbj − Dcj

(8)

Because M is a singular matrix, (7) and (8) can be replaced by its dual solution (9):
Saj = Daj
Sbj = Dbj
Scj = Dcj

(9)

The mathematical expressions of NPC-SAPF in three-phase coordinate are as follows:

dica
dt = − Rf

LT
ica − Da1udc1 + Da2udc2 + uasn

dicb
dt = − Rf

LT
icb − Db1udc1 + Db2udc2 + ubsn

dicc
dt = − Rf

LT
icc − Dc1udc1 + Dc2udc2 + ucsn

dudc1
dt = 1

Cd
(Da1ica + Db1icb + Dc1icc)

dudc2
dt = −1

Cd
(Da2ica + Db2icb + Dc2icc)

(10)

In order to reduce the computing time and regulate the DC voltage, Equation (10) are transformed
into SRF by Park transformation. The transformed expressions are as follows:
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

dicd
dt = 1

LT
(udsn − Dd1udc1 + Dd2udc2 − Rficd +ωLTicq)

dicq
dt = 1

LT
(uqsn − Dd1udc1 + Dd2udc2 − Rficq −ωLTicd)

dudc1
dt = 1

Cd
(Dd1icd + Dq1icq)

dudc2
dt = −1

Cd
(Dd2icd + Dq2icq)

(11)

where udsn, uqsn are the PCC voltages in SRF. icd and icq are the output currents in SRF. Dd1 and
Dq1, Dd2 and Dq2 are the upper and lower switching functions in SRF. ω is the grid fundamental
angular frequency.

3. Lyapunov Stability Theory-Based Control Strategy

Lyapunov stability theory is based on the concept of equilibrium point stability. We choose the
state variable: x1 = icd − i∗cd, x2 = icq − i∗cq, x3 = udc1 − u∗dc1, x4 = udc2 − u∗dc2. The block diagram of the
proposed control strategy is shown in Figure 2.
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lock loop; CB-PWM: carrier based pulse width modulation; and DFT: discrete Fourier transformation.

In Figure 2, uSNabc represents three phase PCC voltages. θ is the phase of PCC voltages, which is
estimated from the phase lock loop (PLL). iLabc represents three phase load currents. ihabc represents
three phase harmonic currents. iCabc represents three phase output currents. i∗cd and i∗cq are extracted
from iLabc by slide discrete Fourier transformation (DFT) in SRF. u∗dc1 and u∗dc2 are the upper and lower
DC-capacitor reference voltages (u∗dc1 = u∗dc2 = u∗dc = 400 V in this paper).

3.1. Current Control Realization

According to Lyapunov stability theory, a nonlinear system is globally asymptotically stable if the
Lyapunov candidate function F(x, t) satisfies the following properties [18–20]:

F(0, t) = 0
F(x, t) > 0, x 6= 0
•
F(x, t) < 0, x 6= 0
F(x, t)→ ∞, ‖x‖ → ∞

(12)
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According to the first two properties in Equation (12), we choose F(x, t) as:

F(x, t) =
1
2

LTx2
1 +

1
2

LTx2
2 +

1
2

Cdx2
3 +

1
2

Cdx2
4 (13)

The first-order partial derivative of F(x, t) is:

dF(x, t)
dt

= LTx1
dx1

dt
+ LTx2

dx2

dt
+ Cdx3

dx3

dt
+ Cdx4

dx4

dt
(14)

Substituting state variables x1, x2, x3, x4 into Equation (11), the final state equations of NPC-SAPF
are obtained as follows:

dx1
dt = 1

LT
(−Dd1(x3 + u∗dc1) + Dd2(x4 + u∗dc2)− Rfx1 +ωLTx2) +

u∗dc
LT

(Dd1 − Dd2)

dx2
dt = 1

LT
(−Dq1(x3 + u∗dc1) + Dq2(x4 + u∗dc2)− Rfx2 −ωLTx1) +

u∗dc
LT

(Dq1 − Dq2)

dx3
dt = 1

Cd
(Dd1(x1 + i∗cd) + Dq1(x2 + i∗cq)− Dd1i∗cd − Dq1i∗cq)

dx4
dt = −1

Cd
(Dd2(x1 + i∗cd) + Dq2(x2 + i∗cq)− Dd2i∗cd − Dq2i∗cq)

(15)

where Dd1, Dd2, Dq1 and Dq2 are steady-state switching functions. According to Equation (11), we can
obtain the following steady-state switching expressions:

Dd1 − Dd2 = 1
u∗dc

(udsn − Rfi∗cd +ωLTi∗cq − LT
di∗cd
dt )

Dq1 − Dq2 = 1
u∗dc

(uqsn − Rfi∗cq −ωLTi∗cd − LT
di∗cq
dt )

du∗dc1
dt = 1

Cd
(Dd1i∗cd + Dq1i∗cq)

du∗dc2
dt = −1

Cd
(Dd2i∗cd + Dq2i∗cq)

(16)

In order to maintain the symmetry of two switching functions, the steady-state switching functions
are chosen as: 

Dd1 = 0.5(Dd1 − Dd2)

Dd2 = −0.5(Dd1 − Dd2)

Dq1 = 0.5(Dq1 − Dq2)

Dq2 = −0.5(Dq1 − Dq2)

(17)

The first-order partial derivative of F(x, t) is deduced by Equations (14)–(17), i.e.,:

dF(x,t)
dt = −Rf(x2

1 + x2
2) + (Dd1 − Dd1)(x3i∗cd − x1u∗dc) + (Dd2 − Dd2)(x1u∗dc − x4i∗cd)

+(Dq1 − Dq1)(x3i∗cq − x2u∗dc) + (Dq2 − Dq2)(x2u∗dc − x4i∗cq)
(18)

It is clear that the first term of Equation (18) is always negative. In order to meet the last two
properties in Equation (12), the switching functions are chosen as:

Dd1 = Dd1 + λ1(x3i∗cd − x1u∗dc)

Dq1 = Dq1 + λ1(x3i∗cq − x2u∗dc)

Dd2 = Dd2 + λ2(x1u∗dc − x4i∗cd)

Dq2 = Dq2 + λ2(x2u∗dc − x4i∗cq)

with λ1, λ2 < 0 (19)

where λ1, λ2 are the gains of the control strategy. Considering the symmetry of control strategy,
λ1 = λ2 = λ is proposed. Finally, the switching functions Da1, Db1, Dc1; Da2, Db2, Dc2 in three-phase
coordinate are obtained by the Park inverse transformation.
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3.2. DC Voltage Control Realization

According to instantaneous reactive power theory, the total three-phase instantaneous reactive
power of NPC-SAPF is zero. Thus the last two DC voltage expressions in Equation (11) are simplified as:

d(udc1 + udc2)

dt
=

1
Cd

(Dd1 − Dd2)icd (20)

The differential Equation (20) indicates that DC voltage control loop can be designed by integrating
a suitable PI regulator and superposing it on the active current icd. The PI regulator can be designed as
a second order optimal system [20].

3.3. NP Voltage Balance through PWM Realization

According to the first equation in Equation (4), the modulation voltage Vmabc is calculated as:{
Vrabc = Dabc1

udc1
u∗dc
− Dabc2

udc2
u∗dc

Vmabc =
Vrabc+uSNabc

u∗dc

(21)

where Dabc1 and Dabc2 are three phase switching functions.
An outstanding CB-PWM with zero-sequence voltage injection is introduced to keep the NP

voltage balance [25]. The CB-PWM strategy achieves voltage-balancing task and reduces switching
losses, compared with SVPWM.

3.4. LCL Type Output Filter Design

The design criteria of LCL type filter when applied to NPC-SAPF are summarized as follows:

(1) In order to ensure the output current follow the highest reference current change rate and limit

the output current ripple. LT should meet: u∗dc
8∆IC fs

≤ LT ≤
u∗dc−1.1uSNm

2M49ω49
, where ∆Ic is the output

current ripple. f s is the switching frequency (12.8 kHz). uSNm is the amplitude of grid phase
voltage. M49 is the 49th harmonic current amplitude which is chosen as 0.5 A. ω49 is the 49th
harmonic angular frequency.

(2) Lr and Cr resonates at f s: LrCr =
1

4π2 f 2
s

.

(3) In order to obtain good high frequency attenuate rate and appropriate output bandwidth for

NPC-SAPF, Lf, Lg and Ca should meet: Lf ≥ 5Lg and fm ≤ 1
2π

√
Lg+Lf
LgLfCa

≤ 1
2 fs, where f m is the

highest compensated frequency (2.5 kHz). Ca = Cd + Cr.
(4) Larger Cd/Cr is helpful to improve the damping performance but increase the power losses [29].

Considering the harmonics characteristics of NPC-SAPF, Cd/Cr = 8 and Rd = 3 are proposed.

The detailed values of LLCL filter are shown in Section 5. The single structure and the Bode plots
of ig(s)/uf(s) are shown in Figure 3.
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In Figure 3, it can be seen that the LLCL filter has only one tuned trap at switching
frequency f s, which indicates it can eliminate the switching harmonic currents effectively. Moreover,
the characteristics of single LT and LLCL filter below 2.5 kHz are almost same. Thus the mathematical
model of LLCL filter can be instead by LT (LT = Lg + Lf) in the useful frequency range (50 Hz–2.5 kHz).

4. Comparison Analysis of System Stability

4.1. Stability of the Classical Feedback Control Strategy

PR and vector PI (VPI) controllers are effective and popular methods for SAPF, and their systematic
design methods are described in [3,13]. As they have similar filtering properties on each specified
frequency [3], we take PR controllers as an analysis object. The current controllers GPR(s) take the form:

GPR(s) = KP +
n

∑
k=1,5,7···

KIk

s
s2 +ω2

k
(22)

where k = 6i ± 1, and i = 1, 2, 3, 4. According to [3], KP = 2.5, KI5 = KI7 = 256, KI11 = KI13 = 128,
KI17 = KI19 = 64, KI23 = KI25 = 32 are used in this paper. The closed-loop current control model and
open-loop bode plots are shown in Figure 4.

Energies 2017, 10, 112 8 of 19 

 

Considering the harmonics characteristics of NPC-SAPF, Cd/Cr = 8 and Rd = 3 are proposed. 

The detailed values of LLCL filter are shown in Section 5. The single structure and the Bode plots 
of ig(s)/uf(s) are shown in Figure 3. 

 
Figure 3. LLCL filter and the Bode plots. (a) Single structure of LLCL filter; and (b) bode plots of ig(s)/uf(s). 

In Figure 3, it can be seen that the LLCL filter has only one tuned trap at switching frequency fs, 
which indicates it can eliminate the switching harmonic currents effectively. Moreover, the 
characteristics of single LT and LLCL filter below 2.5 kHz are almost same. Thus the mathematical 
model of LLCL filter can be instead by LT (LT = Lg + Lf) in the useful frequency range (50 Hz–2.5 kHz). 

4. Comparison Analysis of System Stability 

4.1. Stability of the Classical Feedback Control Strategy 

PR and vector PI (VPI) controllers are effective and popular methods for SAPF, and their 
systematic design methods are described in [3,13]. As they have similar filtering properties on each 
specified frequency [3], we take PR controllers as an analysis object. The current controllers GPR(s) 
take the form: 

PR P I 2 2
1 5 7

s
(s)

s ωk

n

k , , k

G K K
=

= +
+


 (22)

where k = 6i ± 1, and i = 1, 2, 3, 4. According to [3], KP = 2.5, KI5 = KI7 = 256, KI11 = KI13 = 128, KI17 = KI19 = 
64, KI23 = KI25 = 32 are used in this paper. The closed-loop current control model and open-loop bode 
plots are shown in Figure 4. 

 
Figure 4. Current control model and open-loop Bode plots. (a) Current control model; and (b) open-
loop Bode plots. Figure 4. Current control model and open-loop Bode plots. (a) Current control model; and (b) open-loop
Bode plots.

It can be seen that the phase margin results in 36◦ when the PR controllers (GPR(s)) order is
below 29th (blue dotted line in Figure 4b), which assures system stability. When a 29th or higher
frequency resonant controller (red solid line in Figure 4b) is added, the magnitude is below zero,
which indicates the phase margin is not enough. This condition may be unstable or even resonate
above 29th harmonics. This unstable situation will be solved by decreasing LT or increasing KP,
but the current ripple will be too big for output current waveform, so PR controllers cannot compensate
high-frequency harmonics stably.

4.2. The Proposed Control Strategy Stability

When the control system has the following state-space form:{
dx
dt = Ax + Bu
y = Cx + Du

(23)
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The characteristic equation is obtained by |sI − A|. And the relevant deduction is described
in Appendix A. Let f (s, λ) = |sI − A|. The three-dimensional plot of f (s, λ) is shown in Figure 5.
The system is globally stable when all eigenvalues are in the left-half plane. Thus, λ value should
follow the trend of the red dotted line in Figure 5. The choice of λ is based on the fast response of the
system and good quality of compensation. It is worth noting that the system achieves better dynamic
performance when λ is closer to the origin point but better steady-state performance when λ is far
away from the origin point.
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4.3. Tolerance of Inaccurate Model on Stability

The precision of the proposed control strategy depends on the differences between mathematical
model and real plant. From the mathematical model, it can be seen that the mathematical model will
deviate from real plant when the reference values do not match with the actual one. This condition
means the partial derivative of F(x, t) may not be negative [32]. Thus, we assume that the expected
values are (Icd, Icq, Udc), the adopted values are (I′cd, I′cq, U′dc). Therefore, Equation (18) can be
deduced as:

dF(x,t)
dt = −Rf(x2

1 + x2
2) + ∆d1(x3 Icd − x1Udc) + ∆q1(x3 Icq − x2Udc)

+∆d2(x1Udc − x4 Icd) + ∆q2(x2Udc − x4 Icq)

= −Rf(x2
1 + x2

2) + ∆d1Udc(x3 Icd/Udc − x1) + ∆q1Udc(x3 Icq/Udc − x2)

+∆d2Udc(x1 − x4 Icd/Udc) + ∆q2Udc(x2 − x4 Icq/Udc)

(24)

where: 

∆d1 = λ(x3 I′cd − x1U′dc) = λU′dc(x3 I′cd/U′dc − x1)

∆q1 = λ(x3 I′cd − x2U′dc) = λU′dc(x3 I′cq/U′dc − x2)

∆d2 = λ(x1U′dc − x4 I′cd) = λU′dc(x1 − x4 I′cd/U′dc)

∆q2 = λ(x2U′dc − x4 I′cq) = λU′dc(x2 − x4 I′cq/Udc)

(25)

It can be figured out that if I′cd/U′dc = Icd/Udc and I′cq/U′dc = Icq/Udc, Equation (24) will be
negative. Let us define:

I′cd/Udc = α1 Icd/Udc, I′cq/Udc = α2 Icq/Udc

y1 = x1/Icd, y2 = x2/Icq, y3 = x3/Udc,y4 = x4/Udc
(26)
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Then Equation (24) can be deduced by the adopted values in Equation (25):

dF(x,t)
dt = I2

cd[λUdcU′dc(y3 − y1)(α1y3 − y1)− Rf/2y2
1]

I2
cq[λUdcU′dc(y3 − y2)(α2y3 − y2)− Rf/2y2

2]

I2
cd[λUdcU′dc(y4 − y1)(α1y4 − y1)− Rf/2y2

1]

I2
cq[λUdcU′dc(y4 − y2)(α2y4 − y2)− Rf/2y2

2]

= I2
cd f1(y1, y3) + I2

cq f2(y2, y3) + I2
cd f3(y1, y4) + I2

cq f4(y2, y4)

(27)

It is clear that if f 1(y1, y3), f 2(y2, y3), f 3(y1, y4), f 4(y2, y4) are all below zero, Equation (27) will be
negative. Let us take the first part in Equation (27) as an example, it is assumed that y3 is equal to
k·y1, giving:

f1(y1, y3) = λUdcU′dc(y3 − y1)(α1y3 − y1)− Rf/2y2
1

= y2
1[λUdcU′dcα1k2 − λUdcU′dc(1 + α1)k + (λUdcU′dc − Rf/2)]

= y2
1g1(λ,α1, k)

(28)

It is clear that g1(λ, α1, k) is a quadratic equation of k, and g1(λ, α1, k) has a maximum value at
km = (1 + α1)/(2α1) given by:

g1max = λUdcU′dc[1− (1 + α1)
2/4α1]− Rf/2 (29)

The error parameter α1 will be given a value range when g1max is below zero. The relationship
between α1 and g1max is shown in Figure 6.
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According to the dashed area in Figure 6 and for an expected range of uncertainty
1 − ε < α1 < 1 + ε, the maximum value of λ can be calculated from Equation (29):

λmax =
2Rf(ε− 1)
UdcU′dcε

2 (30)

where λmax is the maximum of control gain, ε is the uncertainty range. For example, if an uncertainty
range of ±5% is chosen, λmax is calculated as −2.6 × 10−4.

5. Simulation Results

The proposed control strategy based on Lyapunov stability theory is simulated in MATLAB/Simulink.
The main purpose of the simulation is to test three aspects of the control strategy: (1) The proposed
control strategy can obtain wider output bandwidth than the closed-feedback control methods;
(2) the proposed control strategy has a fast dynamic response for step-change of nonlinear load;
(3) the proposed control strategy has a good steady-state harmonic compensation performance.
The simulation parameter specifications are given in Table 1.
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Table 1. Simulation parameters.

Parameter Value Parameter Value

uSNabc 220 V Lf 0.45 mH
f 0 50 Hz Rf 0.05 Ω
f s 12.8 kHz Lg 0.05 mH

u∗dc 400 V Lr 70.28 µH
Ls 0.02 mH Cr 2.2 µF
Rs 0.05 Ω Cd 17.6 µF

C1(C2) 4650 µF Rd 5 Ω

5.1. Comparisons between the Proposed Control Strategy and the Classical Feedback Control Methods

In order to verify the system stability analysis in Section 4, the proposed control strategy with
λ = −1 × 10−2, PR controllers and selective harmonics (VPI) controllers described in [3,13]
are simulated. They all output 1st–50th harmonic currents. The simulation results are shown in
Figures 7 and 8.
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It can be seen from Figure 7 that NPC-SAPF with the proposed control strategy outputs 1st–50th
harmonic currents stably. The output current of NPC-SAPF by using PR controllers (1st–50th resonant
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controllers) resonates between the 29th and the 50th harmonics. While the output current of NPC-SAPF
by using VPI controllers (1st–50th controllers) resonates between the 41st and the 50th harmonics.
In Figure 8, when PR and VPI controllers only regulate harmonics below 25th, the resonant
phenomenon disappears. Simulation results in Figures 7 and 8 indicate that NPC-SAPF by using the
proposed control method has wider output bandwidth than PR and VPI controllers.

5.2. Dynamic Response of the NPC-SAPF

The waveforms of PCC voltages (uSNabc) and nonlinear load currents (iLabc) are shown in Figure 9.
The nonlinear load is an uncontrolled rectifier bridge (URB) with inductors (0.9 mH) and step-change
resistors (40 Ω→ 25 Ω). Grid currents (iSabc), NPC-SAPF output currents on Lg (igabc), the difference
between the reference currents and igabc (∆iCabc), upper and lower DC-capacitor voltages (udc1&udc2)
and DC-link total voltage (udc) are depicted in the rest figures of simulation. The nonlinear load
changes 40 Ω → 25 Ω at 0.2 s. Figures 10 and 11 show the dynamic response of NPC-SAPF when
λ = −1 × 10−2 and λ = −1 × 10−3.
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As shown in Figures 10 and 11, the DC-link voltage is regulated at 800 V and the voltages of
upper and lower DC-capacitors are balanced. The waveforms of iSabc when λ = −1 × 10−2 are better
than λ = −1 × 10−3. It can be found from the last two sub-figures in Figures 10 and 11 that the settling
time of λ = −1 × 10−2 (50 ms) is longer than λ = −1 × 10−3 (35 ms). The simulation results agree well
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with the analysis in Section 4.2. It also can be seen that the overshoots of igabc and udc are very small.
We can draw a conclusion from the simulation results that the NPC-SAPF can obtain fast dynamic
response with small overshoot for a step-change of the nonlinear load.
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The NPC-SAPF operates stably after 0.25 s. The corresponding FFT analysis is shown in Figure 12.
One can figure out that the THD of phase A grid current is decreased from 28.2% (22.61 A fundamental)
to 3.81% and 6.03% when λ = −1 × 10−2 and λ = −1 ×10−3, respectively. Moreover, the switching
frequency (12.8 kHz) harmonic currents are eliminated effectively by the proposed LLCL filter.
The THD when λ = −1 × 10−3 cannot satisfy the requirements of IEEE Standard 519-2014.
The detailed simulation data when λ = −1 × 10−2 are shown in Table 2. From Table 2, each harmonic
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Table 2. Detailed simulation data.

Harmonic Order
Load Current Grid Current IEEE Standard 519-2014

Amplitude (A) Percent (%) Amplitude (A) Percent (%) Maximum Percent (%)

1 22.61 100 22.77 100 100
5 5.11 22.59 0.45 1.97 4.0
7 2.45 10.85 0.64 2.81 4.0
11 1.94 8.60 0.08 0.34 2.0
13 1.28 5.67 0.24 1.04 2.0
17 1.10 4.87 0.10 0.45 1.5
19 0.78 3.46 0.17 0.74 1.5
23 0.69 3.06 0.11 0.48 0.6
25 0.50 2.20 0.09 0.39 0.6
29 0.45 1.98 0.07 0.31 0.6
31 0.32 1.40 0.06 0.26 0.6
35 0.29 1.29 0.07 0.31 0.3
37 0.20 0.87 0.05 0.21 0.3
41 0.19 0.85 0.03 0.13 0.3
43 0.12 0.53 0.05 0.21 0.3
47 0.13 0.60 0.06 0.26 0.3
49 0.07 0.32 0.03 0.13 0.3

THD (%) 28.20 3.81 5.0

It can be concluded from simulation results that the NPC-SAPF by using the proposed
strategy has a wider output bandwidth on the premise of good dynamic response and satisfactory
steady-state performance.

6. Experimental Results

The proposed control strategy is implemented on a 6.6 kVA NPC-SAPF laboratory prototype
using the same simulation specifications given in Table 1. Figure 13 shows the 6.6 kVA NPC-SAPF
laboratory prototype and the nonlinear load.
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The digital signal processor (DSP) is a TMS320F28335 (Texas Instruments, Dallas, TX, USA).
The experimental results are single-phase (phase A) waveforms due to the channel limitation of
the experimental equipment. The experimental waveforms measured by a TDS 2014B oscilloscope
(Tektronix, Beaverton, OR, USA) are shown in Figures 14 and 15.

6.1. Dynamic Response of the NPC-SAPF

Phase A grid voltage (uSNa), nonlinear load current (iLa) and output line-to-line voltage (uinv_AB) of
NPC are shown in Figure 14. This is the PCC voltage and load current condition of the rest experiments.
There are three voltage levels of NPC-SAPF: 0, 400 and 800 V in Figure 14b. Output current on gird-side
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inductor (iCa), grid current (iSa) and upper and lower DC-capacitor voltages (udc1&2) are shown in
Figure 15. The step-change of the nonlinear load is the same as the simulation condition.
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As shown in Figure 15, the upper and lower DC-capacitor voltages are equal and the DC voltage
waveforms are regulated at the reference value (800 V). The waveforms of iSa and udc1&2 when
λ = −1 × 10−2 are more smooth than λ = −1 × 10−3. While the settling time of λ = −1 × 10−2 (40 ms)
is longer than λ = −1 × 10−3 (25 ms). It can be figured out that the overshoots of iCa and udc are very
small. The results confirm that the NPC-SAPF can achieve fast dynamic response with small overshoot
for a step-change of the nonlinear load.

6.2. Steady-State Performance of the NPC-APF

The NPC-SAPF operates stably after 40 ms from the step-change point. The FFT analysis
conducted by SIMULINK/powergui function of phase A grid currents are shown in Figure 16 and
the detailed experimental data when λ = −1 × 10−2 are shown in Table 3. The THD of the grid
current is decreased from 27.9% (22.96 A fundamental) to 2.94% and 4.35% when λ = −1 × 10−2 and
λ =−1× 10−3, respectively. In Table 3, we can figure out that each order harmonic percent is lower than
IEEE Standard 519-2014 when λ = −1 × 10−2. The experimental results conform with the simulation,
and λ = −1 × 10−2 is recommended. In addition, the switching frequency is not shown in Figure 16
because the number of data sample points provided by the Tektronix oscilloscope is not enough,
but we can figure out that grid current waveforms in Figure 15 are very smooth, which indicates that
the switching frequency harmonics are attenuated.
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Table 3. Detailed experimental data.

Harmonic Order
Load Current Grid Current

Amplitude (A) Percent (%) Amplitude (A) Percent (%)

1 22.96 100 23.03 100
5 5.08 22.10 0.36 1.56
7 2.39 10.41 0.37 1.61
11 1.92 8.36 0.16 0.69
13 1.25 5.44 0.19 0.83
17 1.10 4.79 0.17 0.74
19 0.75 3.27 0.13 0.56
23 0.66 2.87 0.12 0.52
25 0.48 2.09 0.12 0.52
29 0.46 2.00 0.13 0.56
31 0.31 1.35 0.12 0.52
35 0.30 1.31 0.07 0.30
37 0.20 0.87 0.06 0.26
41 0.18 0.78 0.07 0.30
43 0.12 0.52 0.05 0.22
47 0.12 0.52 0.05 0.22
49 0.07 0.30 0.06 0.26

THD (%) 27.9 3.0

6.3. Experimental Resultes of PR and VPI Controllers

In order to clarify the advantages of the proposed control strategy with λ = −1 × 10−2,
the PR and VPI control methods in [3,13] were also applied in the NPC-SAPF prototype. According to
the crossover frequency of the open-loop transfer function in Figure 4, the NPC-SAPF outputs 1st–25th
harmonic currents. The experimental results are shown in Figure 17. The corresponding FFT analysis
of phase A grid current is shown in Figure 18.

It can be seen from Figures 17 and 18 that the THD grid currents in the two conditions are
4.07% and 4.01%. The 5th–25th harmonics are well attenuated while the 29th–50th harmonics still
cannot meet the requirements of IEEE Standard 519-2014. The settling time of the output currents are
only 25 ms and 30 ms, and the overshoot of output currents is very small.

In Section 6.2, the THD of grid current when λ = −1 × 10−2 was 2.94%. The 5th–50th harmonics
of the grid current are all attenuated and can satisfy the requirements of IEEE Standard 519-2014.
In Section 6.1, the settling time of the output current was 40 ms, and the overshoot of the output
current was also small when λ = −1 × 10−2.
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The THD of the proposed control strategy (3.0%) is superior to PR (3.56%) and VPI (3.31%) control
methods. This is because the proposed control strategy compensates more high-frequency (29th–49th)
harmonics than PR and VPI control methods. Besides, the settling time of the proposed control strategy
is slightly poorer than PR and VPI control methods but it is acceptable.

From the above comparison results, we can conclude that the proposed control strategy has a
satisfactory compensation performance without deteriorating the settling time severely compared
with PR and VPI control methods.
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7. Conclusions

In this paper, a Lyapunov stability theory-based control strategy for a three-phase three-wire
NPC-SAPF is proposed and implemented to broaden the output bandwidth. By constructing the
switching function on the basis of a mathematical model and the Lyapunov candidate function,
the proposed control law avoids introducing closed-loop feedback control and keeps the system
globally asymptotically stable. The NP voltage balance approach and an improved LLCL filter
are introduced to ensure the normal operation of NPC-SAPF. The comparison simulations and
experimental results between the proposed strategy and the classical methods validated the
effectiveness of the proposed control strategy. The results have demonstrated that the system is
able to compensate harmonic currents from 1st to 50th without deteriorating the settling time severely,
and ensure that each harmonic component of the grid currents meets the requirements specified in the
IEEE Standard 519-2014.
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Appendix A

The system can be linearized around the equilibrium point (x1 = x2 = x3 = x4 = 0). Thus,
the Jacobian matrix A is given by (A1). And the detailed expression of |sI − A| (A2) can be deduced
by Equations (14), (18) and (A1).

A =



−Rf+2λu∗dc
2

LT
ω0

Dd1+λi∗du∗dc
−LT

Dd2−λi∗du∗dc
LT

−ω0
−Rf+2λu∗dc

2

LT

Dq1+λi∗qu∗dc
−LT

Dq2−λi∗qu∗dc
LT

Dd1−λi∗du∗dc
Cd

Dq1−λi∗qu∗dc
Cd

λ(i∗d
2+i∗q

2)

Cd
0

Dd2+λi∗du∗dc
−Cd

Dq2+λi∗qu∗dc
−Cd

0
λ(i∗d

2+i∗q
2)

Cd


(A1)

|sI−A| =

∣∣∣∣∣∣∣∣∣
s + 40− (64e + 7)λ −100π (12e + 3) + (16e + 6)λ (12e + 3) + (16e + 6)λ

100π s + 40− (64e + 7)λ (6e + 3) + (64e + 5)λ (6e + 3) + (64e + 5)λ
−(1.3e + 3) + (1.7e + 6)λ −(6.5e + 2) + (6.9e + 5)λ s− (1e + 5)λ 0
(1.3e + 3) + (1.7e + 6)λ (6.5e + 2) + (6.9e + 5)λ 0 s− (1e + 5)λ

∣∣∣∣∣∣∣∣∣ (A2)
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