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Abstract: As a basic building block in power systems, the three-phase voltage-source inverter
(VSI) connects the distributed energy to the grid. For the inductor-capacitor-inductor (LCL)-filter
three-phase VSI, according to different current sampling position and different reference frame,
there mainly exist four control schemes. Different control schemes present different impedance
characteristics in their corresponding determined frequency range. To analyze the existing resonance
phenomena due to the variation of grid impedances, the sequence impedance models of LCL-type
grid-connected three-phase inverters under different control schemes are presented using the
harmonic linearization method. The impedance-based stability analysis approach is then applied
to compare the relative stability issues due to the impedance differences at some frequencies
and to choose the best control scheme and the better controller parameters regulating method
for the LCL-type three-phase VSI. The simulation and experiments both validate the resonance
analysis results.
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1. Introduction

As important interfaces between distributed power generation systems and a power grid,
three-phase voltage-source inverters are widely used in grid integration of renewable energy [1].
Due to the increasingly complexity of the dynamics of the power grid [2] and the varying differences
among inverters [3], various stability issues exist in the inverter-grid system. The interaction between
the inverter output impedance and the grid impedance is a particular issue that can trigger resonance
and control instability of grid-connected inverters [4]. Ideally, the output impedance of the inverter is
infinite and the impedance of the grid is zero, so there is no coupling between them [5]. However, to
the inverter, its output impedance can be confined by the filter and control loop; to the grid, due to the
long distance transmission cables, it may feature as the weak grid containing a large set of impedances,
which could trigger resonances in the inverter-grid systems [6]. Therefore the grid impedance affects
the robust stability of grid-connected inverters and it’s essential to analyze the resonant problems and
improve the stability margin from the point of the output impedances of VSIs [1,2,5,7–10].

Considering the VSI, its output impedance characteristics would be different in terms of different
output filters. Compared to the L-type filter, the LCL-type filter has been widely used in grid-connected
inverters due to its higher attenuating ability [11]. However, it needs additional damping methods to
eliminate the high-frequency resonances. Apart from that, current control is another important issue
for the LCL-filter VSIs [12]. Unlike L-filter VSIs whose controlled current is sampled from the inductor;
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to LCL-filter VSIs, both the inverter-side current (IC) and grid-side current (GC) can be sampled and
controlled, which means that the stability issues of the LCL-type grid-connected inverters would be
more complicated under different sampling positions. Although the stability issues of the LCL-type
grid-connected inverters have been widely studied in the literature [12–17], in the weak grid, most
of the studies focus on relevant damping methods to eliminate the resonance resulting from large
grid impedance, mainly including the multi-loop control method [13], the filter-based active damping
method [14,15] and the virtual impedance method [16]. Among the various active damping solutions,
capacitor-current-feedback damping has been widely used for its ease of implementation [12,13].
When it comes to the stability comparison on different current sampling position of LCL-filter, the
studies are quite limited. In [12], based on a general mathematical model, a comparative analysis of
different control schemes (namely, the grid current control, the inverter-side inductor current control,
and the weighted average current control) was carried out in terms of the grid current stability. It
revealed that when the inverter-side inductor current is controlled, the grid current shows the same
stability as the inverter-side inductor current; but when the weighted average current is controlled,
both the grid current and the inverter-side inductor current are critically stable even though the
weighted average current can be easily stabilized. Additionally, in [14], the relationship between
current sensor positions and LCL-filter resonance frequencies without active damping is analyzed by
means of open-loop Bode diagram. It’s concluded that for the GC sampling, the system is stable for
the higher resonance frequencies and for the IC sampling, the system is stable for the lower resonance
frequencies. In conclusion, there is no detailed model analysis aiming at comparing different control
schemes of LCL-filter VSIs.

In a three-phase VSI, the current can be controlled in a rotating dq-domain reference frame or a
stationary αβ-domain reference frame, most of which use a proportional-integral (PI) controller and
proportional-resonant (PR) controller, respectively. Different reference frames show some differences
in terms of the corresponding output impedances [1], so it is necessary to compare their robustness
under weak grid conditions. However, the existing literature paying attention to this problem is too
limited. Reference [1] emphasizes on the modeling of output impedances of L-type VSI in dq-domain
and phase-domain reference frame, and there is no relevant comparison for a weak grid. In [18], three
different current controllers’ performance are compared just by time-domain simulation, including
the PI-controller in synchronous rotating reference frame, the PR-controller in the stationary reference
frame and the phase current hysteresis controller. The results indicated that the PR-controller is more
adaptable to the grid impedance variation. Similarly, in [19], the same kind of controllers as in [18]
were compared on the basis of the steady state error produced, transient performance, harmonic
content and hardware implementation aspects in virtual synchronous machines. Additionally, in [20],
the performance of a PR controller is compared with that of the PI controller just by time-domain
simulation and the authors draw the conclusion that the PR controller achieves better reduction in
total harmonic distortion (THD) in the current signal spectrum.

Despite the extensive literature that has been published on the stability analysis of LCL-filter
three-phase VSIs under weak grid conditions, detailed mathematical models and differences among
different control schemes, including different current sampling position and different reference frame
remain unrevealed. Research on stability improvement approaches under the control scheme with
better robustness will be more efficient to solve the resonance issues, therefore it’s quite necessary to
ensure a control scheme with greater robustness for the weak grid situation.

In order to choose the best control scheme for the LCL-filter VSI under weak grid conditions among
the most common ones, including the αβ-domain GC feedback control, αβ-domain IC feedback control,
dq-domain GC feedback control, and dq-domain IC feedback control, this paper models their sequence
impedances using the harmonic linearization method and analyzes their functionary mechanism from
the point of impedances to explain a variety of existing resonance phenomena.
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2. Impedance Modeling and Analysis

The grid-connected VSI with LCL-filter is depicted in Figure 1. Phase voltages are denoted as
va, vb, vc, while phase currents are represented by ia, ib, ic. L1 and L2 are the inverter-side inductor
and grid-side inductor, respectively. Cf is the filter capacitor. The capacitor current feedback loop
is chosen to eliminate the high-frequency resonance resulting from the LCL filter, Ki is the feedback
coefficient. Z0 denotes the inverter impedance and Zg denotes the grid impedance. Lg denotes the
inductive component of the grid. Figure 1 shows the dq-domain GC feedback control. With regard to
other control schemes, Figure 2 depicts the IC feedback control, here Cf and L2 are considered as parts
of the grid impedance expressed as Zg. Figure 3 shows the αβ-domain current feedback control.
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The harmonic linearization impedance modeling approach is based on the Fourier Transform.
Specifically, apply a small positive- or negative-sequence voltage perturbation on the fundamental
voltage at the point of common coupling (PCC) and find the corresponding response of the inverter
currents at the same frequency of the superimposed perturbation. Then the impedance is defined as
the ratio of the perturbed voltages to the corresponding currents [10]. Here we take the modeling of
positive-sequence impedance under dq-domain GC feedback control as an example to introduce the
modeling approach.
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2.1. Impedance Modeling

According to the harmonic linearization impedance modeling approach and the block diagram
depicted in Figure 1, when applying a small positive-sequence voltage perturbation on the fundamental
voltage, we can get the positive-sequence signal flow diagram of inverter with dq-domain GC feedback
control shown in Figure 4. In this figure uk(s) is the output voltage at the inverter ac terminal, uck(s) is
the output voltage at the capacitor ac terminal, ugk(s) is the output voltage at the grid ac terminal. m is
the modulating signals for PWM, Km is the modulator gain. Gv(s) and Gi(s) model the voltage and
current sampling delay. Vdc is the dc bus voltage, Idr and Iqr are the reference currents. In modeling,
Vdc, Idr, Iqr is assumed constant. f 1 and fp represent the frequencies of the signal and fp is the frequency
of positive-sequence perturbation.
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Figure 4. Signal flow diagram of inverter with dq-domain GC feedback control during positive-
sequence perturbation.

In the time domain, the phase voltages with a small-signal positive perturbation can be written as:

va(t) = V1 cos(2π f1t) + Vp cos(2π fpt + ]φvp) (1)

where V1 with f 1 is the amplitude and frequency of the fundamental voltage; Vp, fp and φvp is the
amplitude, frequency and phase of the positive-sequence voltage perturbation. In the frequency
domain, (1) can be written as:

Van[ f ] =

{
V1n[ f ], f = ± f1

Vpn[ f ], f = ± fp
(2)

where Van[f ] is the Fourier transform of va (t), V1n[f ] and Vpn[f ] are defined as:

V1n[ f ] =
V1

2
, Vpn[ f ] =

Vp

2
e±jφvp (3)

Other phase voltages can be inferred from (2):

Vbn[ f ] =

{
V1n[ f ]e∓j 2

3π, f = ± f1

Vpn[ f ]e∓j 2
3π, f = ± fp

Vcn[ f ] =

{
V1n[ f ]e±j 2

3π, f = ± f1

Vpn[ f ]e±j 2
3π, f = ± fp

(4)

In order to find the current response under the positive-sequence voltage perturbation shown
in (1), the first step is to derive the small-signal response of the phase-locked loop (PLL).

Figure 5 depicts the basic building block of a synchronous reference frame (SRF) PLL, where
θPLL is the phase of the grid voltage, and HPLL(s) is the loop compensator. In order to solve the
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nonlinearity in Park’s transformation, we break Figure 5 into two parts as depicted in Figure 6, where
∆θ = θPLL(t)− θ1(t).
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Introduce the frequency-domain Equations (2) and (4) into Figure 6, the calculated lock signal in
the frequency domain is written as follows:

cos θPLL[ f ] =
1
2

HPLL(s − j2π f1)Gv(s)
1 + V1HPLL(s − j2π f1)

Vpn(s) f = ± fp (5)

sin θPLL[ f ] = ∓j cos θPLL[ f ] f = ± fp (6)

Finally the following transfer function is found:

Tp(s) =
1
2

HPLL(s − j2π f1)Gv(s)
1 + V1HPLL(s − j2π f1)

f = ± fp (7)

where Tp(s) models the response of cos(θPLL(t)) to Vp(s).
Similarly, for a negative-sequence perturbation, the transfer function is modeled as:

Tn(s) =
1
2

HPLL(s + j2π f1)Gv(s)
1 + V1HPLL(s + j2π f1)

f = ± fn (8)

Introducing the small-signal response of PLL into Figure 4, we can get the inverter output
impedances under dq-domain GC feedback control as in (9) and (10):

Zp
GC(s) =

KmVdce−s1.5Ts [Hi(s − j2π f1)− jKd]Gi(s) + P1
GC(s)

P2GC(s)− KmVdce−s1.5Ts [Hi(s − j2π f1)− jKd + MnGC[dc]/I1]Tp(s)I1
(9)

Zn
GC(s) =

KmVdce−s1.5Ts [Hi(s + j2π f1) + jKd]Gi(s) + P1
GC(s)

P2GC(s)− KmVdce−s1.5Ts [Hi(s + j2π f1) + jKd + M∗
nGC[dc]/I1

∗]Tn(s)I1
∗ (10)

where:
P1

GC(s) = L1L2s2(sC f +
1

Rpd
e−s1.5Ts) + (L1 + L2)s (11)

P2
GC(s) = L1s(C f s +

1
Rpd

e−s1.5Ts) + 1 (12)
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Rpd =
L1

KiKmC f
(13)

MnGC[dc] =
V1P2

GC(j2π fp) + I1ejφi1 P1
GC(j2π fp)

KmVdce−s1.5Ts
(14)

and MnGC
∗ is the complex conjugate of MnGC, I1

∗ is the complex conjugate of I1. I1 is the magnitude
of fundamental current.

Under the dq-domain IC feedback control, this is equivalent to the L-filter inverter shown in
Figure 2 [10], Cf and L2 are considered as parts of the grid impedance, so the only difference in the
signal flow diagram between GC and IC feedback is the green area illustrated in Figure 4. Under
the αβ-domain GC feedback control, the only difference of signal flow diagram between dq- and
αβ-domain control lies in the blue area depicted in Figure 4. Similarly, their inverter output impedances
are modeled as follows:

Zp
IC(s) =

KmVdce−s1.5Ts [Hi(s − j2π f1)− jKd]Gi(s) + sL1

1 − KmVdce−s1.5Ts [Hi(s − j2π f1)− jKd + MnIC[dc]/I1]Tp(s)I1
(15)

Zn
IC(s) =

KmVdce−s1.5Ts [Hi(s + j2π f1) + jKd]Gi(s) + sL1

1 − KmVdce−s1.5Ts [Hi(s + j2π f1) + jKd + MnIC
∗[dc]/I1

∗]Tn(s)I1
∗ (16)

where:
MnIC[dc] =

[
V1 + jw1L1 I1ejφi1

]
·
[
KmVdce−s1.5Ts

]−1
(17)

and MnIC
∗ is the complex conjugate of MnIC.

ZpGC
αβ(s) =

KmVdce−s1.5Ts Hr(s)Gi(s) + P1
GC(s)

P2GC(s)− KmVdce−s1.5Ts Hr(s)(Idr ± jIqr)Tp(s)
(18)

ZnGC
αβ(s) =

KmVdce−s1.5Ts Hr(s)Gi(s) + P1
GC(s)

P2GC(s)− KmVdce−s1.5Ts Hr(s)(Idr ∓ jIqr)Tn(s)
(19)

ZpIC
αβ(s) =

KmVdce−s1.5Ts Hr(s)Gi(s) + sL1

1 − KmVdce−s1.5Ts Hr(s)(Idr ± jIqr)Tp(s)
(20)

ZnIC
αβ(s) =

KmVdce−s1.5Ts Hr(s)Gi(s) + sL1

1 − KmVdce−s1.5Ts Hr(s)(Idr ∓ jIqr)Tn(s)
(21)

2.2. Impedance Models Verification

By means of Plecs, we apply a frequency sweep method to verify the modeled impedances. The
parameters for the simulation are listed in Table 1.

Figures 7–10 show the frequency response under different control schemes. The red solid line
and the blue broken line represent the positive- and negative-sequence models, respectively; the
black dashed line and the pink dashed line show the positive- and negative-sequence simulations,
respectively. It can be concluded that the modeled impedances are verified well by the simulation,
which validates the accurate modeling approach of the output impedances of the grid-connected
inverters. It can be seen that differences between positive-sequence and negative-sequence impedance
appear at lower frequencies; this is because of the shifting of effects of ±jw1 that makes them
different [1]. Additionally, we can see that the main difference between GC and IC control lies
at frequencies where s >> jw1 as seen comparing Figure 7 with Figure 8, or Figure 9 with Figure 10.
The main difference between dq- and αβ-domain control locates at lower frequencies, as seen by
comparison of Figure 7 with Figure 9, or of Figure 8 with Figure 10.
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Table 1. Parameters of the simulation of grid-connected inverters.

Parameter Symbol Value

dq-domain Current Control Compensator Hi(s) = Kp + Ki/s Kp = 0.04, Ki = 20
αβ-domain Current Control Compensator Hr(s) = Kp + 2Kis/(s2 + w1

2) Kp = 0.04, Ki = 20
SRF-PLL Compensator HPLL(s) = (Kp + Ki/s)/s Kp = 2.98, Ki = 1990

Decoupling Gain Kd 0.0052
Fundamental Grid Voltage V1 156 V
Fundamental Frequency f 1 50 Hz

DC Bus Voltage Vdc 550 V
PWM Gain Km 1/2

Grid Inductance Lg 5 mH
Converter-side inductance L1 2 mH

Grid-side inductance L2 0.5 mH
Filter Capacitor Cf 30 uF

Damping feedback coefficient Ki 33.3
Fundamental current I1 10 A
Phase of the Current Φi1 0

Voltage Sampling Period Tv 50 us
Current Sampling Period Ti 25 us

Switching Period Ts 50 us
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2.3. Impedance Analysis

Different control schemes present some differences in their corresponding determined frequency
ranges. In order to find out the reason why the output impedances show some differences, as depicted
in Figures 7–10, here we analyze the dominant factor(s) in different frequency ranges to recognize
some existing resonance phenomena better and meanwhile demonstrate indirectly the main difference
of different control schemes. Here we take the positive-sequence impedance under the αβ-domain
GC feedback control as an example to characterize the impedance in the high, medium and low
frequency ranges.

Referring to the high-frequency (>500 Hz) characteristics of the output impedance, Figure 11
shows the comparison of the whole impedance model and the simplified model as in (22). The
simplified model just considers the filter part. It can be concluded that the simplified model can
describe the high-frequency impedance characteristics well, which indicates that high-frequency
characteristics mainly lie in the filter.

Zp
αβ(s) =

P1(s)
P2(s)

=
L1L2C f s3 + (L1 + L2)s

L1C f s2 + 1
(22)
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As for the medium-frequency (200–500 Hz) characteristics of the output impedance, Figure 12a
shows the comparison of the whole impedance model as in (18) and the simplified model as
in (23) derived from neglecting the PLL in (18). Figure 12b depicts the impedance response with
different current controller parameters. It can be seen that the simplified model can represent the
medium-frequency impedance characteristic well, and the adjustment of current controller parameters
has a great influence on the medium-frequency impedance characteristics [1,6], which illustrates that
the medium-frequency characteristics are not related with PLL and they are determined mainly by
the current controller parameters. Increasing the proportional and integral coefficients can improve
the magnitude of the medium-frequency impedance greatly. However it deteriorates the phase in
high-frequency range.

Zp
αβ(s) =

KmVdce−s1.5Ts Hr(s)Gi(s) + P1
GC(s)

P2GC(s)
(23)
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With regard to the low-frequency (30–200 Hz) characteristics of the output impedance, Figure 13
depicts the impedance response with different PLL controller parameters. It can be seen that the
adjustment of PLL controller parameters has a great influence on the low-frequency impedance
characteristics [1,10]. Considering the results of Figures 12b and 13, it reveals that PLL contributes a
lot to the low-frequency characteristics. Decreasing the bandwidth of the PLL controller can improve
the phase of the low-frequency impedance.
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From the above analysis and considering the modeling process, since the difference between GC
and IC feedback lies in the filter, it can be concluded that the essential difference under different current
sampling schemes locates in the high-frequency range; as the main difference between αβ-domain
control and dq-domain control is the current control loop including the current controller and the
PLL, the impedances under different reference frame present different characteristics both in medium-
and low-frequency range. The theoretical results are consistent with the model comparison shown in
Figures 7–10.

3. Stability Analysis

3.1. Stability Criterion

According to the impedance-based stability criterion in [5], the grid-connected inverter is
equivalent to the circuit depicted in Figure 14. If we assume that the inverter is stable when connected to
a grid with zero impedance, and the grid is stable when an ideal current source with infinite impedance
is connected to it, then the interconnected system is stable only if the impedance ratios Zg/Z0

conform with the Nyquist stability criterion. Considering a three-phase system, both the positive- and
negative-sequence impedance should conform with this criterion, but the positive-sequence impedance
turns out to be more critical in terms of stability [21]. Therefore the following analysis mainly aims
at comparing the impedance ratio Zg/Z0p. In order to compare the stability under different control
schemes, the grid impedance is simplified as varied inductors, which is representative in stability
issues associated with variations of grid impedance [11].
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3.2. Stability Analysis of Inverter-Grid System with Different Current Sampling Schemes

To the inverter-grid system with different current sampling schemes, according to Figures 1 and 2,
their gird impedances are expressed as:

Zg
GC(s) = sLg (24)

Zg
IC(s) =

1
1/(sL2 + sLg) + sC f

(25)

Combing the grid impedance in Equations (24) and (25) and the output impedance models of
the inverter in Equations (9) and (15), Figure 15 shows the impedance-based stability analysis results
under different sampling currents when Lg = 5 mH, where it can be concluded that the impedance
ratios Zg/Z0 conform with the Nyquist stability criterion in these two cases (the stable margin is
sufficient), which indicates the inverter-grid system is stable when Lg = 5 mH. Figure 16 depicts the
grid-connected simulation currents; there is no resonance in the currents, which validates the accuracy
of the impedance-based stability analysis results in Figure 15.
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In order to compare the resonance phenomena under different sampling currents clearly, here we
list the impedance-based stability analysis results in Table 2. It can be derived that the inverter-grid
system begins resonating when the grid inductor increases to 6 mH under these two current sampling
schemes. It can also be inferred that different sampling schemes matter little to the resonance resulting
from the varied grid impedance, because different sampling schemes only vary in the high frequency,
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which can be obtained from the impedance analysis in Section 2.3, so for the lower-frequency stability
resulting from weak grid conditions, their difference is too small to be ignored. The main difference
is that GC control can ensure the power factor, while the IC control doesn’t need damping. Here we
think more about the power factor, so GC control is better.

Table 2. Stability referring to different current sampling schemes.

Grid Inductor
(mH)

Sampling
Schemes

Crossover
Frequency (Hz)

Phase
Margin (◦)

Magnitude
Margin (dB) Stability Mode

5 GC 226 14 2.25 stable
5 IC 190 28 2.70 stable
6 GC 195 5 0.7 unstable
6 IC 166 9 0.9 unstable

3.3. Stability Analysis of Inverter-Grid System with Different Current Reference Frame

Here the stability analysis is implemented under GC sampling. For the inverter-grid system
with different current reference frame, the gird impedances are both expressed as in (24). We take
the same analysis method as described in Section 3.2. Combing the grid impedance in Equation (24)
and the output impedance models in Equations (9) and (18), Table 3 shows the impedance-based
stability analysis results. It can be seen that the resonance phenomena under different reference
frame varies greatly. When the grid inductor increases to 6 mH, the dq-domain feedback control
displays resonance and the αβ-domain feedback control is still stable, until the grid inductor increases
to 8 mH, where the αβ-domain feedback control shows resonance, which illustrates that the αβ-domain
feedback control has better performance compared to the dq-domain feedback control when the grid
impedance varies. This can be explained by the impedance analysis in Section 2.3—the impedance
under different reference frame varies in lower frequency, so their robustness is apparent under the
weak grid conditions.

Table 3. Stability referring to different current reference frame.

Grid Inductor
(mH)

Reference
Frame

Crossover
Frequency (Hz)

Phase
Margin (◦)

Magnitude
Margin (dB) Stability Mode

5 dq 226 14 2.25 stable
5 αβ 239 20 5.08 stable
6 dq 195 5 0.7 unstable
6 αβ 211 17 3.5 stable
7 dq 172 −6 −0.7 unstable
7 αβ 187 13 2.2 stable
8 αβ 168 7 1.0 unstable

3.4. Stability Analysis of Inverter-Grid System with Different Control Parameters

From the above analysis, we conclude that the αβ-domain GC feedback control is verified to
be the best control scheme for the VSI with LCL-filter connected to a weak grid. To improve the
robustness, here we analyze the contribution of regulating the control parameters to adjust the grid
impedance variation. Referring to the control loop of the inverter-grid system, it mainly consists of
the current controller and the PLL controller. From the analysis in Section 2.3, it can be drawn that
increasing the controller bandwidth can enlarge the magnitude of the inverter impedance greatly in the
medium-frequency range, while decreasing the PLL bandwidth can enlarge the phase of the inverter
impedance remarkably in the low-frequency range. Considering the two control parameter regulating
methods, here we compare their effects to find the more efficient way to eliminate resonance.
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Tables 4 and 5 show the resonance analysis results by means of the impedance-based stability
analysis approach. It can be seen that by increasing the current controller bandwidth by 40% or
decreasing the PLL controller bandwidth by 30% when the grid inductor is 8 mH, the resonant currents
in Table 3 become stable, as shown in the tables, but in the first case, the system becomes resonant
when the grid inductor grows to 10 mH, and in the second case, the resonance emerges until the grid
inductor increases to 11 mH. Therefore it is more efficient to decrease the PLL bandwidth to improve
the stability. The disadvantage is that if the PLL bandwidth is lower, its dynamic response will be
slower, but the increase of the current controller bandwidth may result in higher-frequency resonances.

Table 4. Stability state when increasing the current controller bandwidth by 40%.

Grid Inductor
(mH)

Crossover Frequency
(Hz)

Phase Margin
(◦)

Magnitude Margin
(dB) Stability Mode

8 228 15 12 stable
9 205 12 11 stable

10 184 8 10 unstable

Table 5. Stability state when decreasing the PLL controller bandwidth by 30%.

Grid Inductor
(mH)

Crossover Frequency
(Hz)

Phase Margin
(◦)

Magnitude Margin
(dB) Stability Mode

8 185 15 12 stable
9 171 14 15 stable

10 158 11 14 stable
11 145 8 13 unstable

4. Experimental Results

To confirm the theoretical analysis in Section 3, a series of experiments were implemented on
a 3 kW wind power experimental platform depicted in Figure 17. On this platform, the grid inductor
has values of 2, 4, 6, 8 and 10 mH. By choosing different values, we can simulate the variation of the
grid impedance to compare the effects of different control schemes under weak grid conditions.
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Figure 18 shows the stability comparison under different current sampling schemes, where it can
be seen that when Lg = 4 mH, the current waveform is sinusoidal under both the IC and GC sampling
schemes, and when the grid inductor increases to 6 mH, the currents are resonant together, which
indicates that different sampling schemes contribute little to the resonance resulting from varied grid
impedance. Although the THD under IC sampling is smaller than in the GC sampling scheme, the
difference is so small that it can be neglected.Energies 2017, 10, 104 14 of 16 
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Figure 18. Grid-connected currents comparison under different current sampling schemes with varied
grid impedance. (a) Grid-connected currents under IC sampling with Lg = 4 mH; (b) Grid-connected
currents under GC sampling with Lg = 4 mH; (c) Grid-connected currents under IC sampling with
Lg = 6 mH; (d) Grid-connected currents under GC sampling with Lg = 6 mH.

Figure 19 depicts the stability comparison with GC sampling under different current reference
frames, where we can draw the conclusions that when Lg = 2 mH, the current waveform is stable
both under the dq-domain and αβ-domain control schemes, that when the grid inductor increases
to 4 mH, the currents display apparent resonance under dq-domain control, and the currents under
αβ-domain control become unstable when Lg = 6 mH, which indicates that the αβ-domain control is
more adaptable to the weak grid than dq-domain control.

Aiming at eliminating the resonance seen in Figure 19e, Figure 20 compares the effects of
regulating the current controller and PLL controller. It can be concluded that decreasing the PLL
controller bandwidth by 41% can eliminate the resonance absolutely and increasing the current
controller bandwidth by 44% can only improve the resonance phenomena, so decreasing the PLL
controller bandwidth is more effective to improve the stability in inverter-grid systems.



Energies 2017, 10, 104 15 of 17

Energies 2017, 10, 104 14 of 16 

 

Figure 18. Grid-connected currents comparison under different current sampling schemes with 
varied grid impedance. (a) Grid-connected currents under IC sampling with Lg = 4 mH;  
(b) Grid-connected currents under GC sampling with Lg = 4 mH; (c) Grid-connected currents under 
IC sampling with Lg = 6 mH; (d) Grid-connected currents under GC sampling with Lg = 6 mH. 

Figure 19 depicts the stability comparison with GC sampling under different current reference 
frames, where we can draw the conclusions that when Lg = 2 mH, the current waveform is stable 
both under the dq-domain and αβ-domain control schemes, that when the grid inductor increases to 
4 mH, the currents display apparent resonance under dq-domain control, and the currents under 
αβ-domain control become unstable when Lg = 6 mH, which indicates that the αβ-domain control is 
more adaptable to the weak grid than dq-domain control. 

Figure 19. Grid-connected currents comparison under different current reference frame with varied 
grid impedance. (a) Grid-connected currents under dq-domain control with Lg = 2 mH;  
Figure 19. Grid-connected currents comparison under different current reference frame with varied grid
impedance. (a) Grid-connected currents under dq-domain control with Lg = 2 mH; (b) Grid-connected
currents under αβ-domain control with Lg = 2 mH; (c) Grid-connected currents under dq-domain
control with Lg = 4 mH; (d) Grid-connected currents under αβ-domain control with Lg = 4 mH;
(e) Grid-connected currents under αβ-domain control with Lg = 6 mH.
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Figure 20. Grid-connected currents comparison under different control parameters with varied
grid impedance. (a) Grid-connected currents under current controller regulating with Lg = 6 mH;
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5. Conclusions

For the three-phase grid-connected inverter with LCL filter, according to different sampling
positions and different reference frames, there mainly exist four control schemes. In order to compare
their robustness towards the variation of the grid impedance, this paper models the output impedances
of the inverter with different control schemes directly in the frequency domain using the harmonic
linearization method. Impedance analysis reveals that their high-frequency characteristics mainly lie
in the filter, the medium-frequency characteristics are influenced by the current controller parameters,
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and PLL contributes a lot to the low-frequency characteristics. The impedances built in this paper
can perfectly demonstrate the differences among different control schemes. Out of consideration of
adapting to a weak grid, by means of the impedance-based stability analysis, the αβ-domain GC
feedback control is verified to have the strongest robustness and regulating the PLL control parameters
can effectively improve the stability. Although the effect of PLL controller regulation is limited,
the simplified impedance models and derived conclusion can make a great contribution to develop
adaptive controls to cope with the variation of grid impedance and improve the stability of paralleled
grid-connected VSIs from the internal mechanism.
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