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Abstract: Early detection of an internal short circuit (ISCr) in a Li-ion battery can prevent it from
undergoing thermal runaway, and thereby ensure battery safety. In this paper, a model-based
switching model method (SMM) is proposed to detect the ISCr in the Li-ion battery. The SMM
updates the model of the Li-ion battery with ISCr to improve the accuracy of ISCr resistance RISC f
estimates. The open circuit voltage (OCV) and the state of charge (SOC) are estimated by applying the
equivalent circuit model, and by using the recursive least squares algorithm and the relation between
OCV and SOC. As a fault index, the RISC f is estimated from the estimated OCVs and SOCs to detect
the ISCr, and used to update the model; this process yields accurate estimates of OCV and RISC f .
Then the next RISC f is estimated and used to update the model iteratively. Simulation data from
a MATLAB/Simulink model and experimental data verify that this algorithm shows high accuracy
of RISC f estimates to detect the ISCr, thereby helping the battery management system to fulfill early
detection of the ISCr.

Keywords: internal short circuit resistance; model updating method; battery safety

1. Introduction

Li-ion batteries have high power density, high energy efficiency and a long cycle life [1], and are
therefore used as electric energy storage and power sources for electric devices and electric-drive
vehicles. However, the Li-ion battery can develop dangerous malfunctions [2,3] such as internal short
circuit (ISCr) [4,5] and cell reversal [6]; the main causes of these phenomena are overcharge [7] and
overdischarge [8]. The ISCr may cause thermal runaway when the temperature rise by the ISCr in
the battery exceeds a certain point [5] or the ISCr resistance RISC f is lower than a certain value [9].
Then a fire and an explosion can occur by the thermal runaway [10–12]. The ISCr is the main cause of
battery fire accidents in Boeing 787-8 aircraft [13]. Therefore, a method to detect the ISCr is necessary
before the thermal runaway happens in the Li-ion battery.

For these reasons, studies to detect the ISCr have been presented [14–17]. The ISCr can be detected
by determining certain thresholds such as reduction of terminal voltage and increase of batteries
temperature [14], but to obtain the thresholds, this method requires prior ISCr tests with batteries.
Therefore, model-based algorithms have been presented to detect the ISCr by identifying variations of
parameters in the model [15,16]. Using equivalent circuit models of a normal battery and a battery
with ISCr as thresholds, characteristic parameters are obtained to detect ISCr in a battery pack [15],
but this method can be used only when the battery with ISCr is connected to several normal batteries
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in series, and the terminal voltages of both the battery with ISCr and the normal batteries are provided.
The ISCr can be detected by using variation of estimated parameters in the equivalent circuit model
and the energy balance equation [16], but this method must be verified with other load current profiles
to check whether the estimated parameters show similar variation. When the ISCr occurs in the Li-ion
battery, the terminal voltage increases once the battery is recharged, but the voltage reaches a stable
value [18]; RISC f can be calculated using the charging current and the terminal voltage. However,
calculation of RISC f by this method requires knowledge of the specific charging current that makes the
terminal voltage reach the stable value in the battery with ISCr.

An early version [17] of the algorithm proposed in this paper estimated RISC f by using
self-discharge from the ISCr to detect it, but the accuracy of RISC f estimates was low; to solve this
problem, this paper presents a model-based switching model method (SMM). As a fault index, RISC f is
estimated accurately by using SMM to detect the ISCr. To verify the proposed algorithm, environments
of simulation and experiment are configured and two load current profiles: dynamic stress test (DST)
and urban dynamometer driving schedule (UDDS) are used. The proposed algorithm is explained in
Section 2, the environments of simulation and experiment are introduced in Section 3. The results of
the simulation and the experiment are presented and discussed in Section 4. Finally, the conclusion
and outline of future work are presented in Section 5.

2. Switching Model Method

In accordance with the estimated state of charge (SOC) defined as the present capacity of the
battery as a proportion of its total capacity, the model of Li-ion battery with ISCr is switched to the
updated model of Li-ion battery with ISCr. If the variation between initial estimated SOC and current
estimated SOC is ≥0.2, the RISC f is estimated. Estimates of RISC f fluctuate due to variation in load
currents, so as a fault index, the mean RISC f of estimated RISC f s is used to detect the ISCr instead of
the estimated RISC f . RISC f is calculated from the previous estimated RISC f s and the current estimated
RISC f , then used to change the model with ISCr to the updated model with ISCr. Then, using the
updated model improves the accuracy of open circuit voltage (OCV) estimates, so RISC f is estimated
accurately. Iteratively, the next RISC f is calculated using the next estimated RISC f and used to update
the model again. We call this process the SMM (Figure 1).
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2.1. Equivalent Circuit Models

A normal Li-ion battery can be represented by an equivalent circuit model (Figure 2a) [15,17,19]
that consists of OCV Voc, internal resistance R, load current I and terminal voltage Vt. The Li-ion
battery with ISCr can be represented by a similar equivalent circuit model (Figure 2b) [15,17,20] where
I1 f is the current that flows within the battery, and I2 f is the current that flows through the RISC f .
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This model with ISCr has been verified to mimic the ISCr [17]. Especially, subscript f (fault)
is used to distinguish between parameters related to the model with ISCr and parameters of the
normal battery model. The model with ISCr is described in Equations (1) and (2) by Ohm’s law with
a discretization step [15]:

I f (k) = I1 f (k) + I2 f (k) (1)

Vt f (k) = VOC f (k) + R f I1 f (k)

Vt f (k) =
RISC f

R f +RISC f
VOC f (k) +

R f RISC f
R f +RISC f

I f (k)
(2)

2.2. OCV Estimation

The recursive least squares (RLS) algorithm is usually used to estimate parameters in the normal
battery model [19]. In this paper, the RLS algorithm was used to estimate model parameters such
as Voc f and R f (Figure 2b). The initial value of the covariance matrix was [500 −250; −250 210],
and initial values of the parameter vector θ f that contains estimated parameters were the terminal
voltage measured at the first time and 0.05. The forgetting factor is typically a value between 0.95 and 1
to get finely estimated parameters. In this study, the forgetting factor was set to 0.9995. To distinguish
the OCV estimates from the two models with ISCr, VOC f ,pre is the estimated OCV from the model with
ISCr, and VOC f ,upd is the estimated OCV from the updated model with ISCr. The equation used in the
RLS algorithm is

y f = Vt f (k) = θT
f ∅ f

∅ f =
[
1, I f (k)

]
θ f =

[ RISC f
R f +RISC f

VOC f ,pre(k),
R f RISC f

R f +RISC f

] (3)

where y f is a measurable quantity and ∅ f is a vector of known quantities. The RLS algorithm cannot
estimate RISC f directly, because the number of unknown parameters is bigger than the number of

known parameters. In Equation (3), θ f has two estimated parameters,
RISC f

R f +RISC f
VOC f ,pre and

R f RISC f
R f +RISC f

,
which are combined with three unknown parameters, VOC f ,pre, R f and RISC f .

Therefore, using the assumption [18] that the first parameter
RISC f

R f +RISC f
VOC f ,pre of θ f can

approximate VOC f ,pre because the RISC f >> R f , the VOC f ,pre can be estimated from the RLS algorithm.
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However, this approximation-assumption causes error that reduces the accuracy of RISC f estimates.
Therefore, the updated model described in Equations (4) and (5) must be used to avoid this assumption.

I2 f (k) =
Vt f (k)
RISC f

I1 f (k) = I f (k)− I2 f (k)
(4)

y f = Vt f (k) = θT
f ∅ f

∅ f =
[
1, I1 f (k)

]
θ f =

[
VOC f ,upd(k), R f (k)

] (5)

If the initial RISC f is estimated at the point, at which the model with ISCr is switched to the
updated model with ISCr, the unknown parameter RISC f is assumed to be the initial estimated RISC f .
The VOC f ,pre is used to estimate the initial RISC f , and the method to estimate SOC and RISC f will
be explained in Section 2.3. Then the current I1 f can be calculated using Equation (4) and used
as input data of the RLS algorithm in Equation (5). Once the input data changes from I f to I1 f ,
the estimated parameters of θ f also change and the VOC f ,upd can be estimated directly without the
approximation-assumption. Once the next RISC f is estimated using VOC f ,upd, RISC f is calculated and
then used to update the model and estimate VOC f ,upd iteratively.

After switching the model, the estimated OCVs with SMM began to be more accurate
than the estimated OCVs without SMM (Figure 3) because of elimination of the error from the
approximation-assumption. The true OCVs used for verification were calculated using the true value
of RISC f , the coulomb counting method and the relation between OCV and SOC.
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2.3. SOC and RISC f Estimation

The estimated SOCs can be obtained from the relation between OCV and SOC (Figure 4).
Because of additional self-discharge due to I2 f flowing through the RISC f , the estimated SOCs decline
more in the battery with ISCr than in the normal battery. Furthermore, decrease in RISC f represents
increase in the severity of the ISCr in the Li-ion battery and in the decline of estimated SOCs. Using the
self-discharge phenomenon, RISC f can be estimated [18].

The coulomb counting method is usually used to calculate true SOCs from the load current,
true initial SOC and total capacity [21]. This method uses Equation (6) with a discretization step,
where Cmax is the maximum capacity of the battery, and T is the sampling rate. To eliminate the
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unknown term SOC f (0), SOC f (k) is subtracted from SOC f (k + 1), and I2 f is replaced with I2 f =
Vt f

RISC f

in Equation (6).
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Exact estimation of the RISC f by using the variation of estimated SOCs is difficult in the short
interval between k + 1 and k. Therefore, the interval must be increased by adding the k − 1th to p + 1th
equations to the kth equation in Equation (7) to clearly show the self-discharge phenomenon where k is
a current iteration and p is an initial iteration (p + 2 < k).

SOC f (k) = SOC f (0) +
T

Cmax

k

∑
n=1

[
I f (n)− I2 f (n)

]
(6)

SOC f (k + 1)− SOC f (k) =
T

Cmax
I f (k + 1)− T

Cmax

Vt f (k + 1)
RISC f

(7)

The first term on the right side of Equation (8) describes the discharge from the load current,
and the second term represents the self-discharge from the ISCr. RISC f can be estimated using
Equation (9), which is a rearrangement of Equation (8).

SOC f (k)− SOC f (p) =
T

Cmax

k

∑
n=p+1

I f (n)−
T

Cmax

1
RISC f

k

∑
n=p+1

Vt f (n) (8)

RISC f =
T

Cmax
∑k

n=p+1 Vt f (n)
T

Cmax
∑k

n=p+1 I f (n) + (SOC f (p)− SOC f (k))
(9)

The choice of time to estimate the RISC f for switching the model is important, because if ISCr is
50 Ω, 30 Ω or 20 Ω, the self-discharge from the ISCr is not observed dominantly in the early iterations
of the process of estimating SOC (Figure 4); i.e., the ratio of decrease in SOC due to self-discharge to
total decrease in SOC must be large enough to reduce the effect of errors of the estimated SOCs and to
clearly show the effect of self-discharge from ISCr. Accordingly, we determine that the model should
be switched when the variation between initial estimated SOC and current estimated SOC is ≥0.2;
i.e., 20% of the total capacity of the Li-ion battery.

3. Simulation and Experiment

3.1. Load Current Profiles

Two load current profiles were used as input data to the simulation and the experiments (Figure 5).
We named these current profiles DST 5 A and UDDS 5 A; both have the minimum value of −5 A.
We also used both DST 3 A and UDDS 3 A to verify the proposed algorithm with various data.
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3.2. Configuration of Simulation Environment

In this study, a first-order RC model [22] was used to build a simulation model. To represent
the ISCr, RISC f was connected in parallel at the terminal of the first-order RC model (Figure 6).
The simulation model was configured using MATLAB/Simulink [23,24]. Resistance R0 f , resistance R1 f
and capacitance C1 f (Figure 6) were estimated using the RLS algorithm with experimental data of cell
A and DST 5 A [19], then used to build the simulation model.
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Figure 6. Configuration of simulation model: the first-order RC model with RISC f .

3.3. Configuration of Experiment Environment

In this study, two identical cells A and B (Table 1) were used to configure the experiment and
to get data in various environments. The temperature was about 18–26 ◦C when cells A and B were
tested. The initial SOC was set to 70% in both cells. The load current profiles were differently applied
to each battery. DST 5 A and UDDS 5 A were used in experiments with cell A, and DST 3 A and UDDS
3 A were used for cell B. To prevent batteries from overdischarge, these load current profiles were
applied to the batteries until their SOCs reached 10% of total capacity.

Table 1. Key specification of Li-ion battery.

Model Type Nominal Voltage Nominal Capacity Upper/Lower
Cut-Off Voltage

INR 18650-20R LiNiCoMnO2 3.6 V 2000 mAh 4.2 V/2.0 V

To make various values of resistance such as 50 Ω, 30 Ω, 20 Ω, 10 Ω and 5 Ω, the five 10 Ω
resistances were combined. The tolerance of the 10 Ω resistance was ±5%. The true values of these
resistances were measured such as 49.91 Ω, 29.93 Ω, 19.92 Ω, 9.95 Ω and 4.98 Ω respectively, and used
to calculate the relative error in the experimental data. When the load current profile was applied
to the cell, the switch was used to connect the cell and resistances 50 Ω, 30 Ω, 20 Ω, 10 Ω or 5 Ω in
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parallel to represent a battery with ISCr. In 10 s after the load current was sent, the switch was turned on.
Therefore, the load current and the terminal voltage were measured after 10 s; sample interval was 0.1 s.

3.4. Relation between OCV and SOC Test

The relation between OCV and SOC was obtained by a prior test [25] and is necessary to use the
proposed algorithm. After the battery had been charged fully, it was rested for 3600 s to obtain a value
of OCV that is equal to the terminal voltage. Then the battery was discharged with 0.5 C for 720 s
to set the SOC to 90%, then rested for 3600 s to get the value of OCV. The OCV-SOC curve (Figure 7)
could be obtained by repeating the process until the value of SOC reached 0%.
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4. Results

4.1. Comparison between Results with SMM and without SMM

To ensure fair comparison between RISC f estimates with and without SMM from the same point,
the RISC f s were not estimated in the method without SMM before the model with ISCr was switched
to the updated model with ISCr in the method with SMM. After switching the model, RISC f with SMM
began to converge more accurately on the true value of 10 Ω than RISC f without SMM did (Figure 8).
The reason of this superiority is that the estimated OCVs and SOCs became accurate due to the updated
model, which removed the error imposed by the approximation-assumption. It is also reason that
the RISC f was estimated with the accurate SOC estimates. When the proposed algorithm without the
assumption was used, the accuracy of RISC f estimates was generally improved and the relative error
of the final value of RISC f decreased greatly (Tables 2 and 3). Because the decrease in the magnitude
of true RISC f represented increase in the error from the assumption, the difference between relative
errors with and without SMM increased as the magnitude of true RISC f decreased.
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Table 2. Relative error (%) of the final value of RISC f depending on the ISCr faults in the experiment
with cell A and DST 5 A.

Method
True ISCr Resistance

5 Ω 10 Ω 20 Ω 30 Ω 50 Ω

With SMM 6.2 4.8 19.7 30.4 45.1
Without SMM 28.0 31.2 38.5 47.1 57.3

Table 3. Relative error (%) of the final value of RISC f depending on the ISCr faults in the experiment
with cell A and UDDS 5 A.

Method
True ISCr Resistance

5 Ω 10 Ω 20 Ω 30 Ω 50 Ω

With SMM 12.3 16.0 18.9 34.3 49.3
Without SMM 48.8 44.4 38.0 49.5 61.8

4.2. Effect of Magnitude of True RISC f in the Simulation

Load current profiles DST 5 A and UDDS 5 A were used to execute the simulation model that
represented cell A with ISCr. Initial SOC of the simulation model was 70%, like the configuration of
the experiment with cells A and B.

In cases ISCr 50 Ω and 30 Ω for DST 5 A and ISCr 50 Ω, 30 Ω and 20 Ω for UDDS 5 A, the RISC f s
fluctuated much more than other ISCr faults (Figure 9) because the effect of self-discharge from ISCr
was too small to be represented in the estimated outcomes like the normal battery.
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Although the fluctuations were high in the early stage, the magnitude of the fluctuations gradually
decreased and RISC f s converged on values near the true RISC f . The relative error of ISCr 5 Ω and
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10 Ω was large although the self-discharge from ISCr 5 Ω and 10 Ω was influential. Because the
self-discharge from ISCr 5 Ω and 10 Ω largely increased the decline of SOC in the early stage of
interations (Figure 4), the initial estimated SOC had estimation error. This error affected the accuracy
of RISC f estimates for ISCr 5 Ω and 10 Ω. The final value of RISC f had relative error ≤14.2% (Table 4)
and the ISCr could be detected early with high accuracy of RISC f estimates.

Table 4. Relative error (%) of the final value of RISC f depending on the ISCr faults in the
simulation model.

Discharge Condition
True ISCr Resistance

5 Ω 10 Ω 20 Ω 30 Ω 50 Ω

DST 5 A 9.7 4.6 0.2 3.7 7.5
UDDS 5 A 10.4 4.5 3.7 6.8 14.2

4.3. Effect of Magnitude of True RISC f in the Experiment with Cell A

RISC f also fluctuated in experimental results but also decreased and converged on values near
the true RISC f (Figure 10). The main difference between simulation results and experiment results
was that the maximum relative error of ISCr 50 Ω and 30 Ω significantly increased from 14.2% in the
simulation to 49.3% in cell A (Table 5).
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Especially, when true RISC f was 50 Ω or 30 Ω, the effect of self-discharge from ISCr relatively
decreased because the error of estimated SOCs increased due to noise in the experimental environment.
Despite this noise, the ISCr 20 Ω, 10 Ω, and 5 Ω had relative error ≤19.7% because the effect of
self-discharge from ISCr was much bigger than the increase of the error in estimated SOCs. Therefore,
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the ISCr fault could be detected early before thermal runaway occurred in the Li-ion battery with ISCr.
However, the low accuracy of estimated RISC f in ISCr 50 Ω and 30 Ω remains a problem; to overcome
it, the effect of self-discharge from ISCr must be increased by decreasing the C-rate of the load current
profiles to increase the time over which the battery completely discharges.

Table 5. Relative error (%) of the final value of RISC f depending on the ISCr faults in the experiment
with cell A.

Discharge Condition
True ISCr Resistance

5 Ω 10 Ω 20 Ω 30 Ω 50 Ω

DST 5 A 6.2 4.8 19.7 30.4 45.1
UDDS 5 A 12.3 16.0 18.9 34.3 49.3

4.4. Effect of C-Rate of Load Current in the Experiment with Cell B

The experiment with cell B was conducted using DST 3 A and UDDS 3 A, which were the load
current profiles with low C-rate. When the C-rate of load current profiles decreased, the area between
the estimated SOCs of normal cell B and the estimated SOCs of cell B with ISCr 50 Ω increased more
than that of cell A (Figure 11). The area represents the decline of SOC due to self-discharge by ISCr.
Therefore, this change increased the influence of self-discharge, and the accuracy of the estimated
RISC f in ISCr 50 Ω and 30 Ω was improved (Figure 12). Accordingly, the maximum relative error of
ISCr 50 Ω and 30 Ω decreased greatly from 49.3% in cell A to 22.1% in cell B (Table 6), and the relative
error was ≤26.1%.
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Table 6. Relative error (%) of the final value of RISC f depending on the ISCr faults in the experiment
with cell B.

Discharge Condition
True ISCr Resistance

5 Ω 10 Ω 20 Ω 30 Ω 50 Ω

DST 3 A 14.9 18.9 3.8 12.3 20.7
UDDS 3 A 17.3 26.1 6.9 6.9 22.1

4.5. Effect of Variation in OCV-SOC Curve

The OCV-SOC curve can be changed because of the capacity fade of Li-ion battery caused by the
cycle aging and the calendar aging [3]. In this study, the amount of capacity fade of the aged battery
(cell A) was 2.7% of total capacity. The OCV-SOC curves for both fresh cell A and aged cell A were
almost equal. Therefore, the OCV-SOC curves for fresh cells A and B were used in the proposed
algorithm. However, the severe capacity fade can cause significant change in the OCV-SOC curve.
This change can generate the considerable error of estimated SOCs which results in the error of RISC f
estimates in Equation (9).

In summary, when the load current pofiles with high C-rate were used, the ISCr fault in ISCr
20~5 Ω range could be detected early before thermal runaway happened in the Li-ion battery with
ISCr. Furthermore, when the load current profiles with low C-rate were used to increase the effect
of self-discharge in ISCr 50~30 Ω, the proposed algorithm could detect the ISCr fault early in ISCr
50~30 Ω with high accuracy of the RISC f estimates. In addition, the study considering the variation in
the OCV-SOC curve should be proceeded continuously to improve the accuracy of the RISC f estimates.

5. Conclusions

In this paper, a model-based SMM is introduced to detect ISCr in the Li-ion battery. Using the
equivalent circuit model of the battery with ISCr and the RLS algorithm, the OCV is estimated. The SOC
is estimated by using its relationship with OCV. Then RISC f is estimated using the self-discharge
phenomenon of the ISCr. The SMM greatly increased the accuracy of the estimated RISC f . The proposed
algorithm was verified in simulations and experiments using two load current profiles. The effect of
the magnitude of true RISC f on estimated RISC f and the effect of C-rate of load current on estimated
RISC f were analyzed. The RISC f can be estimated with high accuracy using the proposed algorithm,
and as fault index, the RISC f can be used to detect the ISCr early. Our future research will concentrate
on extending our proposed algorithm to detection of ISCr in an aged battery and a battery pack.
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