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Abstract: An impedance-based temperature estimation method is investigated considering the
electrochemical non-equilibrium with short-term relaxation time for facilitating the vehicular
application. Generally, sufficient relaxation time is required for battery electrochemical equilibrium
before the impedance measurement. A detailed experiment is performed to investigate the
regularity of the battery impedance in short-term relaxation time after switch-off current excitation,
which indicates that the impedance can be measured and also has systematical decrement with
the relaxation time growth. Based on the discussion of impedance variation in electrochemical
perspective, as well as the monotonic relationship between impedance phase shift and battery internal
temperature in the electrochemical equilibrium state, an exponential equation that accounts for both
measured phase shift and relaxation time is established to correct the measuring deviation caused
by electrochemical non-equilibrium. Then, a multivariate linear equation coupled with ambient
temperature is derived considering the temperature gradients between the active part and battery
surface. Equations stated above are all identified with the embedded thermocouple experimentally.
In conclusion, the temperature estimation method can be a valuable alternative for temperature
monitoring during cell operating, and serve the functionality as an efficient implementation in battery
thermal management system for electric vehicles (EVs) and hybrid electric vehicles (HEVs).

Keywords: lithium-ion battery; internal temperature estimation; impedance; phase shift;
electric vehicles (EVs)

1. Introduction

Lithium-ion battery, which has been proven to be the ideal power source for electric vehicles
(EVs) and hybrid electric vehicles (HEVs), strikes the best balance between power/energy density
and costs for energy storage [1,2]. As safety behaviors and a longer cycle life of the battery demands
a narrow temperature range, battery temperature always acts as one of the most essential operating
parameters [3]. Surface mounted thermal sensors (thermistors and thermocouples) suffer from heat
transfer delay due to the thermal mass of batteries. In consequence of cell thermal non-equilibrium,
the internal temperature differs from the external counterpart [4]. It is complicated to directly measure
the internal temperature of large format batteries in the vehicular application. An on-line detection of
battery internal temperature, which is essential to facilitate operation control, can help improve the
accuracy of BMS (battery management system) and the security of the power battery (battery pack).
The electrochemical-thermal model [5–8] and electrical-thermal model [9–12] are widely employed
to investigate the battery temperature performance during high power extraction. Inserted thermal
sensors and thermal imaging are also commonly used in battery thermal research [12–14].
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Nowadays, a simple technique to monitor battery internal temperature based on impedance
measurement has been proposed [15–20]. Hande [15] provided a technique to estimate the cell
internal temperature by measuring the pulse resistance. Srinivasan et al. [16] firstly demonstrated
the intrinsic relationship between battery internal temperature and the phase shift obtained from EIS
(electrochemical impedance spectroscopy). Schmidt et al. [17] introduced a sensorless temperature
measurement method for a 2 Ah pouch cell via the real part of impedance spectroscopy at high
frequencies with state of charge (SoC) status unknown and they also studied the influence of
temperature gradient on the method by experiments. Richardson and Howey [18] proposed
a one-dimensional model, which was validated utilizing internal thermocouple measurement,
to estimate the temperature distribution for a 2.3 Ah LiFePO4 cylindrical cell by combined the real
and imaginary impedance and battery surface temperature. Further, they extended the estimation
using an electrical-thermal model coupled with impedance measurement [19]. Schmidt et al. [17]
and Richardson et al. [19] also showed that the estimated temperature inferred from impedance
represented the equivalent uniform cell temperature. The impedance phase shift is another important
parameter in the EIS test. Our previous work [20] has presented evidence for the existence of the
intrinsic relationship between measured impedance phase shift and the internal cell temperature
with electrochemical equilibrium, which is seldom influenced by battery degradation for an 8-Ah
LiFePO4 battery. Raijmakers et al. [4] also put forward an intercept frequency which was extracted
from impedance spectra of a Li(NCA)O2 and a LiFePO4 battery and exclusively related to the internal
battery temperature based on EIS. As aforementioned, the impedance-based temperature estimation
methods eliminate the requirements of too many hardware temperature sensors and knowledge
of the cell thermal properties [4,17–19]. Battery SoC and health often visibly change and several
effective estimation strategies considering uncertain driving conditions for EVs and HEVs have been
presented [21–26]. Zhang et al. [23] proposed an online battery SoC and SoE (state of energy) estimation
method. This method was applied based on the hardware-in-loop setup, where the novel adaptive H
infinity filter was proposed to realize the real-time estimation of battery SoC and SoE. The experiment
results indicated the high estimation accuracy and strong robustness of the method to the model
uncertainty and measurement noise. The impedance-based temperature estimation method reveal that
there is a certain frequency which is distinctly dependent on the temperature but does not depend
on SoC and battery aging state for the LiFePO4 battery [4,20], which is helpful to implement the
impedance-based temperature method from lab to online application in consequence of methods
capable of measuring impedance spectra using existing power electronics [27,28].

However, to satisfy the criteria of linearity and time invariance [29,30], the impedance is
generally measured at an operating point with a perturbation of a small AC (alternating current)
signal and long relaxation time, which hinders the practical application of the impedance-based
method when the battery operates under charge and discharge conditions. The interpretation of the
measured impedance under operating condition should be systematically investigated, particularly
the impedance measurement under short-term relaxation time warrants further investigation for
effective estimation.

In our previous study [20], the monotonic relationship between impedance phase shift and battery
internal temperature, which is employed as a reference to the temperature estimator for LiFePO4 battery,
has been identified in the frequency range of 1–100 Hz with electrochemical equilibrium. Influence of
battery SoC and aging are negligible in the selected frequency range. In this paper, we extend on our
earlier work by investigating and validating the temperature estimation method with the embedded
thermocouple under operating conditions. As shown in the flowchart (Figure 1), the relationship
between phase shift and internal temperature is firstly reproduced with temperature homogeneities
and artificial temperature gradients under the electrochemical equilibrium state. Regardless of battery
internal and surface temperature gradients, the measured impedance phase shift with electrochemical
equilibrium corresponds to the cell internal average temperature. Secondly, in order to promote
the vehicular application, a detailed experiment is conducted to investigate the regularity of battery



Energies 2017, 10, 60 3 of 17

impedance phase shift after charge/discharge current excitations with short relaxation time. It is
indicated that the impedance phase shift can also be obtained even under the current excitations.
The phase shift descends as the relaxation time increases, which is considered the main contribution of
this work to improve the accuracy of the estimation method. An exponential equation that accounts
for both measured phase shift and relaxation time is established at 10 Hz tentatively. Furthermore,
considering the effect of ambient temperature, a multivariate linear equation is derived and verified
experimentally. The predicted internal temperature shows good agreement with the measured internal
temperature, which guarantees a more precise assessment of the battery internal temperature.
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Figure 1. Implementation flowchart.

2. Experiments

The cells adopted in the experiments are commercial LiFePO4 batteries with 30 Ah capacity
(Shanghai Aerospace Power Technology, Shanghai, China), as depicted in Figure 2. The specifications
of the lithium ion battery used are displayed in Table 1. One thermocouple is placed at the geometric
center of the pouch cell in order to directly measure the battery internal temperature. Four experimental
procedures are designed as shown in Figure 1, and the detailed introductions are shown in accordance
with the orders of their appearance, respectively.
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Table 1. Specifications of the lithium ion battery used.

Parameter Name Values

Nominal voltage 3.2 V
Nominal capacity 30 Ah

Electrode chemistry LiFePO4/graphite
Internal resistance ≤4 mΩ

Core size 13 mm × 132 mm × 184 mm
Storage temperature −20–45 ◦C

Normal Charge voltage 3.7 V
Discharge ending voltage 2.5 V

Weight 0.675 kg
Energy density 144 Wh/kg
Manufacturer Shanghai Aerospace Power Technology (Shanghai, China)

2.1. Impedance Phase Shift Measurement with Electrochemical Equilibrium

2.1.1. Tests with Homogeneous Temperature

The cell impedance spectra are obtained using an electrochemical workstation (Solartron SI 1287,
1255B, Solartron Mobrey, Durham, UK). The frequency range of the impedance measurement is set to
span from 10 kHz to 0.1 Hz with perturbation current of 1.5 A. The ambient temperature is controlled by
a Vötsch C4-180 environmental chamber (Vötsch, Germany), as displayed in Figure 2d. Measurements
are made over the range −20–40 ◦C with an interval of 10 ◦C, and in the range of 0%–100% SoC.
The whole test sequence is called A1 for simplification, and the detailed steps are shown in Table 2.
The temperatures from all thermocouples are measured utilizing a HIOKI temperature unit (LR8510)
(HIOKI, Nagano, Japan) and recorded by a HIOKI wireless logging station (LR8410-30). The tested cell
is charged and discharged using an ARBIN instrument (ARBIN, College Station, TX, USA) with the
test procedures listed in Table 2.

Table 2. Electrochemical impedance spectroscopy (EIS) test procedures A1 at various state of charge
(SoC) and temperature. CC-CV: constant current-constant voltage.

Step No. Type Rate End Condition Set Temperature (◦C)

1 Rest 0 4 h
25

2 Charge (CC-CV) 0.5 C (1 C = 30 A) Voltage limit 3.7 V;
current limit: 0.01 C

3 Rest 0 2 h 40, 30, 20, 10, 0, −10,
and −20 respectively4 EIS 1.5 A 10 kHz–0.1 Hz

5 Rest 0 2 h 25

6 Adjust the battery SoC, and repeat the EIS tests

7 End

2.1.2. Tests with Artificial Temperature Gradient

To investigate the influence of temperature gradient on EIS measurements, an artificial
temperature gradient is constructed. The cell temperature gradients are controlled with the
combination of the environmental chamber and a heating plate. Considering the thickness of the
cell is 13 mm (Table 1), it facilitates the formation of the stabilized temperature difference, and it is
beneficial to verify the relationship between the measured phase shift and the mean temperature
value from the results of the embedded thermalcouple, thereby the two lateral surfaces of the cell are
imposed [17]. One side of the battery cell is covered with the heat plate, and another side is exposed
to the environment as depicted in Figure 3. An internal temperature gradient of the cell forms when
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the temperatures of the environment (TAm) and heating plate (Th) are different. To obtain a more
accurate result, two thermocouples are employed to measure the actual temperatures (T1 and T2) of
both side of the cell in each test, and all temperature data are logged as presented in Table 3. T1 is the
measured surface temperature of the heating plate side, and T2 is the measured surface temperature
without heating plate. No. 1 represents the uniform temperature of battery which is all involved in the
environment chamber without heating plate. No. 2, No. 3, and No. 4 are used to describe the artificial
temperature gradient sets. The influence of the internal temperature gradient on battery behavior is
investigated at 50% SoC. The particular experiment procedures are illustrated in Table 4.
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Table 3. The artificial temperature gradients.

Data Sets T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

No. 1 6 9 12 15 18 22

No. 2 8 4 12 6 13 11 17 13 21 15 26 18
No. 3 11 1 15 3 16 8 20 10 25 12 29 15
No. 4 14 −3 18 −1 19 5 23 7 28 9 33 11

T1: Surface temperature with heating plate (◦C); T2: Surface temperature without heating plate (◦C).

Table 4. EIS test procedures B1 at artificial temperature gradients at 50% SoC.

Step No. Type Rate End Condition
Set Temperature (◦C)

Heating Plate Ambient

1 Rest 0 4 h -

252 Charge (CC-CV) 0.5 C Voltage limit 3.7 V;
current limit: 0.01 C -

3 Rest 0 2 h -
4 Discharge 0.5 1 h -

5 Rest 0 4 h
T1 T26 EIS 1.5 A 10 kHz–0.1 Hz

7 End

2.2. Impedance Phase Shift Measurement with Different Relaxation Time

2.2.1. Impedance Phase Shift Measurement after Different Relaxation Time

The experiments are designed to investigate the variation of phase shift after different relaxation
time. The whole test sequence is called C1 as depicted in Table 5. The cell is first fully charged by
ARBIN at room temperature. The charged cell is discharged to 50% SoC followed by a rest period of
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four hours at 20 ◦C. Then, the cell voltage and temperature are recorded with the 24 A pulse charging
and discharging protocol periodically. Subsequently, relaxation time of 0 s, 10 s, 30 s, 60 s, 90 s, and 120 s
is set before the EIS experiment, sequentially. After that, four hours rest is scheduled to equilibrate the
cell with the chamber temperature again. The temperature control method [31], which leads to a shift
of time constants and enlargements of impedance, is a powerful tool in impedance analysis. In order
to distinguish each response of elemental steps in the high-medium frequency range, the expansion of
impedance measurement are examined by lowering the temperature. Thus, Steps 6–12 are repeated at
10 ◦C and 5 ◦C to check the effect of relaxation time on impedance spectrum in more detail.

Table 5. The battery impedance test procedures C1 after different relaxation time.

Step No. Type Rate End Condition Set Temperature (◦C)

1 Rest 0 4 h

252 Charge (CC-CV) 0.5 C Voltage limit 3.7 V;
current limit: 0.01 C

3 Rest 0 2 h
4 Discharge 0.5 C 1 h

5 Rest 0 4 h
20, 10, and 56 Charge 24 A 10 s

7 Discharge 24 A 10 s

8 Repeat Steps 6, 7 200 times

9 Rest 0 0 s, 10 s, 30 s, 60 s, 90 s,
and 120 s respectively

20, 10, and 5
10 EIS 1.5 A 10 kHz–0.1 Hz
11 Rest 0 4 h

12 End

Battery temperature first rises with the increasing pulse cycles and then gradually reaches
static state because of thermal equilibrium. Following the pulse experiments described in Table 5,
the maximum relaxation period of 120 s is set to ensure that thermal response of the battery to the
applied 200 cycles is not obviously altered when the current excitation is switched-off. The cell internal
temperature is just dropped by at most 0.3 ◦C during the relaxation periods monitored by the internal
thermalcouple. Therefore, temperature and SoC are assumed to keep constant for all the tests to isolate
the effect of relaxation time before EIS tests. The test procedures C2 in Table 6 are designed to obtain
the phase shift at the homogeneous temperature with electrochemical equilibrium which refers as the
static point in the following discussion. The ambient temperature values inputted in procedures C2
are calculated from battery internal and surface after the period pulse swing in procedure C1 (Table 5).

Table 6. The battery impedance test procedures C2.

Step No. Type Rate End Condition Set Temperature (◦C)

1 Rest 0 4 h

252 Charge (CC-CV) 0.5 C Voltage limit 3.7 V;
current limit: 0.01 C

3 Rest 0 2 h
4 Discharge 0.5 1 h with 2.5 V

5 Rest 0 4 h 22 (the temperature
after pulse swing)6 EIS 1.5 A 10 kHz–1 Hz

10 Repeat Steps 5, 6 two times and Step 5 for 12.5 ◦C, and 8 ◦C respectively

11 End
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2.2.2. Validation Experiments Design

The validation experiments are conducted using constant-current discharge and pulse swing
excitation profiles. The procedures of battery charge and discharge are the main factor inducing
the variation of battery internal temperature. Based on the above analysis and referring to other
research methods for the battery temperature [11,14], the test programs are executed at various
ambient temperatures. The discharge pulses of different current magnitudes (15 A, 20 A, and 24 A) are
applied to the battery using the TOYO power booster (PBI 250-10) (TOYO Corporation, Tokyo, Japan).
The impedance measurements are carried out by 10 s, 30 s and 60 s relaxations with no current load,
and the surface and internal temperature are also monitored simultaneously.

3. Results and Discussion

3.1. Impedance Phase Shift with Equilibrium Temperature at 10 Hz

Many studies have elucidated that the EIS characteristics of battery are dramatically impacted
by the external environment and internal conditions, especially the temperature [16–20,32].
The electrochemical reaction rate, transfer rate and diffusion rate of lithium-ion are slowed down
resulting from the temperature decreasing [32], so the lower temperature enlarges the battery
impedance. The EIS procedures A1 are performed and the results are illustrated in Figure 4a.
As can be seen, the phase shift changes distinctly with the temperature in the whole frequency
range. The relationship between impedance phase shift and battery temperature at 10 Hz is indicated
in Figure 4b. A certain frequency range, which is able to exclude the influence of SoC and battery aging
on the impedance phase shift, was selected in previous research [4,20]. As illustrated in Figure 4b,
the phase shift does not alter with SoC at 10 Hz, which facilitates the impedance-based temperature
estimator design since the SoC often visibly changes and is hard to be estimated and calculated in
the vehicular application. The phenomenon mainly related to battery electrochemical reaction and
diffusion process has been interpreted in our previous study from the electrochemical perspective [20].
In this study, we utilize the phase shift values at 10 Hz tentatively to track the battery internal
temperature for the representative of other available frequency points, and the relationship between
phase shift and temperature is employed as a reference for the estimation model in the next section.
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3.2. Impedance Phase Shift with Artificial Temperature Gradients

Some typical EIS measurements at 50% SoC and with different temperature gradients from
procedures B1 are depicted in Figure 5. Different temperature gradients are artificially constructed
by controlling the temperature of the ambient environment and the heating plate. Because of heat
dissipation between cells and the environment, the battery surface temperatures are different with the
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setting values, so the actual measured values displayed in Table 3 are used in the paper. The internal
temperatures of 6 ◦C, 9 ◦C, 12 ◦C, 18 ◦C and 22 ◦C were measured at the central position, and 6 ◦C
(Figure 5a,b) and 18 ◦C (Figure 5c,d) are presented here for the representative. The black, red and dark
cyan color lines represent the battery phase shift measured with thermal equilibrium. The gradient
perpendicular to the electrodes is assumed to be linear, as shown in Figure 3. In Figure 5, the impedance
spectroscopy and phase shift values are almost the same, even with different temperature gradients,
and the effect of high temperature gradients on the phase shift is slightly larger in medium frequencies.
It indicates that even under temperature gradients, the cell performs as under a uniform temperature
with electrochemical equilibrium. The experimental results are beneficial to the impedance-based
estimation method. The effect of temperature non-uniformity on the electrochemical impedance was
studied by Schmidt et al. [17], who also proposed that the uniform temperature was the cell internal
average temperature based on the impedance results at high frequencies. The variation of the phase
shift in our paper may be related to cell impedance characteristics and the experiments schemes.
Anticipated detailed interpretation for the measured results will be in next study.
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3.3. Impedance Phase Shift Correction Considering Relaxation Time

Because of the complexity of the battery charge and discharge process in practical applications,
there is seldom sufficient time to satisfy the cell to reach electrochemical equilibrium. The short-term
current interruption, such as waiting at red lights, may be the opportunity for AC incentives.
Barai et al. [33] and Schindler et al. [34] have studied the impedance of lithium ion cell with different
relaxation process between the removal of an electrical load and the impedance measurement.
We find that the phase shift is also correlative to relaxation time, especially when the battery is
at low temperatures. The impedance measurements are taken after current pulses; when the battery
temperature reaches an approximate steady state (200 cycles), the current is switched off to allow the
impedance test with different relaxation time.



Energies 2017, 10, 60 9 of 17

The evolution of the impedance spectra and phase shift directly after switch-off the pulse current
is illustrated for the tests of C1 and C2 in Figure 6. The impedance arc enlarges and the phase shift
goes down with the elevation of relaxation time.Energies 2017, 10, 60 9 of 17 
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The temperature during the pulse excitation is elucidated in Figure 7. Tin is the battery
internal temperature, and Tsurf(1)–(5) represent the battery surface temperature monitored by the
thermalcouples. The temperature first ascends with the increment of cycles and then gradually reaches
static state due to the thermal equilibrium. The impedance test is performed in the relaxation break as
shown the grey rectangle in Figure 7. The cell internal temperature which is monitored by the internal
thermalcouple drops by at most 0.3 ◦C during the maximum relaxation period (120 s). The thermal
response of the battery to the applied 200 cycles is not obviously altered when the current excitation
is switched-off. It can be argued that the exponential decay of the phase shift is not associated with
temperature decay. Therefore, temperature and SoC are kept constant for all the tests to isolate the
distraction of relaxation time before cell impedance measurements.
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The temperature values inputted in procedures C2 is the calculated temperature after the periodic
pulse swing, and the impedance obtained in C2 is employed in Figure 6 (static scatters) for comparison.
Two major features can be extracted from the results of the recorded spectra: (1) it is apparent that the
impedance arc enlarges with the incremental relaxation time gradually, especially at low temperatures;
and (2) the phase shift particularly slumps at a certain frequency point. In this study, the phase
shift at 10 Hz for the representative of other frequency points is selected to estimate battery internal
temperature tentatively, thereby the relationship between phase shift and relaxation time at 10 Hz is
displayed in Figure 8. The observed variations are linked to the physical processes occurring at the cell
during the relaxation period.
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Figure 8. Experimental and fitting results of impedance phase shift at 10 Hz. Phase shift results at
(a) 20 ◦C; (b) 10 ◦C; and (c) 5 ◦C.

The EIS is constituted with the impedance under discrete excitation frequency. The phase shift
can be obtained from [20]:

ϕ( fx) = tan−1
{
−Im{Z( fx)}
Re{Z( fx)}

}
, x ∈ [1, 2, . . . , n] (1)

where fx, x ∈ [1, 2, . . . n] is with the variation of excitation frequency.
Battery relaxation is mainly dominated by diffusion processes and may take up to several hours,

especially when the battery is almost empty, at low temperature, and after charging or discharging
with high current rates [35]. The changes of imaginary part are mainly related to the battery capacitive
component. The porosity of the electrodes confers a capacitance to the electrodes when a potential
difference is applied to the cell, and the electrodes can be considered as a parallel plate capacitor as
described by the Barai et al. [33]. One common observation reports that the capacitance of the cell
follows an exponential decay with a subsequent continuous relaxation. The authors attribute their
findings to ionic diffusion during the redistribution of ions within the electrolyte after switch-off the
pulse current. This redistribution of ions declines the battery capacitance until the overall concentration
of the electrolyte reaching equilibrium. As the concentration of ions at the electrolyte surface decreases,
when compared to that of the cell under polarization, the total cell capacitance goes down. Therefore,
one alternative explanation is that the reduction in the concentration gradients with the electrolyte
induces the enlargement of the impedance arc in Figure 6. Because the variation in concentration
gradient does not occur instantaneously, but rather occurs at several minutes or hours, the total cell
capacitance decreases accordingly as a function of relaxation time. Similarly, the solid state diffusion
will occur within the bulk of the particles during the relaxation period, which leads to a rearrangement
of the lithium atoms in the electrode materials and will be also reflected in the change of observed
impedance arc. S. Schindler et al. [30] also indicated the real part of medium impedance arc rises after
the electrical load removed because of battery polarization by experiments.

The shrinking phenomenon of phase shift in Figure 6 should be considered in the temperature
estimation method. A possible way to incorporate the information about the relaxation time is
to introduce a correction phase shift factor ϕ′, which is calculated from tre and measured phase
shift ϕ, and indicates whether the battery is completely recovered or not. An exponential function
corresponding to time is numerously employed to describe the battery relaxation process, such as
voltage relaxation [35], and the double layer capacitance relaxation [33]. The phase shift relaxation
process is also assumed to proceed as an exponential decay with the time constant τ, and the equation
can be described as:

ϕ′ = ϕ · (1 + a · e
−tre
τ ) (2)
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where a is the pre-exponential factor. We assume that the state of battery does not obviously alert during
the frequency sweeping from 10 kHz to 10 Hz, so tre represents the relaxation time, Tcore = f (ϕ) is the
estimated internal temperature with measured phase shift, and T′core = f (ϕ′) is the estimated internal
temperature corresponding to correction ϕ′. When a equals 0.065, τ equals 85 s in the equation for the
cells, the phase shift of the cell follows the exponential decay, and the experimental data (scatters) and
simulation data (line) fit very well as illustrated in Figure 8. Equation (2) takes account for the effect
of relaxation time on impedance phase shift, and the evaluation plays a vital role in the subsequent
estimation model. In the validation experiments, a relaxation period of 60 s is adopted firstly. The
cells are tested utilizing pulse swing excitation profiles above zero temperature, and constant-current
discharge at subzero temperature to avoid the lithium dendrites. The temperature of the embedded
thermocouple Tin is employed to verify the estimated results. The estimated results before and after
relaxation time optimization are respectively presented in Table 7. In the results, we can find that the
correction Equation (2) can improve the accuracy of the proposed model. The estimated results at a
lower temperature are more accurate than that in a higher temperature, which is probably ascribed to
the uncertainty of the impedance measurement as the decreasing of impedance at higher temperature.
The correction considering the relaxation time, which can promote estimation accuracy, is the main
contribution of this work. To further improve the accuracy of the estimator, a multivariate linear
regression equation associated with environment temperature is proposed in Section 3.4.

Table 7. The verification of the temperature estimator considering the relaxation time.

TAm Current Cycles/SoC ϕ Tin Tcore T′core No.

20 (◦C)

24 (A)
500 −2.719 26 27.94 27.42 1

1000 −2.647 26.3 28.36 27.86 2

20 (A)
500 −3.074 24.5 25.84 25.26 3

1000 −3.0548 24.5 25.95 25.37 4

15 (A)
500 −3.3313 22.5 24.32 23.69 5

1000 −3.3303 22.7 24.33 23.69 6

10 (◦C)

24 (A)
500 −6.983 12.0 12.91 12.37 7

1000 −7.0134 11.9 12.84 12.29 8

20 (A)
500 −7.5696 11.1 11.49 10.9 9

1000 −7.5884 11.0 11.45 10.85 10

15 (A)
500 −8.0317 10.3 10.37 9.891 11

1000 −8.0522 10.3 10.30 9.797 12

0 (◦C)

24 (A)
SoC I −9.4269 7.0 8.709 8.395 13
SoC II −7.8341 10.2 10.85 10.24 14

20 (A)
SoC I −10.331 5.9 7.77 7.426 15
SoC II −8.7908 8.6 9.37 9.077 16

15 (A)
SoC I −11.294 4.8 6.77 6.393 17
SoC I −10.094 6.8 8.016 7.68 18

−10 (◦C)

24 (A)
SoC I −19.94 −2.5 −1.63 −2.12 19
SoC II −18.26 −0.5 −0.3438 −0.7924 20

20 (A)
SoC I −22.717 −4.7 −3.76 −4.314 21
SoC II −17.546 −0.7 0.28 −0.2282 22

15 (A)
SoC I −25.138 −6.1 −5.61 −6.227 23
SoC II −23.239 −4.9 −4.156 −4.727 24

−20 (◦C) 24 (A)
SoC I −33.087 −13.7 −12.4 −13.57 25
SoC II −31.82 −12.5 −11.3 −12.14 26

SoC I represents the 50% SoC; SoC II represents the state of battery reaching cut-off voltage.
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3.4. Multivariate Linear Optimization and Validation

The environment temperature, operating time, current and other battery properties all have
a great influence on battery internal temperature. Because the impedance reduces significantly at
higher temperatures (T > 10 ◦C), a multivariate linear regression equation is established to improve
the battery internal temperature estimation accuracy. The relationship is expressed as:

Tmult = β0 + β1 × T′core + β2 × TAm (3)

To simplify the algorithm, we assume that the internal average temperature T′core is related to the
battery property, and the environment temperature TAm is mainly pertinent to heat dissipation.

When considering the situation in which n independent multivariate observations x1, . . . , xn have
been collected, and the number of responses measured in each observation is y, the multivariate linear
regression model can be written as:

y = β0 + β1x1 + · · ·+ βnxn (4)

To obtain the parameter vector (β1, . . . ,βn), N sets of observations:

X =


x11 x12 . . . x1n
x21 x22 . . . x1n

...
...

. . .
...

xN1 xN2 . . . xNn

, Y =


y1

y2
...

yN


n is the number of independent variables, N is the number of data sets.

Nine data sets in Table 7 (the even sequences in No. 2–18) are selected to identify the three
parameter vector (β0,β1,β2). The goodness of fit (R test), significance test (F test), and regression
coefficient significance test (t test) are calculated. The values are all presented in Table 8. At test level
α = 0.05, all the test values (R, F, and t) prove that Equation (3) is effective and reliable to be used.

Table 8. The parameter vector values in equation.

β0 β1 β2 R Test
F Test t Test

T′core TAm T′core TAm

1.9235 0.7408 0.1829 0.9983 206.5 14.8 10.2 2.7

3.5. Estimation Method Validation

After the obtainment of phase shift according to the correction Equation (1), the measured phase
shift can be modified considering relaxation time with Equation (2). Then, the internal average
temperature can be calculated from the relationship described in Figure 4. On the basis of multivariate
linear equation operation, the estimated temperature Tmult can be observed finally.

To further verify the estimated results, a discharge profile is involved at 10 ◦C and 20 ◦C as
displayed in Figure 9. The AC frequency excitations (10 Hz, dark cyan arrows) are executed after the
relaxation process (10 s and 30 s). The estimated temperature results are, respectively, presented in
scatters for comparison in Figure 9a,b.
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In Figure 9, the estimation temperature Tcore has larger deviation compared to Tin, and the
estimation results T′core and Tmult show good concordance with the measured cell internal temperature.
The results with 30 s relaxation at 20 ◦C are more accurate than that with 10 s, as shown in
Figure 9d. One interpretation is that the battery will be more stabilized and balanced with the
incremental relaxation time because of the faster ions transfer and diffusion at higher temperature.
Thus, the impedance can be obtained more precisely. Another interpretation could be that the model
term to correct for the ambiguous error is more accurate for the 30 s relaxation, as it is already closer to
the static value. When the battery operates at 10 ◦C, the maximum errors are 1.58 ◦C with Equation (2),
and 0.76 ◦C with Equation (3). When the cells are operated at 20 ◦C, the errors are 2.07 ◦C and
0.91 ◦C, respectively. It indicates that the multivariate linear equation can improve the model accuracy,
which mainly contains two aspects: on one hand, Equation (2) is used to modify the measuring
deviation caused by electrochemical non-equilibrium. On the other hand, the ambient temperature is
introduced in Equation (3) to consider battery temperature distribution due to uneven heat dissipation.

The impedance changes with the degradation of the cell. Identifying ageing and
degradation mechanisms in a battery is a main and most challenging goal in the implementation.
L.H.J. Raijmakers et al. [4] conduct battery cyclic life tests and their temperature estimated method
does not depend on the battery aging. The relationship between the phase shift and battery cyclic aging
for the LiFePO4 cell has been discussed in the previous study [20], which shows that the impedance
magnitude varies obviously with aging, but the phase shift is not affected by the battery cyclic aging.
The aforementioned research facilitates the temperature estimation method in our study. They just
test the cyclic life of the cells, however, the calendar life and other complicated utilization mode,
e.g., charging and discharging rates like the ones corresponding to the New European Driving Cycle
or Urban Dynamometer Driving Schedule, may cause different ageing effects. Hence, validating the
relationship between phase shift and other degradation mode is the next focus in our work.
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4. Conclusions

Based on the monotonic relationship between impedance phase shift and battery internal
temperature proposed in the previous study [20], the impedance-based temperature estimation
method is further developed considering electrochemical non-equilibrium caused by current excitation.
The impedance phase shift can be measured with a short-term relaxation after the current excitation
switch-off. The relationship between phase shift and relaxation time at 10 Hz, which is representative
of other frequency points, is investigated tentatively. The results demonstrate that the phase shift
descends exponentially with the increment of the relaxation time at 10 Hz, responsible for the
redistribution of ions within the electrolyte, which cause the decrease of phase shift after switch-off
of the pulse current. An exponential equation is proposed to correct the measuring deviation due to
electrochemical non-equilibrium. Considering the temperature inhomogeneities and uncertainty
impedance measurement in higher temperature, a multivariate linear equation coupled with ambient
temperature is derived. The temperature estimation method may be more accurate in low temperatures
corresponding to the high resolution relationship between the temperature and the measured phase
shift. The correction proposed in the study is established and verified under the excitation frequency
10 Hz. The model proposed in the paper does not rely on the battery thermal characteristics and
surface temperature sensors, it can afford us much convenience in temperature monitoring during cell
operating and is also functional as an efficient implementation in battery thermal management system
for EVs and HEVs.
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Nomenclature
◦C Degree Centigrade
A Ampere
C Current magnitude in terms of cell capacity (1 C = 30 A)
Hz Hertz
s Seconds
V Volt
h Hour
ϕ Measured phase shift
tre Relaxation time
τ Time constant
a Pre-exponential factor
ϕ′ Correction phase shift factor
t Time (s)
T Temperature (◦C)
Th Temperature of heating plate
T1 Measured surface temperature of the heating plate side
T2 Measured surface temperature without heating plate
Z Impedance
TAm Ambient temperature (◦C)
Tcore Estimated internal temperature with measured phase shift
T′core Estimated internal temperature corresponding to correction phase shift
Tin Measured internal temperature from embedded thermocouple
Tmult Estimated temperature with Multivariate linear optimization
(β1, . . . ,βn) Parameter vector
fx Frequency (Hz)
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Acronyms

EV Electric vehicle
HEV Hybrid electric vehicle
BMS Battery management system
EIS Electrochemical impedance spectroscopy
LiFePO4 Lithium iron phosphate
Li(NCA)O2 Lithium cobalt aluminum nickel oxide
CC-CV Constant charge-constant voltage
AC Alternating current
SoC State of charge
SoE State of energy

Subscripts/Superscripts

re Relaxation
h Heat
Am Ambient
core Core
in Internal
mult Multivariate
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