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Abstract: In order to precisely control the wind power generation systems under nonlinear variable
wind velocity, this paper proposes a novel maximum power tracking (MPPT) strategy for wind turbine
systems based on a hybrid wind velocity forecasting algorithm. The proposed algorithm adapts the bat
algorithm and improved extreme learning machine (BA-ELM) for forecasting wind speed to alleviate
the slow response of anemometers and sensors, considering that the change of wind speed requires a
very short response time. In the controlling strategy, to optimize the output power, a state feedback
control technique is proposed to achieve the rotor flux and rotor speed tracking purpose based on MPPT
algorithm. This method could decouple the current and voltage of induction generator to track the
reference of stator current and flux linkage. By adjusting the wind turbine mechanical speed, the wind
energy system could operate at the optimal rotational speed and achieve the maximal power. Simulation
results verified the effectiveness of the proposed technique.

Keywords: maximum power tracking (MPPT); wind speed forecasting; wind energy system (WES); state
feedback controller

1. Introduction

Wind, used as widely distributed huge reserves of green energy [1], has dramatic increased in
grid-connected power these years. Thus, to improve the efficiency of wind power system becomes an
essential part, both to reduce the costs of wind power generation systems, and to increase the proportion
of renewable energy in the national power grid. High efficiency, good robustness and low costs have
become the research focus of wind energy harnessing.

Currently, the literature extensively investigates modeling effective wind turbine systems to optimize
and effectively utilize the turbine power output through the maximum power point tracking (MPPT)
technique. By the adoption of variable speed wind turbine (VSWT), adjusting the rotation speed of wind
turbine rapidly according to the variable wind speed can achieve for high efficiency to harness wind
source [2]. These technique adopted by MPPT controller mainly can be categorized into four types: by
controlling of Tip Speed Ratio (TSR), adopting Power Signal Feedback (PSF) control, Perturb and Observe
(P&O) method, and Optimal Torque Control (OTC) method. TSR is a constant value which is dependent
of wind velocity. It is the only parameter that can be set to provide the maximum power output from
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wind which is related to rotor radius and the blades rotational speed [3]. Such method needs two sensors
to measure the wind and turbine speeds by an anemometer and a tachometer respectively for that both
wind speed and rotational speed are feedback signals [4]. Compared to TSR (nomenclature can be seen in
Table 1), PSF only uses one sensor to measure rotational speed. Error between measured turbine power
and reference power is delivered to the controller, then the output power is adjusted to the reference value.
The efficiency is good and the reliability is better than TSR [5]. While the P&O method does not necessarily
need any sensor beside the electrical measurement devices, its reliability is strong but efficiency is not
good. The Optimal Torque Control (OTC) extracts optimum torque by measuring angular velocity [6],
which is similar to PSF control yet adopts mechanical torque equation.

Table 1. Acronyms and nomenclature.

BA bat algorithm
MPPT maximum power point tracking
VSWT variable speed wind turbine
PSF adopting power signal feedback
TSR tip speed ratio
OTC optimal torque control
FIS fuzzy inference system
ELM extreme learning machine
SLFNN single-hidden layer feed-forward neural networks
MAE mean absolute error
MSE mean square error
VOC voltage oriented control
P&O perturb and observe

However, these conventional techniques fail to consider that the wind speed is a discrete nonlinear
parameter set which is not compliant to a certain law of variation. That requires the anemometers
to measure wind velocity in time and the controller should also respond quickly to the wind speed
fluctuation, then drives the mechanical rotor to rotate with the optimized direction and speed. Usually
the measurements and controlling process should not exceed one second to harness the wind energy in
highest efficiency [7]. Yet in large-scale wind turbines, anemometers and controllers have large volume
and great inertia, leading to a slow response [8]. Therefore, typically when a rotor speed instruction has
not completed, the controller should execute in an opposite direction. In this way, the wind turbine is more
likely to have mechanical fatigue. Besides, because of the hysteresis effect, the current optimal tracking
point is not the current maximum power point.

Such problems are noticed by scholars in recent years, with the development of computational
intelligence and numerical optimization, some novel MPPT frameworks are also proposed to tackle this
issue. These framework often involves: the fuzzy inference system (FIS), taking multi-objectives into
account [9]; nonlinear control [10], with Boukhezzar et al. adapts a two-mass model with a wind speed
estimator for variable-speed wind turbine control [11]; robust control, via controlling the rotor angular
speed to control the tip-speed ratio [12]; adaptive control [13] and the like. Some scholars even proposed
hybrid models with the combination of artificial intelligence algorithm and conventional control methods
to achieve a higher efficiency [14]. Though it can effectively deal with high non-linearity of wind turbines,
the training process is indeed time-costing and introduces a huge amount of iteration parameters like
weights and bias into systems [15]. In order to avoid generating these parameters and to save hardware,
here we consider extreme learning machine (ELM) to forecasting wind velocity, which do not need to use
back-propagation method to updates weights and thresholds and only the linear least square solution is
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needed [15]. With the prediction scheme, a novel controlling strategy to intervene the hysteresis effect in
both wind speed measurement and controlling process is proposed in this paper.

The proposed controlling strategy can be concluded into three steps, first is to optimize the weights
and thresholds of extreme learning machine (ELM) by bat algorithm (BA) to forecast the short–term wind
speed, since the random distributed weights and bias of traditional ELM algorithm are likely to be not
convergent [16]. The second is that we adapt the forecasting values to calculate the optimal reference
rotational speed based on MPPT algorithm. Meanwhile the anemometer would measure the current wind
velocity thus to feed the input of BA-ELM. Finally the state feedback control and optimal control technique
will be implemented in wind energy conversion system, to achieve maximal power point thus the current
asynchronous machine torque can achieve high efficiency [17].

The outline of rest is organized as follows. Section 2 describes the wind energy conversion system.
Section 3 introduces the detailed design procedure of speed forecasting method with BA-ELM for wind
energy conversion system. Section 4 presents the state feedback controller for induction machine with the
MPPT algorithm. The simulation results are presented in Section 5. Finally, some comments conclude this
work in Section 6.

2. Wind Energy Conversion System

The wind energy conversion system is a high nonlinear and complex coupled system. The system
comprises of the wind turbine, transmission device, induction machine and converters [18]. The basic
components and general scheme of a wind energy system are shown in Figure 1, which contain the
following main parts:

1. Wind turbine, which is a installation capturing wind energy by blades and transferring the wind
kinetic power to mechanical torque;

2. Induction machine, which can convert the power from the mechanical side into the electrical side.
3. Gearbox and shaft, which is a transmission device to adapt the rotation speed for the generator;
4. Power converters, it is composed of the grid side inverter and the machine side rectifier, connected

by a DC-bus.

Turbine 

blades

Gearbox 

and 

shaft

Grid

Power Converters

Machine side 

converter

Grid side

 converter

DC

Generator

Figure 1. Block diagram of the wind turbine.
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The following subsections will focus on the wind turbine model and induction machine model.

2.1. Wind Turbine Model

The wind turbine extracts power by the wind blades in the turbine nacelle, then converts it into
mechanical power. The wind kinetic power can be formulated as follows:

Pw =
1
2

ρπR2V3
w (1)

where Pw represents the power input of wind turbine, R determines the radius of blades, Vw indicates the
wind speed.

The tip speed ratio λ can be expressed by

λ =
Rωr

Vw
(2)

where ωr represents the rotor speed.
The power extracted from the wind is

Pm =
1
2

Cp(λ, β)ρπR2V3
w (3)

where Pm represents the mechanical power, Cp(λ, β) is a non-linear power coefficient depending on the
design of turbine [19], which is:

Cp(λ, β) = 0.5176(
116
λi
− 0.4β− 5)e−

21
λi + 0.0068λ (4)

with
1
λi

=
1

λ + 0.08β
− 0.035

β3 + 1
(5)

where β is the blade pitch angle. The power coefficient is a nonlinear function of tip speed ratio λ and the
blade pitch angle β, and its curve is plotted in Figure 2.
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Figure 2. Power coefficient Cp(λ, β) versus tip-speed ratio in different pitch angle.
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It can be seen that two points can be concluded to extract more power in the wind energy system [20],
which are:

(a) When the blade pitch angle β does not change, the peak values of power coefficiency Cp(λ, β)

corresponds to a unique tip speed ratio λ, where the conversion of wind energy is expected.
(b) As the blade pitch angle β increases, the wind energy use coefficient Cp(λ, β) decreases obviously.

Thus for tracking more wind power, β should be set into a small value.

The torque TL caused by the wind turbine can be computed as

TL =
Pm

ωr
=

1
2

ρ
Cp(λ, β)

λ
πR3V2

w (6)

From Equation (6), it can be noticed that the turbine TL is related to the wind speed Vw and the
characteristics of the turbine, that is the power coefficiency Cp(λ, β).

2.2. Induction Machine Model

2.2.1. Mechanical Equations

In the block wind turbine blades, the aerodynamic torque model can be used to describe dynamic
relationship between the high-speed rotor shaft and the low-speed axial-flow fan of the wind turbine,
which is composed of a spring and a damper. Formulations for the system can be established as follows:

Jmω̇r = Te − frωr − TL (7)

where Jm represents the rotary inertia of wind turbine pales.

2.2.2. State Space Equation of the Induction Machine Motor

The state space equation of induction machine in the well-known inductor part flux reference frame
(α,β) can be expressed as follows [21]:

i̇sα = −c1isα + c2c3ψrα + c3 pωrψrβ +
usα

c4
(8)

i̇sβ = −c1isβ + c2c3ψrβ − c3 pωrψrα +
usβ

c4
(9)

ψ̇rα = c5isα − c6ψrα − pωrψrβ (10)

ψ̇rβ = c5isβ − c6ψrβ + pωrψrα (11)

Te =
pMsr

Lr
(isβψrα − isαψrβ) (12)

where usα and usβ are the stator voltages, isα and isβ are the stator currents, ψrα and ψrβ are the rotor
fluxes, p is the number of pole pairs, Msr is the mutual inductance, Lr is the rotor inductance, Te is the
electromagnetic torque. Moreover, the variables c1, c2, c3, c4, c5, c6 are defined as follows

c1 =
Rs + Rr

M2
sr

L2
r

σLs
, c2 =

K
Tr

, c3 = K, c4 = σLs, c5 =
Msr

Tr
, c6 =

1
Tr
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with the related parameters Tr, σ, K are

Tr =
Lr

Rr
, σ = 1− M2

sr
LsLr

, K =
Msr

σLr

where Rs is stator resistance, Rr is rotor resistance, Ls is stator inductance.
Substitute Equation (12) into Equation (7), the dynamic equation can be expressed by the

following form

ω̇r = c7(ψrαisβ − ψrβisα)−
fr

Jm
ωr −

TL
Jm

(13)

with c7 = pMsr
Jm Lr

is a known constant.

2.2.3. Current Flux Model

In the induction machine model, the stator voltage and stator current can be measured, while the
secondary flux can not be measured. Here, the current flux model is proposed to estimate the value of
secondary flux. From voltage equation and flux equation of induction machine, the flux current model of
induction machine is given as follows

dψr

dt
= − 1

Tr
ψr +

Msr

Tr
is − j (ωmr − pωr)ψr (14)

where ψr is the induced-part flux, is is inductor current, ωmr is the induced-part flux vector rotational speed,
j is the imaginary unit. This equation represents the so-called “current model” of the induction machine.

3. Wind Speed Forecasting

As an anticipatory control strategy, predict wind velocity is more conducive to smooth the output
power of wind turbines, since the power generation process is a complex nonlinear process, which will
be affected by the wind speed and torque of the power generator. Besides, wind speed forecasting can
estimate daily output of wind turbines in advance, and improve the planning ability of wind farms for
electric power transmission and distribution. In addition, the maximum power point tracking can be
achieved precisely by wind forecasting even without anemometers. Considering that there is a significant
time-lag in the wind speed measurement of wind turbines for the anemometers’ inertia is great, suitable
prediction model should be chosen from the model base according to certain principles. Here we build
a hybrid prediction model of wind speed on the basis of applying the modified bat algorithm (BA) to
optimize the initial weights in the layers of extreme learning machine (ELM). The prediction model can
predict the future state of wind velocity on the basis of the estimated mechanical torque from the output of
WES model, so as to settle down the problem of system lag from measurement of the anemometer. Thus to
keep correspondence with current wind speed by adapting the mechanical speed ωr mentioned above
from blade shafts to predict the one-step wind speed, current maximum power can be tracking in higher
accuracy which eliminates the effect of the system lag.

3.1. BA Algorithm

The bat algorithm (BA) is a novel metaheuristic algorithm adapted in prediction model is to optimize
the input weights between layers of the studied training network [22]. Given a data set of of historical
wind speed input to the network, the short term wind speed forecasting will perform as the output of
prediction system.



Processes 2019, 7, 158 7 of 18

The BA rules can be concluded as the real-time dynamic adjustment of the location, loudness and
pulse emission of the virtual BA bats when hunting and foraging, bats change the frequency, loudness and
pulse emissivity, and choose the best solution until the end specified iteration loop or achieve specified
accuracy. Here we denote yt to be the bat positions, with the parameter t is the current iteration number.
fi as the pulse frequency in a range [ fmin, fmax], and vi is the velocities of bats. Initially each bat is assigned
with a random frequency. An iterative loop is presented as follows:

fi = fmin + ( fmax − fmin)β , i = 0, 1, · · · , N − 1 (15)

vt
i = vt−1

i + (yt
i − y∗) fi , i = 0, 1, · · · , N − 1 (16)

yt
i = yt−1

i + vt
i , i = 0, 1, · · · , N − 1 (17)

In the above formulation, β ∈ [0, 1], parameter N denotes specified loop accounts which end the
iteration loop. Here the newest obtained position yt

N will be evaluated with the fitness function to
determine whether the solution exhibits the best current performance.

3.2. BA-ELM Network

Extreme Learning Machine (ELM) is a supervised learning algorithm originated from single-hidden
layer feed-forward neural networks (SLFNN) proposed by Guangbin Huang [15], and it achieves high
precision in the performance of classification and forecasting. Unlike other gradient-based learning
algorithms, the main idea is that the weights between the input layer and the hidden layer, the bias of
the hidden layer of ELM do not need to be adjusted. The solution is very efficient in that only the least
norm and the least square solution are needed (ultimately resolved into Moore-Penrose inverse problem).
Therefore, the algorithm has the advantages of using very few training parameters and achieving extremely
fast speed [23].

Here for standard SLFNN, the constructed model is formulated as following [24].

Ñ

∑
i=1

g
(
wi · xj + bi

)
βi = tj.j = 1, 2, ..., N (18)

t̂j(w, β, b) = [ ˆt1j · · · ˆtmj]
T
m×1

= [
l

∑
i=1

βi1g(w1Xj + bi) · · ·
l

∑
i=1

βimg(w1Xj + bi)]
T
m×1, (19)

Which:

Xj =
[

X1j X2j X3j · · · Xn−1j Xnj

]T
(20)

In the above formulation, wi denotes the weights between the input and the hidden layer. Xj denotes
the inputs historical wind speed data. bi denotes the bias. In addition, g(x) denotes the activate function.
βi which equals to (βij)N̂×M, represents the weight matrix between the hidden layer and the output
layer [4]. Here the above formulation can also be denoted as:

Hβ = T (21)

H is the hidden layer output matrix of neural network. The equation has a unique solution when
H is reversible (that means the number of hidden layers equals to the number of input data). While in
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most cases, the number of hidden layers is far less than the number of inputs. Common solutions to solve
this problem include the gradient descend method to iterate parameters. However, it easily falls into the
problem of over-trained and time-costing. To overcome its weakness, the literature points out that a lot of
experiments show that H do not need to be adjusted, considering that adjusting input weights and biases
of hidden layer will bring no possible gains [25]. Thus in ELM, when the input weights and biases are set
once for all, the formulation (21) equals to find the linear least square solution for formulation (22).∥∥Hβ̂− T

∥∥ = min
β
‖Hβ− T‖ (22)

The detailed ELM training process can be found in [15]. Since the hidden layer nodes are pre-allocated
and input weights and biases remain unchanged, some initial weights and biases are likely to remain
non-optimized values [26]. For example, randomly allocated input weights might be zero, thus some
hidden layer nodes would fail, leading that the model cannot converge or a slow convergence. To optimize
these parameters, BA is introduced to optimize the weights and thresholds of ELM.

The BA-ELM training process can be concluded into two steps. First is to optimize the initial weights
(w,β), and biases of the hidden layer b with the usage of bat algorithm. Second is to train the constructed
ELM with these parameters and find the linear least square solution. The structure of BA-ELM is shown in
Figure 3.

BA-ELMBA

Figure 3. Block of multi-step forecasting.

When running an iteration loop of BA, the fitness function will be invoked to update for the current
best weights and thresholds, which aims to reduce the error between the predicted value and the actual
wind speed value. Thus the current best of these parameters will be updated and substituted into ELM
when an iteration of BA finished. Then the iteration loop of BA will stop when satisfy the objective
tolerance of BA.

To evaluate the errors between the actual wind velocity and predicted ones, here two percentage
error indexes are employed: mean absolute error (MAE), and the mean square error (MSE). In addition,
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the proposed BA-ELM are compared with traditional ELM, the promoting percentages are defined
as follows:

ξMAE =

∣∣∣∣MAE1 −MAE2

MAE1

∣∣∣∣× 100% (23)

ξMSE =

∣∣∣∣MSE1 −MSE2

MSE1

∣∣∣∣× 100% (24)

Therefore we can output the forecasting wind speed at the end of our training process. The maximum
rotor speed wr,opt, can be deduced by applying Equation (5), which is a control signal to obtain the optimal
tip speed ratio.

For the effective reduction of prediction error, the short-term wind speed prediction technique is
applied in our model. Due to the uncertainty of system disturbance, it is necessary to improve the accuracy
of the model and performance index in real time. The implementation of the ideology could be realized by
solving the linear least square problem of β and T. In each step, the real time output values of the system
are detected and compared with the predicted values to correct the prediction error. When the system is
influenced by such factors as the non-linearity, interference, adaptation of constructed model and the like,
feedback compensation will correct the prediction output in time to make the optimization.

To verify the prediction accuracy of proposed BA-ELM network, we choose two indicators to test
the precision of multi-step forecasting: the mean absolute error (MAE) and the mean square error (MSE).
Training and testing data collected from three sites of different wind farms.

The speed forecasting results with BA-ELM algorithm is shown in Table 2. Here two points can
be concluded:

(1) Single step wind speed forecasting of ELM and BA-ELM is more accurately compared to two-step
forecasting, which indicates BA-ELM achieves high precision in shorter term forecasting.

(2) Both networks can get good training and testing accuracy in forecasting. With bat algorithm to
optimize the input weights and thresholds, BA-ELM is more inclined to obtain higher precision
according to the MAE and MSE indexes, which illustrates that BA could improve the forecasting
performance of ELM.

Table 2. Forecasting Performance of Modified ELM.

ELM BA-ELM Percentage Improvement

1-Step 2-Step 1-Step 2-Step 1-Step 2-Step

Site 1 MAE 0.138 0.233 0.109 0.193 ξMAE 21.014 17.167
MSE 0.055 0.062 0.037 0.060 ξMSE 32.727 3.226

Site 2 MAE 0.159 0.245 0.127 0.236 ξMAE 20.126 3.673
MSE 0.047 0.079 0.039 0.069 ξMSE 17.021 12.658

Site 3 MAE 0.175 0.244 0.132 0.40 ξMAE 24.751 1.639
MSE 0.026 0.108 0.025 0.086 ξMSE 3.846 20.370

4. Controller Design

In order to achieve the MPPT control, the state feedback controller is designed by measuring the
stator current and flux linkage compared with the desired current and flux reference. Considering the time
lag in the turbine’s wind speed measurement, we adopt the turbine mechanical speed ωr from blade shafts
to predict the one-step wind speed Vw [27]. The rotor flux is estimated with current flux model. For gird
side, the voltage oriented control (VOC) is proposed. The overall control scheme for wind turbine system



Processes 2019, 7, 158 10 of 18

is shown in Figure 4. This figure contain two main parts: Grid Side and Machine Side. The Grid Side was
designed with Voltage Oriented Control strategy. The Machine Side was designed by combined BA-ELM
algorithm, MPPT and State Feedback Control strategy together.

4.1. MPPT Control Objective

From Equation (4), we can deduce that the MPPT algorithm should be applied to extract the maximum
power from the wind turbine when the rotor speed is below the rated speed [28]. Moreover, a rotor power
control mechanism should be activated when the rotor speed exceeds the speed of rated power. On account
that different wind speed corresponds to unique optimal turbine speed, and the maximum power point is
expected so that the power can be extracted as much as possible.

From Equation (2), the reference of generator speed is calculated by the optimal tip-speed ratio λopt,
which is

ωr,opt =
λoptVw

R
(25)

Currently, the wind speed used in the control system is usually measured with an anemometer. While
in practical, the wind speed is changeable parameters [29]. In this paper, to record its real time value
and to optimize the power output, the estimated effective wind speed V̂w is obtained with wind speed
forecasting method mentioned above.
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The block diagram of the MPPT technique is presented in Figure 5. It can be seen that the low pass
filter was added to give a clear reference value of generator speed, which can avoid the turbulence of
turbine mechanics.

,r optˆ
wV ,

ˆ
r opt 1

1 s
ˆ
w

opt

R
V



Figure 5. Block diagram of the MPPT technique.

4.2. Control System Design for Machine Side

4.2.1. Internal Loop Design

To represent the internal loop, rewrite the model from the model (α, β) stationary reference frame
(8)–(12) to (d, q) rotary reference frame is given as follows:

i̇ds = −c1ids + ωmriqs + c2c3ψdr + c3 pωrψqr +
uds
c4

(26)

i̇qs = −c1iqs −ωmrids + c2c3ψqr − c3 pωrψdr +
uqs

c4
(27)

ψ̇dr = c5ids − c6ψdr + (ωmr − pωr)ψqr (28)

ψ̇qr = c5iqs − c6ψqr − (ωmr − pωr)ψdr (29)

ω̇r = c7
(
ψdriqs − ψqrids

)
− fr

Jm
ωr −

TL
Jm

(30)

where ωmr is the rotating speed of the reference frame, which can be chosen arbitrarily, if we choose:

dρr

dt
= ωmr = pωr + c5

iqs

ψdr
= pωr +

Msr

Tr

iqs

ψdr
(31)

Then Equation (29) will become

ψ̇qr = −
1
Tr

ψqr (32)

It is obvious that ψ̇qr converge to zero exponentially, which means that ψr = ψdr, then the state
equations of LIM will become:

i̇ds = −c1ids + pωriqs + c5
i2qs

ψr
+ c2c3ψr +

uds
c4

(33)

i̇qs = −c1iqs − pωrids − c5
idsiqs

ψr
− c3 pωrψr +

uqs

c4
(34)

ψ̇r = c5ids − c6ψr (35)

ρ̇r = pωr + c5
iqs

ψr
(36)

ω̇r = c7ψriqs −
fr

Jm
ωr −

TL
Jm

(37)
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Now, the two control inputs uds and uqs are designed through a state feedback as follows:

uds = c4

[
−pωriqs − c5

i2qs

ψr
− c2c3ψr + vds

]
(38)

uqs = c4

[
pωrids + c5

idsiqs

ψr
+ c3 pωrψr + vqs

]
(39)

where vds and vqs are additional control inputs that will be designed in the following stages.
Subtract Equations (38) and (39) in the induction machine model (33)–(37), we obtain the

following equations:
i̇ds = −c1ids + vds (40)

i̇qs = −c1iqs + vqs (41)

ψ̇r = c5ids − c6ψr (42)

ρ̇r = pωr + c5
iqs

ψr
(43)

ω̇r = c7ψriqs −
fr

Jm
ωr −

TL
Jm

(44)

Using PI algorithm to design the control inputs vds and vqs, we obtain:

vds = −kpd

(
ids − ids,re f

)
− kid

t∫
0

(
ids − ids,re f

)
dτ (45)

vqs = −kpq

(
iqs − iqs,re f

)
− kiq

t∫
0

(
iqs − iqs,re f

)
dτ (46)

In this subsection, the state feedback terms are used to decoupling the system. Then, two PI controllers
are proposed to achieve current tracking. The two desired currents ids,re f and iqs,re f will be designed in the
next subsection.

4.2.2. External Loop Design

In this section, we design the desired current ids,re f and iqs,re f . In the LIM, the flux reference ψr,re f is
set equal to constant. From Equation (32) we know ψ̇qr convergence to zero exponentially, which means
ψr,re f = ψdr,re f . One can determine from this equation that the desired current ids,re f can be expressed by:

ids,re f =
c6

c5
ψr,re f (47)

By using PI controller above, we can ensure that the current ids converges to ids,re f , which means that
the flux ψdr converges to ψdr,re f .

After that, we use the iqs,re f and ψr,re f to replace iqs and ψdr, rewrite Equation (44) as follows:

ω̇r = c7ψr,re f iqs,re f −
fr

Jm
ωr −

TL
Jm

(48)

Using PI controller to design the control input iqs,re f , we obtain:
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iqs,re f = −kpv

(
ωr −ωr,re f

)
− kiv

t∫
0

(
ωr −ωr,re f

)
dτ (49)

Here, the desired rotor speed ωr,re f is given with MPPT algorithm, which can be obtained from
Equation (25), which is:

ωr,re f = ω̂r,opt =
λoptV̂w

R
(50)

where V̂w is the wind speed forecast value with MBA-ELM algorithm.

4.3. Control System Design for Grid Side

In this part, the grid-side converter control has been adopted on the basis of an effective method:
voltage oriented control (VOC), as shown in Figure 4. This method is based on the idea that the injected
currents can be decoupled into the direct d and quadrature q components. For the reason that the aim is
to directly control the dc-link voltage, the control scheme is provided with a further control loop, which
output the direct reference current. To make the reactive power flow with the grid can be remaining to
zero, the quadrature current reference is set to zero.

5. Simulation Results

To verify the proposed algorithm, simulation is operated on MATLAB/Simulink R2014a (Matlab
2014a, The MathWorks, Natick, Apple Hill Campus, MA, USA, 2014). Considering the randomness and
volatility of wind speed, in order to avoid frequent switch between forecasting model and wind turbine
model, the average wind speed is taken as the basis of model switching. In the process of switching, try to
diminish the disturbance between models. The values of related parameters [30] are given in Table 3.

Table 3. System Specifications.

Symbol Parameter Value

λopt Optimal tip speed ratio 7
βopt Optimal blade pitch angle 0◦

R Blade radium of turbine blades (m) 2.5
Cp,max Power coefficient 0.45
Ppal Generator rated power (kW) 5.5
Vwpal Generator rated speed (rpm) 1500
Prated Rated power (kW) 2.2
Urated Rated voltage (V) 220
p Number of pole pairs 2
Rr Rotor resistance (Ω) 1.52
Rs Stator resistance (Ω) 2.9
Lr Rotor inductance (H) 0.229
Ls Stator inductance (H) 0.223
Msr Mutual inductance (H) 0.217
Jm Moment of inertia (kg·m2 ) 0.0048
fr Viscous friction coefficient (Nm·s/rad) 8.29× 10−5

In this paper, the blade pitch β is set as optimal zero, which means that βopt = 0o. In consideration of
tracking the maximum power, we control the wind wheel torque through dominating rotational speed.
The controller parameters are given as kpd = 10, kid = 200; kpq = 10, kiq = 200; kpv = 2, kiv = 20.
The parameters of wind energy system is given in Table 3. To verify the performance of designed controller,



Processes 2019, 7, 158 14 of 18

based on MPPT algorithm, two typical wind speed signals are tested in the Matlab/Simulink environment.
The maximum value of Cp(λ, β) (Cp,max = 0.45) is obtained when β = 0o and λ = 7, as shown in Figure 2.
In the simulation, the reference rotor flux is set as ψr,re f = 0.7Wb.

5.1. Constant Wind Speed Signal Tracking Performance

In this subsection, the wind speed signal Vw is presented as step function, which is

Vw =


10 m/s, 0 s ≤ t < 6 s
20 m/s, 6 s ≤ t < 12 s
15 m/s, 12 s ≤ t < 18 s

(51)

Figure 6a shows that the pattern of the flux ψr follows up the desired reference flux linkage ψr,re f
with the steady state error almost zero. It also indicates the suitable adjusting time is achieved. The rotor
speed has the great tracking performance as exhibited in Figure 6b with the step change of reference speed.
The profile of current tracking performance is totally in accordance with the theoretical value, the induction
generator current adjust itself quickly to follow its reference, with the tracking error converges to zero in
real time on both d, q axis, as displayed in Figure 6c,d. Correspondingly, Figure 6e presents the profile of
the control inputs uds and uqs. The three-phase primary voltage Ua, Ub, Uc is presented in Figure 6f. It can
be seen that the variation of the wind velocity plays an essential faction in the change of V/I frequency.
The proposed technique, suitable for both the variable power and constant power working regions, has
been verified also on a real wind speed profile.
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Figure 6. Constant wind speed signal test performance.

5.2. Various Wind Speed Signal Tracking Performance

In this subsection, the emulator of wind turbine uses the equation to approximate the wind speed Vw,
which is:

Vw = Vw,av (1− 0.18 cos (2πt)− 0.18 cos (2πt/60)) (52)

where Vw,av=10 m/s is the average wind speed.
Figure 7a shows the rotor flux tracking performance. It can be seen tracking error rapidly converges

to zero and there is no overshoot. Moreover, the adjustment time is very small. The rotor speed has the
same characteristics as exhibited in Figure 7b with the various wind speed signal. The direct and quadratic
stator currents tracking performance are presented in Figure 7c,d. It can be seen that the value of iqs varies
with different wind speed while the value of iqs keeps constant. Correspondingly, the control inputs uds
and uqs are shown in Figure 7e, and the three-phase primary voltage Ua, Ub, Uc is given in Figure 7f. It is
clearly that control inputs are smooth and continuous.
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Figure 7. Various wind speed signal test performance.

The correct behavior of the system has been verified also on a real wind speed profile on a daily scale.
Results show a good behavior of the system, capable of extracting the maximum generable power at low
wind speeds and the rated power at high wind speed by properly driving the blade pitch actuators.

6. Conclusions

This paper investigates a complete modeling of a maximum power point tracking (MPPT) wind
energy system with BA-ELM prediction model proposed to tackle the lag of wind speed measurement in
turbines and eliminate the discontinuity of wind speed sequence. The state feedback control technique
is adapted and combined with speed forecasting model to tracking the maximum power in induction
generator, in which the turbine torque has been compensated based on the control law. Here the PI
controller is also applied to enhance the controlling performance and robustness. Simulation results show
that the flux linkage and turbine rotational speed tracking the reference value almost without oscillation
and back to stable state, which indicates its highly acceptable tracking performance, considering the quick
reaction and following-up time. Thus, the maximal power point in WES can be obtained with the tracking
characteristics allow for the industrial variable-speed-tracking application. It can be seen that the proposed
technique is a great method and can be adopted in the industrial applications.
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