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Abstract: With the rapid development of machine learning techniques, data-mining for processes in
chemistry, materials, and engineering has been widely reported in recent years. In this discussion,
we summarize some typical applications for process optimization, design, and evaluation of chemistry,
materials, and engineering. Although the research and application targets are various, many
important common points still exist in their data-mining. We then propose a generalized strategy
based on the philosophy of data-mining, which should be applicable for the design and optimization
targets for processes in various fields with both scientific and industrial purposes.
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1. Introduction

Data-mining is a strategy for discovering intrinsic relationships and making proper predictions
based on statistics from scientifically-collected data [1]. With the rapid progress in machine learning
techniques and methodologies in the recent decade [2–7], data-mining has become a popular study
since machine learning provides an efficient technique for non-linearly fitting the intrinsic relationships
between the independent and dependent variables in a mathematical form. Therefore, without
knowing the exact physical or empirical form of the relationships among data, machine learning can
come up with a non-linear form of math that could precisely predict the trends of data, including
interpolation and extrapolation [8–10]. Although those non-linear forms do not contain the exact
correlation knowledge, a general approximation of data-based machine learning (with both supervised
and unsupervised processes [11–13]) always shows precise prediction and could address the problem
in an easier way.

In recent years, data-mining has been widely applied for solving problems in chemical, materials,
and engineering processes, based on the data collected from either experiments or simulations [14–17].
In many worldwide pressing issues, such as greenhouse gas capture [18,19], catalytic materials design
and optimization [20–31], and renewable energy studies [32–39], data-mining has shown predictive
power for mining the relationships between the intrinsic and extrinsic properties [40–45]. Usually,
the mission of a data-mining process is to predict (or output) those variables that are difficult to
acquire from experiments/simulations by using the easy variables which can be acquired as the inputs.
Through a well-fitted non-linear form, the predicted variables can be rapidly outputted with the inputs
of those independent variables. In other words, a machine learning assisted data-mining process is
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able to expedite the (i) optimization of engineering processes, (ii) discovery of new functional materials,
and (iii) understanding of chemical processes.

Despite a number of studies that have been published in the recent decade, there is no
well-established philosophy that provides a standard guideline for doing data-mining. Therefore,
in this discussion paper, we are motivated to summarize some recent typical studies of data-mining
in the processes of chemistry, materials, and engineering. Based on the brief review, comments,
and discussions, we then generalize a simple but useful data-mining strategy for these scientific
and application processes, which should ultimately benefit to the standard development of
knowledge-based data-mining through a machine learning modeling process.

2. Typical Studies

Due to the high-dimensional variables, trends in the chemical processes are sometimes difficult
to understand and predict. For example, a chemical process usually depends on multiple factors,
including temperature, pressure, as well as the component and composition of reactants. Previously,
to capture the relationships between these independent and dependent factors, a response surface
methodology (RSM) was usually applied to fit the trends between the independent and dependent
variables with multiple 3-D plots [46]. This method is useful for the design and optimization of chemical
and materials processes. However, RSM is only able to deal with very limited independent variables
in one model, which is not applicable for higher dimension problems in a big-data scale. To address
this issue, artificial neural networks (ANNs), as the most widely used machine learning algorithms,
have been applied for the same target, replacing RSM [8,47]. People have found that not only being
able to deal with high-dimension problems ANNs also have a generalized approximation capacity and
tunable algorithmic architectures, which guarantees that they can exhaustively capture the potential
relationships between inputs and output(s) after a proper data training and validation process.

Mining the Trends and Properties in Chemistry and Materials

A typical application for mining the trends and properties in a chemical process is the greenhouse
gas capture and utilization. In our recent study, it was found that a kernel-based ANN, the general
regression neural network (GRNN), is able to properly fit the relationships between the solution
properties (temperature, operating gas pressure, component, and concentration of the blended
solutions) and the solubility of CO2, based on the literature-extracted experimental data [48].
Afterwards, the trends of CO2 solubility can be predicted with the function of temperature, operating
CO2 pressure, concentration, and type of blended solutions (Figure 1). It can be seen from Figure 1
that though the trends are non-linear and usually difficult to be predicted with regular non-linear
mathematical forms, a GRNN model trained from representative experimental data is able to capture
these trends and provide proper understandings for CO2 capture in solutions. A similar study on
predicting CO2 thermodynamic properties is shown in Reference [49], where the inputs of blend
concentration, temperature, and CO2 operating partial pressure can be used as inputs and specifically
predict the CO2 solubility, density, and viscosity of a solution. Similar studies for mining the gas
capture and separation can be found in References [50,51]. In addition to the use of ANNs, Günay
et al. used a decision tree model to evaluate the important factors of the reaction activity and
selectivity of catalysts during CO2 electro-reduction process (Figure 2) [52]. By extracting a large
number of experimental literatures, they classified the catalysts with the best Faradaic efficiency, max
activity, or most selective pathway. Other catalytic applications through data-mining can be found in
References [53,54]. Since most of the chemical and reaction-related processes are based on temperature,
pressure, component, composition, and energetic values, it is expected that the data-mining strategy
shown here is general and should be applicable for addressing other similar chemical issues through
machine learning.
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Figure 1. Trends in the CO2 capture in blended solutions, predicted by a well-trained general 
regression neural network model. (a) T = 303 K, P = 14 kPa, C = 2.5 M; (b) T = 323 K, P = 14 kPa, C = 

2.5 M; (c) T = 303 K, P = 42 kPa, C = 2.5 M; (d) T = 303 K, P = 14 kPa, C = 1.5 M. T, P, and C represent 
temperature, CO2 partial pressure, and concentration, respectively. Reproduced with permission 
from J. CO2 Util.; published by Elsevier, 2018 [48]. 
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neural network model. (a) T = 303 K, P = 14 kPa, C = 2.5 M; (b) T = 323 K, P = 14 kPa, C = 2.5 M;
(c) T = 303 K, P = 42 kPa, C = 2.5 M; (d) T = 303 K, P = 14 kPa, C = 1.5 M. T, P, and C represent
temperature, CO2 partial pressure, and concentration, respectively. Reproduced with permission from
J. CO2 Util.; published by Elsevier, 2018 [48].
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Figure 2. Decision tree analysis for (a) catalysts with maximum faradaic efficiency and (b) catalysts 
with the highest selective product, for CO2 reduction. Reproduced with permission from J. CO2 Util.; 
published by Elsevier, 2018 [52]. 
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group contribution analysis [72]. However, since the structural information is usually dependent on 
the coordination and reference, it was hard to generalize the methods for more complicated systems. 
To address these issues and provide a generalized machine learning representation, Behler and 
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into the terms of pair and angular interactions [73]. Together with an architecture of conventional 
ANN, the relationship between the atomistic structures and the materials properties (e.g., energy) 
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for capturing the structural information of materials during machine learning, which especially 
benefits to the data-mining in theoretical chemistry and computational materials based on quantum 
mechanical calculated data.  

Figure 2. Decision tree analysis for (a) catalysts with maximum faradaic efficiency and (b) catalysts
with the highest selective product, for CO2 reduction. Reproduced with permission from J. CO2 Util.;
published by Elsevier, 2018 [52].

In terms of mining the materials properties, one of the most typical works is the discovery of
nature’s missing ternary oxide compounds, as described by Ceder et al. [55]. They developed a machine
learning model based on the crystal structure database and suggested new compositions and structures
through a data-mining process. Then, using density function theory (DFT) as the quantum mechanical
computation method [56,57], they calculated and confirmed the stability of those suggested ternary
oxides (Figure 3). Similar studies can be found in recent References [58–61]. Due to the complexity
of the structural information and the electronic structures of the periodic table elements [62–71],
a challenge of their data-mining is the definition of suitable descriptors as the model inputs. In the
past decades, there was a large number of descriptors that have been applied for the machine learning
process of chemical and materials systems, such as bond length, bond angle, and group contribution
analysis [72]. However, since the structural information is usually dependent on the coordination and
reference, it was hard to generalize the methods for more complicated systems. To address these issues
and provide a generalized machine learning representation, Behler and Parrinello developed a set
of new symmetry functions that converts all the atomistic environments into the terms of pair and
angular interactions [73]. Together with an architecture of conventional ANN, the relationship between
the atomistic structures and the materials properties (e.g., energy) can be efficiently mined. So far,
this Behler-Parrinello representation has proven to be highly effective for capturing the structural
information of materials during machine learning, which especially benefits to the data-mining in
theoretical chemistry and computational materials based on quantum mechanical calculated data.
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3. Processes in Engineering

3.1. Engineering Optimization and Design

Engineering process is somewhat different from the processes of chemistry and materials
discussed above. The main reason is that most of the knowledge in engineering are based on various
empirical equations, due to the complexity of the systems. Therefore, mining the intrinsic relationships
during engineering processes are particularly challenging but also important. A typical study using
data-mining method for the optimization and design of engineering applications is proposed by
Kalogirou [74], where an ANN was applied to train a small number of data from TRNSYS simulations
on a typical solar energy system for industrial engineering. Then, a genetic algorithm (GA) [75–77] was
employed to estimate the optimum size of parameters based on the results from ANN. Interestingly,
the use of GA has shown a promising process that could generate reliable data combinations in a short
time (Figure 4). Instead of listing the interpolated trends as discussed above, the GA method is a fast
way that could expedites the industrial decision on the processes.
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a well-trained artificial neural network model. Reproduced with permission from Appl. Energy;
published by Elsevier, 2004 [74].

3.2. A Computational High-Throughput Screenig Method

Though a GA method is sufficient for generating a limited amount of data, its strategy sometimes
would omit the important possible parameters during design. In addition, being different from
materials design (as shown in Figure 3), engineering applications require to operate a larger size of
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data since the materials types are limited by the finite number of elements. And thus, there are many
more different possibilities exist in the design and optimization of engineering processes. To overcome
these problems, in very recent years, a high-throughput screening (HTS) method was developed
for optimizing the engineering devices and processes (Figure 5) [78,79]. As illustrated in Figure 5,
it can be seen that an HTS method can generate a large number of possible combination of inputs
at the beginning, then a well-trained ANN can rapidly output the performance of all these possible
input combinations. Then all those combinations which predicted with good performance would be
recorded in a database as future candidates. Then the experimental process can pick a few of these
candidates for testing. In previous studies, it has been shown that a regular ANN (trained with 1~2
hidden layers, respectively, with less than 50 hidden neurons) is able to quickly output thousands of
predictions in a relatively short period [78]. More importantly, an HTS method is able to fully mine the
trends between input and output variables for engineering processes.
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4. Discussions

With the case analysis discussed above, we can see that a machine learning assisted data-mining
is a powerful technique for fitting the intrinsic relationships in the processes of chemistry, materials,
and engineering. In addition, it is clear that there are a couple of important steps for these data-mining.
First, the choice of model inputs is important since it should be the independent variables that have
potential relationships with the output variable(s). Therefore, the use of descriptors should be carefully
selected. Second, since the predictions are usually for interpolation, the database used for machine
learning model training should be sufficiently representative and diverse. Otherwise, the model
might easily get over-fitted [80]. Finally, for prediction, optimization, and/or design applications,
the way to generate new combined input data could be carefully chosen: for new materials design,
the combination of different types of elements from the periodic table is a good way to screen all
the possible materials which are predicted with high-performances; for targeting a good design with
less computational cost, a GA method could help to rationally generate new input combinations;
to exhaustively screen all the possible optimization in engineering, an HTS method could be a good
strategy since the prediction through an already-trained machine learning (e.g., ANN) model is usually
computationally costless [78].

Overall, the general data-mining process remains similar regardless of its applications,
as summarized in Figure 6. After data collection, a statistical analysis would evaluate whether
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the data scale is diverse and representative. Then the most reasonable independent variables can be
chosen as the descriptors in the model inputs. By training and validation of the machine learning
model, we can evaluate whether the descriptors are suitable for capturing the potential relationships
with the output(s). If the model is well-trained, it can be used for further mining of the new properties
by performing its predictive power. Those new input combinations generated by GA or HTS can be
set as the input of the trained model, and the predictions can be rapidly outputted. Finally, a new
database can be constructed by having the original experimental data as well as the predicted data
from the well-trained machine learning model.
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