McMaster University

Systems Design of a Petroleum Coke IGCC Power Plant: Technical, Economic, and Life Cycle Perspectives

Ikenna J. Okeke, Thomas A. Adams II Department of Chemical Engineering, McMaster University, 1280 Main St. W, Hamilton, ON, Canada, L8S 4L7

1. Introduction – Petroleum Coke

Petroleum Coke (Petcoke)

Undesired solid waste of crude oil refining

- Predominate in heavy oil processing
- ➢ Up to 30% of heavy oil feed

Table 1: Petcoke analysis [1]		
Ultimate analysis (wt.% dry)	Value	
Carbon	84.9	
Hydrogen	3.9	
Nitrogen	1.3	
Sulfur	6	
Ash	3.1	
Oxygen	0.8	
Proximate analysis (wt.%)		
Fixed carbon	83.3	
Volatile matter	11.9	
Ash	3	
Moisture content	1.8	

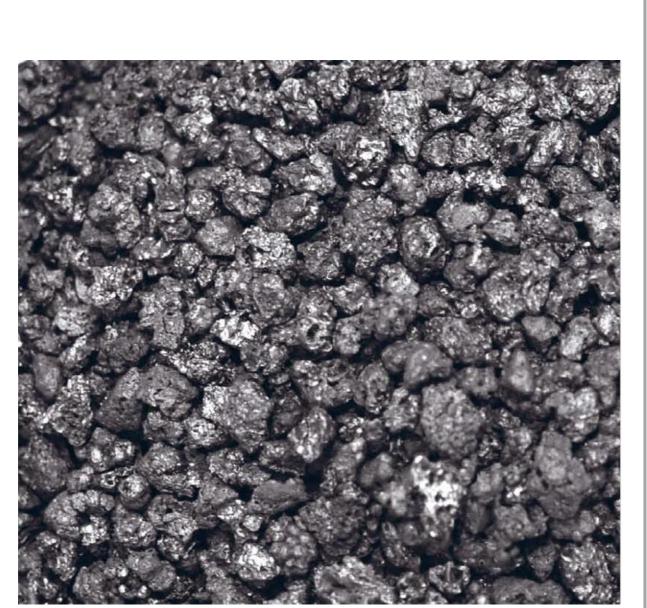


Fig 1: Delayed petcoke

Moisture content **Petcoke Challenges**

- > Up to 10% higher (energy basis) GHG emissions when combusted compared to coal [2]
- ➢ High sulfur content [1]
- **Traditional Petcoke disposal**
- Calcination: use as anode
- \succ Limited use as fuel in North America [2]
- Mostly stockpiled

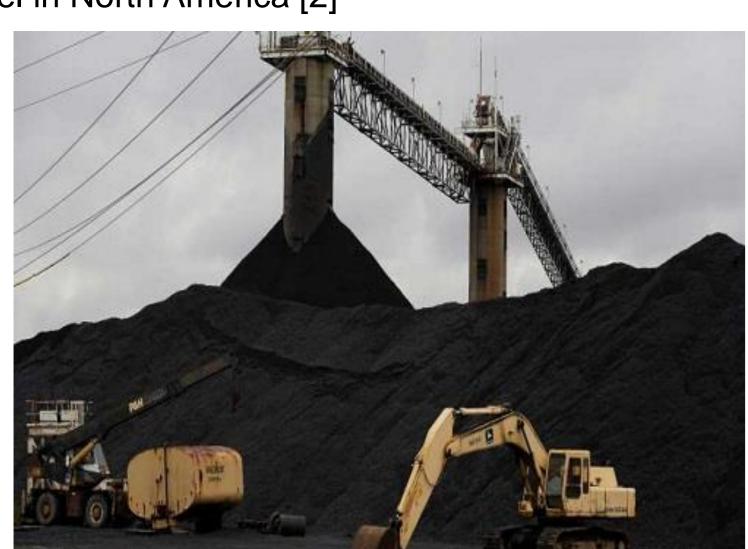
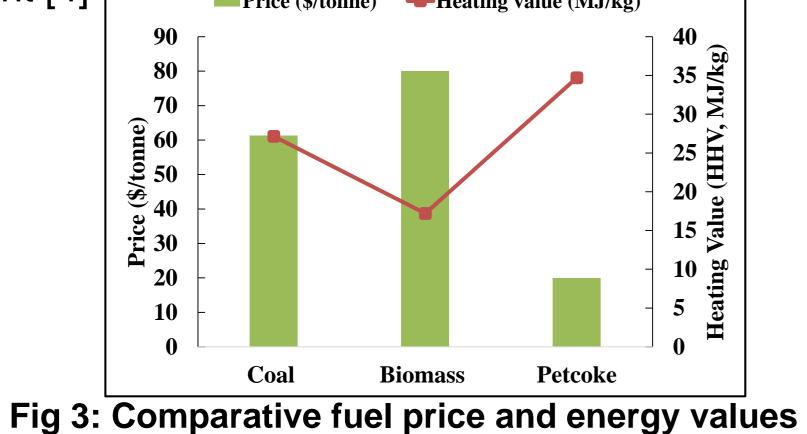
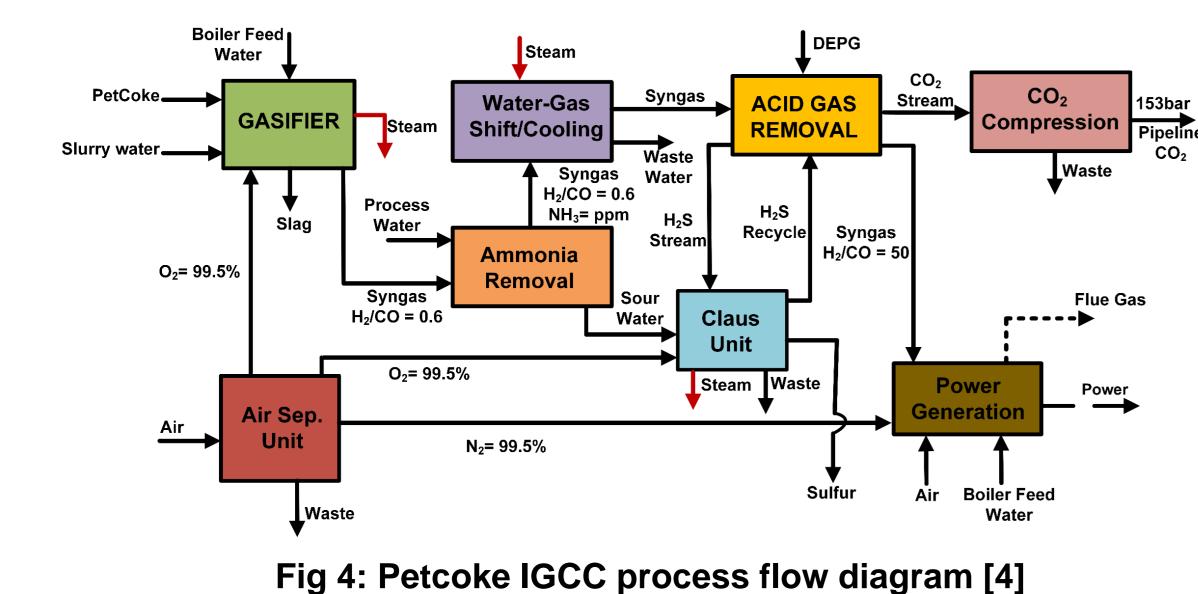



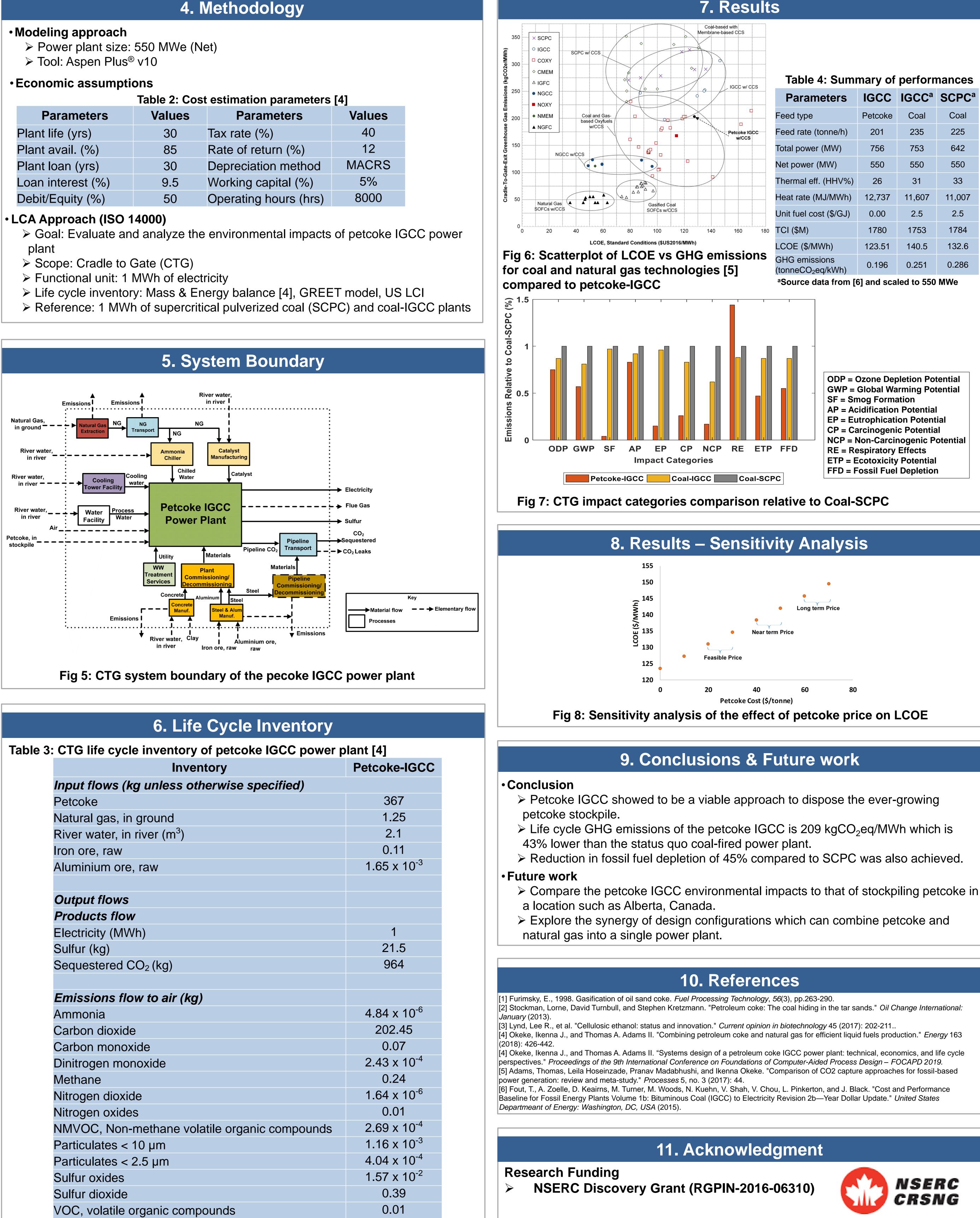
Fig 2: Petcoke stockpile


2. Motivation Petcoke is a high value fuel \succ Low cost fuel compared to coal and biomass [3] ➢ High energy content [4] Price (\$/tonne) —Heating value (MJ/kg)

- Potential feed for power generation
- Convert petcoke to clean power
- Displace coal-fired power plants
- ➢ Reduce GHG emissions with aid of CCS technology

3. Objective

>Conduct a technical, economic, and life cycle assessment of a petcoke IGCC power plant



4. Methodology

➢ Tool: Aspen Plus[®] v10

Table 2: Cost estimation parameters [4]		
Values	Parameters Va	
30	Tax rate (%)	4(
85	Rate of return (%)	12
30	Depreciation method	MAC
9.5	Working capital (%)	5%
50	Operating hours (hrs)	800
	Values 30 85 30 9.5	ValuesParameters30Tax rate (%)85Rate of return (%)30Depreciation method9.5Working capital (%)

plant

: CTG life cycle inventory of petcoke IGCC power p	olant
Inventory	Pet
Input flows (kg unless otherwise specified)	
Petcoke	
Natural gas, in ground	
River water, in river (m ³)	
Iron ore, raw	
Aluminium ore, raw	1
Output flows	
Products flow	
Electricity (MWh)	
Sulfur (kg)	
Sequestered CO ₂ (kg)	
Emissions flow to air (kg)	
Ammonia	4
Carbon dioxide	
Carbon monoxide	
Dinitrogen monoxide	2
Methane	
Nitrogen dioxide	1
Nitrogen oxides	
NMVOC, Non-methane volatile organic compounds	2
Particulates < 10 µm	1
Particulates < 2.5 µm	4
Sulfur oxides	1
Sulfur dioxide	
VOC, volatile organic compounds	

This poster can be accessed online through the LAPSE website on http://psecommunity.org/LAPSE:2018.0810

ivanced	Control	Consortium	

Table 4: Summary of performances			
Parameters	-	-	SCPC ^a
ed type	Petcoke	Coal	Coal
ed rate (tonne/h)	201	235	225
al power (MW)	756	753	642
t power (MW)	550	550	550
ermal eff. (HHV%)	26	31	33
at rate (MJ/MWh)	12,737	11,607	11,007
it fuel cost (\$/GJ)	0.00	2.5	2.5
I (\$M)	1780	1753	1784
OE (\$/MWh)	123.51	140.5	132.6
IG emissions nneCO₂eq/kWh)	0.196	0.251	0.286
ource data from [6	61 and sca	led to 550	MWe

ODP = Ozone Depletion Potential
GWP = Global Warming Potential
SF = Smog Formation
AP = Acidification Potential
EP = Eutrophication Potential
CP = Carcinogenic Potential
NCP = Non-Carcinogenic Potential
RE = Respiratory Effects
ETP = Ecotoxicity Potential
FFD = Fossil Fuel Depletion

to dispose the ever-growing
is 209 kgCO ₂ eq/MWh which is Iant.
red to SCPC was also achieved.
acts to that of stockpiling petcoke in
hich can combine petcoke and