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Abstract: Diabetic kidney disease (DKD) is a major cause of renal failure. Podocytes are terminally
differentiated renal epithelial cells that are key targets of damage due to DKD. Podocytes express
a glucose-stimulated local renin-angiotensin system (RAS) that produces angiotensin II (ANG II).
Local RAS differs from systemic RAS, which has been studied widely. Hyperglycemia increases
the production of ANG II by podocyte cells, leading to podocyte injury. Angiotensin-converting
enzyme (ACE) is involved in the production of ANG II, and ACE inhibitors are drugs used to
suppress elevated ANG II concentration. As systemic RAS differs from the local RAS in podocytes,
ACE inhibitor drugs should act differently in local versus systemic contexts. Experimental and
computational studies have considered the pharmacokinetics (PK) and pharmacodynamics (PD) of
ACE inhibition of the systemic RAS. Here, a PK/PD model for ACE inhibition is developed for the
local RAS in podocytes. The model takes constant or dynamic subject-specific glucose concentration
input to predict the ANG II concentration and the corresponding effects of drug doses locally and
systemically. The model is developed for normal and impaired renal function in combination with
different glucose conditions, thus enabling the study of various pathophysiological conditions.
Parameter uncertainty is also analyzed. Such a model can improve the study of the effects of drugs at
the cellular level and can aid in development of therapeutic approaches to slow the progression of
DKD.

Keywords: PK/PD; podocytes; renin-angiotensin system; benazepril; diabetic kidney disease;
diabetic nephropathy

1. Introduction

Hyperglycemia or high blood glucose initiates and aggravates the pathophysiology that can lead
to end-stage renal failure in diabetic patients. Diabetic kidney disease (DKD) is one of the common
complications of hyperglycemic conditions. In the earlier stages of DKD, the nephrons, which are the
basic filtration units of the kidneys, become damaged [1,2]. Blood is filtered in each of thousands of
nephrons through a bundle of capillaries known as a glomerulus. Hyperglycemia-induced injury to
the glomeruli eventually leads to the loss of renal function. Podocytes are visceral epithelial cells that
wrap around the glomerular capillaries and play a vital role in maintaining the structure and function
of the glomerular filtration barrier. Because podocytes are terminally differentiated, any damage to
them is a critical factor in glomerular injury and diabetic nephropathy. Podocyte injury is a key process
in the progression of DKD [3–6].
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The renin-angiotensin system (RAS) is a hormone system responsible for maintaining blood
pressure and fluid balance. The RAS network of biochemical reactions involves multiple enzymes and
hormones and is known to function at systemic (throughout the body) as well as local (tissue or cellular)
levels. Angiotensin (ANG) II is one of the hormones in the RAS and is primarily responsible
for regulating blood pressure. The RAS is over-stimulated in diabetic conditions, leading to the
up-regulation of ANG II in systemic as well as local levels. Angiotensin-converting enzyme (ACE)
is responsible for conversion of the precursor ANG I to ANG II. ACE inhibitors are widely used
pharmaceuticals for blood pressure regulation that inhibit the production of ANG II and slow the
progression of DKD.

The intracellular RAS within podocytes has been shown to function differently than the systemic
RAS in certain pathophysiological conditions such as hyperglycemia [7–10]. High glucose conditions
trigger the RAS to increase ANG II concentration, especially in the podocytes, leading to irreversible
podocyte injury [7,11,12]. The progression of DKD can be slowed by controlling the ANG II
concentration to prevent irreversible podocyte loss. While ACE inhibitor drugs used to suppress
ANG II are frequently prescribed for use in DKD, their effects on the local RAS in podocytes are not
well understood. Also, clinical observations indicate that systemic suppression of ANG II by ACE
inhibitor drugs is not always accompanied by ANG II suppression in the kidneys [13].

Mathematical models of the reaction network in the systemic RAS have been published [14–16].
We previously developed a pharmacokinetic/pharmacodynamic (PK/PD) model for an ACE inhibitor
benazepril considering normal and impaired renal functions [15]. We refer to this model as
ACEInhibPKPD, which is the name of the corresponding GitHub repository for free distribution of
the model code [17]. However, this PK/PD model focused on the systemic RAS and is insufficient to
predict the effects of ACE inhibitor drugs on ANG II produced by the local RAS. Podocytes express
certain RAS enzymes and hormones differently than the systemic RAS with much higher ANG II
concentration [8–10]. While several computational models have been proposed for various aspects of
renal physiology [18–29], models for the mechanism of hyperglycemia-induced podocyte injury in DKD
are only recently appearing in the literature. In a previous publication, we created a podocyte-specific
local RAS model that had parameters dependent on the glucose concentration [30]. We refer to this
model as glucoseRASpodocytes, which is the name of the corresponding GitHub repository [31].
This glucoseRASpodocytes model lacked the effects of drug dosing. Here, we propose a podocyte-specific
PK/PD model to describe how an ACE inhibitor benazepril modulates ANG II concentration in the
podocyte local RAS. Benazepril is a commonly used ACE inhibitor to treat hypertension and DKD [32–35].
The objective of this work is to build a physiologically relevant PK/PD model for the local RAS in
podocytes to predict ANG II concentration in response to drug dosages and various glucose concentration
profiles. The model is detailed in Section 2. In Section 3, we provide results of using subject-specific
glucose dynamics data as model input to predict ANG II dynamics. We compare the effects of drug
dosages on the ANG II concentration in the local RAS to the systemic RAS in normal and impaired renal
function cases and in normal and diabetic glucose conditions. Also, the effects of varying uncertain
parameters are explored.

2. Methods

In this section, we develop a PK/PD model for the local RAS in podocytes by
combining and adapting features from our previous models: glucoseRASpodocytes [30,31] and
ACEInhibPKPD [15,17]. First, we describe the PK model for an ACE inhibitor drug in Section 2.1.
Next in Section 2.2, we develop the PD model for the reaction network for the local RAS in podocytes
and the effects of the drug on the local RAS. Finally, we summarize the numerical methods used to
solve the model equations and provide the location of our code repository and software documentation
in Section 2.3.
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2.1. Pharmacokinetic Model

Pharmacokinetics describes what happens to a drug in the body and is used to study the time
course of drug absorption, distribution, metabolism, and excretion processes. We assume that the
concentration of the drug that reaches the podocyte cells through filtration of the blood in a glomerulus
is the same as the concentration in the systemic blood plasma. Therefore, we use the same PK
model [15] for both the local and the systemic RAS. Briefly, a single-compartment model with first-order
absorption and first-order elimination rates for ACE inhibitor drugs after oral administration is used.
The analytical solution for the concentration of the biologically active diacid form of the drug for
repeated doses over time t with uniform dose size d at constant time intervals τ is [15,36]

[Drug]n(t′) =
kadF

(ka − ke)V

(
1− exp(−nkeτ)

1− exp(−keτ)
exp(−ket′)− 1− exp(−nkaτ)

1− exp(−kaτ)
exp(−kat′)

)
(1)

where [Drug]n(t′) is the drug concentration after the nth drug dose, t′ = t− (n− 1)τ is the time after
the nth dose, ka is the absorption rate constant, ke is the elimination rate constant, and V/F is the
ratio of the volume of distribution to the fraction of the drug absorbed. The parameters for benazepril
obtained from patients with normal renal function (NRF) and impaired renal function (IRF) are listed
in Table 1.

Table 1. Pharmacokinetic parameter values used for both the systemic and the local renin-angiotensin
system (RAS) models for benazepril for renal function cases of normal renal function (NRF) and
impaired renal function (IRF).

Parameter NRF IRF Units Sources

ka 1.907 1.645 h−1 [15,37]
ke 1.33 × 10−1 3.45 × 10−2 h−1 [15,37]

V/F 7.09 × 104 1.07 × 105 mL [15,37]

2.2. Pharmacodynamic Model

Pharmacodynamics is the study of the mechanism and the effects of the drug on the body. Here,
the PD model depends on the reactions in the RAS, where the drug inhibits the conversion of ANG I to
ANG II. The local RAS (Figure 1a) differs from the systemic RAS (Figure 1b) with respect to the reaction
network and the parameter values [7,30]. Hence, the PD model developed in ACEInhibPKPD [15,17]
is not used directly, and we have modified it to be relevant to the local RAS in podocytes.

The podocyte local RAS (Figure 1a) as modeled in glucoseRASpodocytes [30,31] has more
reactions than the systemic RAS (Figure 1b) as modeled in ACEInhibPKPD [15,17] including the
non-ACE pathway for conversion of ANG I to ANG II, production of ANG-(1-9) and ANG-(1-7) from
ANG I, production of ANG III and ANG-(1-7) from ANG II, and binding of ANG II to angiotensin II
receptor type 1 (AT1R) and angiotensin II receptor type 2 (AT2R). These reactions are specific to the
podocyte local RAS and are not considered in ACEInhibPKPD. The reactions for conversion of ANG I
to ANG II by ACE and non-ACE enzymes (Figure 1a) are lumped into a single reaction (Figure 2).
An ordinary differential equation (ODE) for change in angiotensinogen (AGT) concentration with
respect to time was included in glucoseRASpodocytes although it was absent in ACEInhibPKPD.
This AGT equation is used in the present model. AGT is a peptide upstream of ANG II that is consumed
at a rate sensitive to glucose concentration in podocytes, and the ANG II concentration indirectly
depends on the concentration of AGT. The conversion of ANG I and ANG II into downstream
peptides and the binding of ANG II to AT1 and AT2 receptors are included here (Figure 2) as in
glucoseRASpodocytes. Glucose dependency was incorporated in the glucoseRASpodocytes model
through the rate parameters for some of the reactions. This glucose dependency is preserved here
(green arrows in Figure 2). glucoseRASpodocytes included ODEs for the concentrations of ANG-(1-7),
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ANG-(1-9), ANG III, AT1R-bound ANG II, and AT2R-bound ANG II. Here, these species are not
tracked explicitly as their concentrations do not influence ANG II.

(a) (b)

ACE2

Renin

nonACEACE

ACE2

APA

ANG III

ANG I

AGT

ANG-(1-9)

AT1R

ANG-(1-7)

AT2R

ANG II

ANG I

ACE 
Inhibitor ACE

ANG II

Renin

AGT

Figure 1. Reaction network for (a) the podocyte local renin-angiotensin system (RAS) as modeled in
glucoseRASpodocytes [30,31] and (b) the systemic RAS as modeled in ACEInhibPKPD [15,17]. Peptides
are shown in gray ovals, enzymes are denoted over the reaction arrows, enzymes that are influenced by
inhibitory reactions are shown in black ovals, and the angiotensin-converting enzyme (ACE) inhibitor
is labeled in the white box. Angiotensin II (ANG II) is highlighted in a red oval as the key peptide
of interest. Solid lines denote reactions, open arrow tips indicate degradation reactions, dashed lines
denote binding of ANG II to receptors, and red dotted lines with flat ends instead of arrows indicate
inhibitory reactions.

ANG-(1-7)

ANG I

ACE

ANG II

ANG III

APA

ACE
Inhibitor

AGT

Renin

AT2R

AT1R

ACE2

ACE2

ANG-(1-9)

Figure 2. Glucose-dependent biochemical reaction network for the podocyte local RAS
pharmacodynamic model. Peptides are shown in gray ovals, enzymes are denoted over the reaction
arrows, enzymes that are influenced by inhibitory reactions are shown in black ovals, and the ACE
inhibitor is labeled in the white box. ANG II is highlighted in a red oval as the key peptide of interest.
Solid lines denote reactions, open arrow tips indicate degradation reactions, dashed lines denote
binding of ANG II to receptors, and red dotted lines with flat ends instead of arrows indicate inhibitory
reactions. Thick green lines highlight the processes with glucose-dependent rate parameters.

glucoseRASpodocytes focused on the local RAS, but it did not include the impacts of any drugs on
the local RAS. Additionally, the negative feedback of ANG II concentration on the production of renin,
which is the enzyme involved in the conversion of AGT to ANG I, was included in ACEInhibPKPD
(Figure 1b) but was lacking in glucoseRASpodocytes (Figure 1a). In the present model, we adapt
the model from glucoseRASpodocytes for the local RAS by incorporating the effects of an ACE
inhibitor drug and the negative feedback of ANG II on renin from ACEInhibPKPD [15]. The resultant
glucose-dependent biochemical reaction network for the podocyte local RAS PD model for ACE
inhibition is illustrated in Figure 2.
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The PD model consists of the constant volume mass balances for four chemical species: AGT,
renin, ANG I, and ANG II. Concentrations are denoted by species names inside of square brackets.
The glucose-dependent rate parameters are denoted by c’s, and the glucose-independent rate
parameters are denoted by k’s.

The mass balance for AGT is [30]

d[AGT]
dt

= kAGT − cRenin[AGT]− ln 2
hAGT

[AGT] (2)

where kAGT is the constant production rate of AGT, cRenin is the glucose-dependent rate parameter for
renin-catalyzed conversion of AGT to ANG I, and hAGT is the half-life for the degradation of AGT.

The mass balance for renin is [15]

d[Renin]
dt

= sRenin + k f ([ANG II]0 − [ANG II])
(

1− [ANG II]0 − [ANG II]
f

)
− ln 2

hRenin
[Renin] (3)

where sRenin is the constant source of renin in the absence of feedback, the second term is the influence
of ANG II negative feedback on renin production, [ANG II]0 is the initial concentration of ANG II, k f
and f are parameters for the feedback, and hRenin is the half-life for the degradation of renin. The renin
source term is computed at steady state by [15]

sRenin =
ln 2

hRenin
[Renin]0 (4)

where [Renin]0 is the initial concentration of renin.
The mass balance for ANG I is [15,30]

d[ANG I]
dt

= cRenin[AGT] + kRenin([Renin]− [Renin]0)− cACE[ANG I](1− I)

− (kNEP + kACE2)[ANG I]− ln 2
hANG I

[ANG I]
(5)

where the first term represents the glucose-dependent renin-catalyzed contribution to the production
of ANG I from AGT, the second term represents the change to ANG I synthesis from AGT due to the
feedback of ANG II on renin with rate constant kRenin, the third term is the ACE-catalyzed conversion
of ANG I to ANG II that is subject to inhibition I by the drug and has a glucose-dependent rate
parameter cACE, the fourth term is the consumption of ANG I to form ANG-(1-7) and ANG-(1-9) with
the glucose-independent rate parameters kNEP and kACE2, respectively, and hANG I is the half-life for the
degradation of ANG I. The first and second terms in (5) both consider the production of ANG I from
AGT catalyzed by renin. The first term is from glucoseRASpodocytes and includes glucose dependence
in the absence of the ANG II-renin feedback mechanism. The second term is from ACEInhibPKPD to
incorporate the effects of the feedback mechanism on changing the production rate.

The mass balance for ANG II is [15,30]

d[ANG II]
dt

= cACE[ANG I](1− I)− (cAT1 + kAT2 + kAPA + kACE2)[ANG II]− ln 2
hANG II

[ANG II] (6)

where the first term is the production of ANG II in the presence of ACE that is subject to inhibition I by
the drug; the second term is the consumption of ANG II as it converts into downstream peptides and
binds to AT1 and AT2 receptors; cAT1 is the glucose-dependent rate parameter for binding of ANG II to
AT1 receptor; kAT2, kAPA, and kACE2 are the glucose-independent rate parameters for binding of ANG II
to the AT2 receptor and conversion of ANG II to ANG III and ANG-(1-7), respectively; and hANG II is
the half-life for degradation of ANG II.

The observed percent inhibition I of benazepril is described by a Hill-type function as [37]
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I =
100[Drug]m

[Drug]m50 + [Drug]m
(7)

where [Drug]50 is the drug concentration that yields 50% inhibition, and m accounts for the degree
of sigmoidicity.

Glucose dependency is included in the parameters designated by cx, where x = Renin, ACE,
and AT1. In glucoseRASpodocytes [30] these parameters were found to be the most sensitive and
were each considered to be a linear function of glucose. The glucose-dependent parameters are
calculated using [30]

cRenin = aRenin[Glucose] + bRenin (8)

cACE = aACE[Glucose + bACE (9)

cAT1 = aAT1[Glucose] + bAT1 (10)

where [Glucose] is the concentration of glucose and the coefficients ax and bx in (8)–(10) are obtained
from parameter estimation detailed in [30].

The feedback parameters k f and f were originally estimated for the systemic RAS in
ACEInhibPKPD. However, these parameters are formulated in terms of deviation variables in (3).
Because the magnitude of [ANG II] initial values and deviations are drastically different in the local
RAS as compared to the systemic RAS, we scale the parameters k f and f for the podocyte local
RAS model as

k f =
k f , sys[ANG II]0, sys NRF

[ANG II]0
(11)

f =
fsys[ANG II]0

[ANG II]0, sys NRF
(12)

where k f , sys and fsys are the values of the feedback parameters estimated in [15], [ANG II]0, sys NRF is
the initial ANG II concentration for the systemic RAS NRF case, and [ANG II]0 is the initial ANG II
concentration for the local RAS (for both NRF and IRF). In Section 3.2, we explore the impacts of the
uncertainty in these parameters.

The PD parameter values and their sources are listed in Table 2. For the systemic RAS model,
the PK and PD parameters and the initial conditions are different for the NRF and IRF cases. However,
due to insufficient information about the local RAS, only the PK parameters (Table 1) are varied for the
cases of NRF and IRF, while the PD parameters and initial concentrations (Table 2) for the local RAS
model are kept the same for both NRF and IRF.

Table 2. Pharmacodynamic parameter values for the podocyte local RAS model for benazepril.

Parameter Value Units Sources

kAGT 2.27× 106 nmol/L/h [30]
kRenin 6.44× 104 h−1 [15]
kNEP 0.583 h−1 [30]
kACE2 0.382 h−1 [30]
kAT2 25.1 h−1 [30]
kAPA 43.6 h−1 [30]
hAGT 10.0 h [14,30]
hRenin 0.250 h [15]
hANG I 1.72× 10−4 h [14,30]
hANG II 5.00× 10−3 h [14,30]
[Drug]50 2.20 ng/mL [15,37]

m 0.99 - [15,37]
aRenin 5.47× 10−4 L/mmol/h [30]
bRenin 6.16× 10−11 h−1 [30]
aACE 0.889 L/mmol/h [30]
bACE 163 h−1 [30]
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Table 2. Cont.

Parameter Value Units Sources

aAT1 2.55 L/mmol/h [30]
bAT1 464 h−1 [30]

k f , sys 6.25× 10−2 h−1 [15]
fsys 0.397 nmol/L [15]

[AGT]0 1.70× 107 nmol/L [30]
[Renin]0 2.06× 10−4 nmol/L [15]
[ANG I]0 271 nmol/L [30]
[ANG II]0 21.0 nmol/L [30]

[ANG II]0, sys NRF 1.65× 10−2 nmol/L [15]
[ANG II]0, sys IRF 2.05× 10−2 nmol/L [15]

2.3. Numerical Methods and Code Repository

The podocyte-specific, glucose-dependent RAS PD model in Section 2.2 is connected to the PK
model described in Section 2.1 to predict the dose-response relationship of benazepril and glucose
dynamics on ANG II. The PK/ PD model (1)–(12) forms a set of ODEs and algebraic equations that
are solved simultaneously using the ode45 ODE solver in MATLAB (Version R2017b, The MathWorks,
Natick, MA, USA, 2017). The relative tolerance is set to 10−12. The time step is restricted to an upper
bound of τ/500, where τ is the dosage interval. To enable code reuse, the MATLAB codes for
the mathematical model including parameter values and documentation are available online in
an open-source software repository [38].

3. Results and Discussion

The PK/PD model developed in Section 2 was solved to compute [Drug] and [ANG II] as
functions of time. We considered the following model inputs: drug dose size, number of doses
per day, renal function (normal or impaired), and glucose concentration (constant [Glucose] as well as
dynamic [Glucose] for a representative normal subject or diabetic subject). We studied combinations
of these conditions using the model and compared the local RAS model results to the corresponding
scenarios using the systemic RAS model to understand the differences between the local and systemic
RAS. The simulations were started at the initial conditions corresponding to the case, i.e., [ANG II]0 for
the local RAS for NRF and IRF, [ANG II]0, sys NRF for the systemic RAS for NRF, and [ANG II]0, sys IRF

for the systemic RAS for IRF. We also analyzed the effects of varying uncertain parameters used
in the model.

The local RAS PK/PD model was simulated for constant [Glucose] cases and two cases of
dynamic [Glucose]. The constant [Glucose] cases ranged between the extremes of normal glucose
(NG) at 5 mmol/L and high glucose (HG) at 25 mmol/L based on experimental studies [11,39,40].
The dynamic [Glucose] cases used representative profiles for normal (non-diabetic) and diabetic
subjects [41]. The systemic RAS PK/PD model [15] was used for comparison to the local comparison
with podocyte local RAS model developed here.

3.1. Effects of Doses of Benazepril

Benazepril doses of 2.5 mg and 10 mg for the cases of NRF and IRF were simulated and compared
between the local and systemic RAS. Administration of a once daily dose of benazepril was repeated
for seven days. Because the systemic RAS model did not have glucose dependency, the local RAS
model was kept at constant NG conditions where [Glucose] = 5 mmol/L for fair comparison between
the models. The effects of the drug dosages in the local and systemic PK/PD models were compared
for [Drug] (Figure 3) and [ANG II] (Figure 4).
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(a) (b)

Figure 3. Simulation results in response to once daily 2.5 mg (yellow) or 10 mg (red) doses of benazepril
in the local RAS (dotted curves) and the systemic RAS (solid curves) for [Drug] for (a) normal renal
function (NRF) and (b) impaired renal function (IRF).

(a) (b)

(c) (d)
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II]
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II]
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0,
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(%

)

Figure 4. Simulation results in response to once daily 2.5 mg (yellow) or 10 mg (red) doses of benazepril
in the local RAS (dotted curves) and the systemic RAS (solid curves) at constant NG for (a) [ANG II]
for NRF, (b) [ANG II] for NRF normalized by [ANG II]0, NRF, (c) [ANG II] for IRF, and (d) [ANG II] for
IRF normalized by [ANG II]0, IRF. Please note that the local RAS NRF and IRF cases only differ in the
PK parameters used to obtain [Drug]. [ANG II]0 = [ANG II]0, NRF = [ANG II]0, IRF for the local RAS.

As mentioned in Section 2.1, the local and systemic RAS models had the same PK parameters,
which only varied between the NRF and IRF cases (Table 1). As expected the [Drug] profiles in the
local and systemic RAS overlapped due to the PK parameters (Figure 3).

Although there was no difference between [Drug] profiles for the local and systemic RAS
(Figure 3), the resulting effects on [ANG II] were different (Figure 4). For both renal function cases NRF
and IRF, [ANG II] was lowered more substantially by the larger dose of benazepril (Figure 4). In all
cases, [ANG II] was larger in the local RAS than in the systemic RAS (Figure 4a,c). The normalized
[ANG II] decreased more drastically for the local RAS than for the systemic RAS (Figure 4b,d).
These results agreed with the clinical observation that the systemic inhibition of ANG II by ACE
inhibitors is not always accompanied by elimination of high [ANG II] in kidneys [13]. The differences
between NRF (Figure 4a,b) and IRF (Figure 4c,d) [ANG II] responses were due to the enhanced [Drug]
accumulation due to smaller ke for IRF.
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3.2. Effects of Varying the Uncertain Feedback Parameters

Most of the parameters in the local RAS model were either taken from the literature or estimated
based on previous experimental observations. The feedback parameters k f and f were uncertain,
as discussed in Section 2.2. Without clinical data to verify the scaled values of k f and f for
the local RAS, we analyzed the effects on [ANG II] of varying these parameters in a wide range.
The values for k f and f calculated from (11) and (12) were considered as the nominal values and were
varied by approximately four orders of magnitude above and below their nominal values (Table 3).
Fifty random values were selected for each parameter assuming a uniform distribution within its
range. Latin hypercube sampling (LHS) [42,43] was used to generate the combinations of k f and f
values. Simulations were performed using the model for these 50 sets of parameters, each set with
a random pairing of k f and f . The simulation conditions were set to NRF and NG, and a single 5 mg
dose of benazepril was administered after 24 h.

Table 3. Values and ranges for varying feedback parameters k f and f to generate random samples to
study the effects on [ANG II].

Parameter Nominal Value Min Max Units Range

k f 4.91 × 10−5 5 × 10−9 5 × 10−1 h−1 108

f 5.04 × 102 5 × 10−2 5 × 106 nmol/L 108

The results (not shown) generated [ANG II] < 0 for some simulations, which is not physically
possible. To explore the parameter extrema, different combinations of the minimum and maximum
values of k f and f (Table 4) were simulated. The combination of the maximum k f and the minimum f
values was the only case that resulted in [ANG II] < 0. Multiple simulations were run keeping k f at its
maximum value while varying f (Figure 5a) and keeping f at its minimum while varying k f (Figure 5b)
to find a range of values for these parameters that only yield [ANG II] ≥ 0. The results indicated
that decreasing f beyond 4 nmol/L while k f was at its maximum value resulted in [ANG II] < 0.
Additionally, increasing k f above 5 × 10−3 h−1 while f was at its minimum values resulted in
[ANG II] < 0. Based on these results, we defined smaller ranges of six orders of magnitude for k f
(5 × 10−9 to 5 × 10−3 h−1) and f (5 to 5 × 106 nmol/L) that give [ANG II] ≥ 0 for all combinations of
k f and f values. The [ANG II] curves for the 50 simulations varied only slightly, and the mean of the
results was hardly distinguishable from the aggregate (Figure 6). [ANG II] was insensitive to changes
in k f and f over a wide range of parameter values. The scaled values for k f and f (Table 3) were well
within these ranges, justifying our use of these values in other simulations reported here.

Table 4. Combinations of minimum and maximum values of k f and f from Table 3 used to study the
effects on [ANG II] after a drug dose.

Combination k f f [ANG II]

1 min min ≥ 0
2 min max ≥ 0
3 max max ≥ 0
4 max min < 0
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(a) (b)

Figure 5. Simulation results of [ANG II] response to one 5 mg dose of benazepril at 24 h in the local
RAS at constant normal glucose (NG) for NRF for (a) k f set at its maximum value of 0.5 h−1 and
f decreased from 5 to 2.5 nmol/L and (b) f set at its minimum value of 5 × 10−2 nmol/L and k f
increased from 4 × 10−3 to 6.5 × 10−3 h−1.

Figure 6. Simulation results of [ANG II] response to one 5 mg dose of benazepril at 24 h in the local
RAS at constant NG for NRF with 50 random combinations of parameters sampled from the refined
ranges of k f (5 × 10−9 to 5 × 10−3 h−1) and f (5 to 5 × 106 nmol/L) generated using Latin hypercube
sampling (LHS) (colored curves). The mean of [ANG II] from the 50 simulations is shown by the
bold black dashed-dotted curve. The inset zooms in around 2 days, which was the time for greatest
variations in Figure 5.

3.3. Effects of Varying PK Parameters

The slopes of the curves for [Drug] (Figure 3) primarily depend on the rates of absorption and
elimination of the drug. Due to the lack of experimental data in the podocyte cells for the values of
the absorption and elimination rate constants (ka and ke), these values for the local RAS PK model
were assumed to be the same as in the systemic RAS (Table 1). However, in a physiological system,
a drug must cross various biological barriers and cell membranes to move from systemic circulation
into tissues or cells. The ability of the drug to reach targeted tissues or cells depends on multiple
factors such as concentration gradients, carrier proteins, protein binding, and other physicochemical
interactions. Considering all these factors, it is highly probable that ka and ke for the local RAS would
be different than for the systemic RAS.

We used our model to determine how varying ka and ke affected the model prediction of [ANG II].
We considered the values of ka and ke given in Table 1 for NRF as the nominal values and varied each
of the parameters uniformly within a range of two orders of magnitude (Table 5). We used LHS to
generate 50 random sets of ka and ke values in their respective ranges. We used the same simulation
conditions as in Section 3.2.
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Table 5. Values and ranges for varying parameters ka and ke to generate random samples to study the
effects on [ANG II].

Parameter Nominal Value Min Max Units Range

ka 1.907 1.907 × 10−1 1.907 × 101 h−1 102

ke 0.133 0.133 × 10−1 0.133 × 101 h−1 102

Varying ka and ke by small magnitudes had substantial effects on [ANG II] (Figure 7).
The [ANG II] profiles spread over a wide range of values with different minimum concentrations
and slopes depending upon the values of ka and ke. These results indicated that [ANG II] was highly
sensitive to both ka and ke. Further experimental studies focusing on drug pharmacokinetics in the
local system need to be conducted to measure ka and ke in kidney tissues to enhance the accuracy of
the model predictions.

0 1 2 3 4 5
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L
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Figure 7. Simulation results of [ANG II] response to one 5 mg dose of benazepril at 24 h in the local RAS
at constant NG for NRF with 50 random combinations of ka and ke in the ranges in Table 5 generated
using LHS (colored curves). The mean of [ANG II] from the 50 simulations is shown by the bold black
dashed-dotted curve.

3.4. Effects of Glucose Conditions

The local RAS was considered to be functioning at a healthy state for the case of NRF and
NG, and the initial condition for this healthy state was taken as the ANG II baseline reference:
[ANG II]baseline = [ANG II]0. The local RAS progressed towards an unhealthy state via [Glucose]
increases. The systemic RAS was considered to be functioning at a healthy state for NRF and
an unhealthy state for IRF. The healthy baseline reference for ANG II for the systemic RAS was
[ANG II]baseline = [ANG II]0, sys NRF. To quantify the deviations from a healthy state in both the local
and systemic RAS, [ANG II] values from simulations without a drug dose were normalized by their
respective baseline concentrations. Because the magnitude of [ANG II] in the local RAS was larger than
that in the systemic RAS, this normalization makes the results of the local and systemic RAS models
comparable. The local RAS model was run for NRF over seven days without a drug dose for three
cases of constant [Glucose]: 5 mmol/L (NG), 10 mmol/L, and 25 mmol/L (HG). These simulations
were compared to the systemic RAS for NRF and IRF cases (Figure 8).
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Figure 8. Simulation results of [ANG II] normalized by the [ANG II]baseline reference concentrations for
the healthy cases for the local RAS ([ANG II]0) and for the systemic RAS ([ANG II]0, sys NRF) without
a drug dose. The healthy state (yellow) transitions towards the unhealthy state (dark red) for the local
RAS (dotted curves) via increasing [Glucose] and for the systemic RAS (solid curves) from normal to
impaired renal function.

The results showed that the [ANG II] deflected from the healthy state and increased to new steady
states as the [Glucose] conditions or renal functions approached an unhealthy state (Figure 8). For the
local RAS, the HG case resulted in a 70% increase in [ANG II] as compared to NG. In the systemic RAS,
IRF had 23% higher [ANG II] compared to NRF. The normalized [ANG II] steady state for the local RAS
at an intermediate value of [Glucose] at 10 mmol/L was similar to that for the systemic RAS for IRF
suggesting that some of the impaired characteristics could be recapitulated by a sustained moderately
elevated [Glucose]. Studies have suggested a strong link between hyperglycemia-stimulated ANG II
and IRF [4,5,44,45]. Thus, our simulation results agreed with these studies showing that [ANG II]
increased for the local and systemic RAS models as the conditions moved towards unhealthy states.

For this study, clinical data for [Glucose] dynamics for normal (non-diabetic) and diabetic human
subjects [41] were extracted using Plot Digitizer [46]. The MATLAB functions polyfit and polyval
were used to fit curves to the data (Figure 9a). The daily [Glucose] profiles for the normal and diabetic
subjects were repeated for five days and used as inputs to the local RAS model. The model was run
before and after a single dose of 5 mg benazepril administered at 24 h to examine the effects of the
dynamic [Glucose] cases. Before the drug dose (0 ≤ t < 1 day), the [ANG II] variations resulted
only from [Glucose] dynamics (Figure 9b). Because the PK parameters were same for both the cases,
the [ANG II] immediately dropped to the same value upon dosing at t = 1 day. The [ANG II] rose
faster for the diabetic subject than for the normal subject for t ≥ 2 days as the drug was eliminated
around t = 2 days, at which point the [Glucose] effects began to dominate.

(a) (b)

Figure 9. (a) [Glucose] as a function of time for normal and diabetic subjects with data extracted
from [41] and curves fitted with the polyfit function in MATLAB. (b) Simulation results of [ANG II]
response to one 5 mg dose of benazepril at 24 h and [Glucose] dynamics in the local RAS.
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4. Conclusions

In this work, we presented a mathematical PK/PD model to study and simulate the effects of
different dosages of the ACE inhibitor drug benazepril and other conditions on [ANG II] in the local
RAS in podocyte cells in the kidney. The combination of the impact of renal functions on the PK
portion of the model and of glucose dependency on the PD portion of the model made this model more
physiologically relevant and tailored for the local RAS and inclusive of drug dosing than our previous
models [15,30]. The glucose dependency enabled simulation of constant and dynamic [Glucose]
scenarios. The model can be used for patient-specific or population level studies using [Glucose]
dynamics for various cases. Also, the model can be run for user-defined dosing intervals and amounts.
The benazepril PK portion of the model was parameterized for normal and impaired renal function.
The model can be adapted to study the effects of other ACE inhibitor drugs or combinations of drugs
for which the PK parameters have been measured.

Using the model, we compared the effects of drug doses on the local RAS to the systemic RAS.
The results agreed with previous clinical studies that found that suppression of the systemic RAS
by an ACE inhibitor did not necessarily suppress the intrarenal [ANG II] to levels below a threshold
that could prevent additional DKD damage. These observations raise the question of adequacy of
the current therapeutic approaches and suggest that targeting ACE inhibition therapies specifically
towards the cellular local RAS could be an effective strategy to further slow the progression of
DKD. This presents an open opportunity for more experimental studies to be directed towards ACE
inhibition at the local RAS level. Even though some of the parameters used in the model were based on
assumptions or their corresponding values in the systemic RAS, we have accounted for the variability
of the parameters and studied their effects on [ANG II]. If more experimental data become available,
the model can be validated to a greater extent.
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