Maximizing Our Impact

A call for the standardization of techno-economic analyses for sustainable energy systems design research.

jfr photography

Thomas A. Adams II

Associate Professor, PhD, P.Eng McMaster University Department of Chemical Engineering McMaster Advanced Control Consortium

LAPSE:2019.XXXX Download at PSEcommunity.org/LAPSE:2019.XXXX

Editor-in-Chief

Section Editors-in-Chief

Prof. Juergen Hahn Rensselaer Polytechnic Institute, USA

Prof. Volker Hessel University of Adelaide, Australia

Prof. Martha A Grover Georgia Institute of Technology, USA

Technology, Netherlands Prof. Thomas A. Adams II

McMaster University, Canada

Keywords

FACTOR Biomedical systems 1.963 Chemical processes Computational systems biology Dynamic modeling Materials manufacturing Microbial systems Process systems engineering

2020 PROCESSES TRAVEL OSTDOCTORAL FELLOWS AND

CITESCORE

2.05

SCOPUS

IMPACT

2020 PROCESSES

Website: mdpi.com/si/27963 E-Mail: processes@mdpi.com Twitter: @Processes MDPI

1100 CHF (1200 CHF after 2019/6/30)

Prof. John D. Hedengren

Brigham Young University, USA

Prof. Fausto Gallucci

Prof. Mike Henson

UMass Amherst, USA

Download this Talk from LAPSE!

PSEcommunity.org/LAPSE:2019.XXXX

- Links to articles cited in the study
- Links to data sets and simulations used in cited studies

the living archive for process systems engineering

LAPSE	or Process Systems Engineering	Type search text: Logout My Dashboard	all fields d Submit New About Contact U	Js Help
APSE:2018	.0142		Download	
A new ap naterials CO2 capt	proach to the identification of high-potential for cost-efficient membrane-based post-combustion ure	Published Article	Files [Download 1v1.pdf] (2.2 MB) License	Jun 22, 2018 [Full Details
imon Roussa	naly, Rahul Anantharaman, Karl Lindqvist , Brede Hagen	LAPSE:2018.0142	CC BY 4.0	[details]
une 22, 2018			Meta	
Developir capture. V paper pre capture f membran MEA-base targets ar	g "good" membrane modules and materials is a key step towards reducing the cost of m While this is traditionally being done through incremental development of existing and sents a new approach to identify membrane materials with a disruptive potential to red or six potential industrial and power generation cases. For each case, this approach e properties targets required to reach cost-competitiveness and several cost-reduction d CO2 capture, through the evaluation of a wide range of possible membrane propertie e then compared to membrane module properties which can be theoretically achieved	embrane-based CO2 I new materials, this uce the cost of CO2 n first identifies the levels compared to es. These properties using 401 polymeric	Record Statistics Record Views Version History [v1] (Original Submission) Verified by curator on	52 Jun 22, 2018 Jun 22, 2018
membran experts to into accor strong po 11%, and membran	e materials, in order to highlight /3 high-potential materials which could be used by men select materials worth pushing towards further development once practical consideratic int. Beyond the identification of individual materials, the ranges of membrane properties t tential of membrane-based capture for industrial cases in which the CO2 content in the flu that considering CO2 capture ratios lower than 90% would significantly improve the e-based capture and lead to potentially significant cost reduction. Finally, it is importe	nbrane development ons have been taken argets also show the le gas is greater than competitiveness of ant to note that the	This Version Number Citations LAPSE:2018.0142 LAPSE:2018.0142v1	v1 Most Recent This Version
approach help redu	discussed here is applicable to other separation technologies and applications beyond CO ce both the cost and time required to develop cost-effective technologies.	2 capture, and could	URL Here	55-2018 0142
Record ID	LAPSE:2018.0142		Original Submitter	52.2010.0142
			original substituter	

Triple Bottom Line of Sustainability

Economical

- Capital
- Operating
- Supply Chain & Materials
- Job Creation / Losses
- Profitability
- Loans/Financing
- Stockholders
- Uncertainty and Risk

Environmental

- Greenhouse Gases
- Particulates
- Deforestation
- Land Use / Transformation
- Resource Depletion
- Water Consumption
- Toxicity
- Wildlife Impact
- Noise

Societal

- Public Acceptance
- NIMBYs
- BANANAs
- Health Impacts
- Public/Employee Safety
- Accidents
- Public Policy
- Electoral Politics

Motivation: Power Plant w/ CCS Comparisons

Motivation: Power Plant w/ CCS Comparisons

Туре	Separation Problem	ASU Requirements	CO ₂ Capture Pressure	Example Applications
Solvent-based Post-Combustion	CO_2/N_2	—	1 bar	Pulverized Coal, NGCC
Membrane-Based Post-Combustion	CO_2/N_2	—	Vacuum	Pulverized Coal, NGCC
Solid-Based Post-Combustion	CO_2/N_2	Low	1 bar	Pulverized Coal, NGCC
Solvent-Based Pre-Combustion	CO ₂ /H ₂	Medium	10-50 bar	IGCC, pre-reforming NGCC
Membrane-Based Pre-Combustion	CO ₂ /H ₂	Medium	Vacuum	IGCC, pre-reforming NGCC
Oxyfuels	CO ₂ /H ₂ O	High	1 bar	Gasified Coal/Nat Gas
Chemical Looping	CO_2/H_2O	—	10-50 bar	Gasified Coal/Nat Gas
Solid Oxide Fuel Cells	CO_2/H_2O	Low	1-20 bar	Gasified Coal/Nat Gas

Key Problems

- No systematic comparison between processes
 - Lack of consistency between studies, especially between different author groups
- Everyone claims their own process is the best when compared against some other
 - Example: Don't compare against some common status quo, find another innovative idea that is worse and compare against that

- Wide variation in assumptions, strategies and ideas.
 - Different locations
 - Different definitions of key performance indicators
 - Different project years
 - Different analysis boundaries
- Cannot examine the literature to make fair comparisons between them.

Example of Literature Noise

$$CCA = \frac{LCOE_{scaled, standard} - LCOE_{basecase}}{GWP_{basecase} - GWP_{scaled, standard}}$$

- Disparity in GWP and LCOE computations
- Huge disparity in definition of the base case
- Yet this is a primary key performance indicator for identifying the best technologies to fight climate change

Notes: Error bars are for 90% Confidence Interval

Error bars assumes all power plants are equal within a category, which is not quite true, and so are for guidelines only.

Thomas A. Adams II

Download Slides at PSEcommunity.org/LAPSE:2018.0807

Solution: Standardization

- Size: 550 MW net, plant gate
 - Nonfuel costs scaled with power law method p=0.9
- Time & Place: 1Q2016 USA
 - Time: North American Plant Cost Index
 - Place: Purchasing Power Parity Index
- Fuel
 - US Bituminous Coal #6 2016 Avg Price
 - US Conventional Average Gas Mix 2016 Avg Price

- Captured CO₂ at plant gate
 - Pressure: >115 bar
 - Purity: >95 mol%
 - Capture Rate: 90-100%
- LCA: Cradle to Gate GHG
 - Consistent NOx production where neglected in original
 - Standardize cradle-to-plant-entrance life cycle impacts
- CCA: Cost of CO₂ Avoided
 - Same standard plant without CCS
 - SCPC and NGCC US baseline std's

Example: After Standardization

Notes: Error bars are for 90% Confidence Interval Error bars assumes all power plants are equal within a category, which is not quite true, and so are for guidelines only.

Thomas A. Adams II

Overall

- Clear trends emerge once standardized
- Able to group technologies into clear areas
- Macro-level comparisons are now possible.
- Value of the design concept now more evident

Expanding and Standardizing

Big Picture Lessons from Study

- Rather hard to do cross-comparative research of eco-techno-economic analyses (eTEAs)
- But the rewards of doing meta-studies like this are significant
- A standardization of eTEA methodology for the field would greatly amply the impact of each of our own studies

~*O*(1,000-10,000) researcher-hours

Very useful society, business, and policy conclusions

Individual studies would have greater influence

Thomas A. Adams II

Proposal: Develop recognized standards for performing TEAs and eTEAs

Standard Types	Details
Base Case Status Quo For Comparison	"Standard" power plants, "standard" refineries, "standard" chemical processes, etc.
Life Cycle Analysis Methodologies	Existing ISO standards, boundary definitions, impact analyses assumptions, methods, etc.
Plant Sizing / Delivered Products	Standard representative capacities and qualities
Metric Definitions	CCA, NPV, efficiencies, HHV vs LHV, other assumptions
Cost Estimations	Standard cost curves, approaches, and assumptions
Transparency and Verifiability	Spreadsheets and models released open-access
Data Formats	Open document formats, etc.

McMaster

Standards Council of Canada Conseil canadien des normes

Thomas A. Adams II

Example Use of Standards: Authors

Researcher Defines eTEA Study as Usual

PSE-3: Fuels, North America, Large Scale

Selects appropriate, scenario, assumptions and metrics

Paper Published. Models / spreadsheets / code released to public database

$$NPV_{alternate} =$$
\$0.7 bln

 $CCA_{alternate} = \$20.4/tonne$ $GHG_{alternate} = 1.6 tCO_2 e$

Non-standard metrics also reported (special cases, etc.)

Thomas A. Adams II

 $NPV_{PSE-3} = 1.2 bln $CCA_{PSE-3} = $40.3/\text{tonne}$ $GHG_{PSE-3} = 4.5 \text{ tCO}_2\text{e}$

Research

Performed

Metrics Computed according to Standard

Download Slides at PSEcommunity.org/LAPSE:2018.0807

Example Use of Standards: Readers

Reader sees standard

Reader studies paper using PSE standard

process systems engineering

Reader downloads

Thomas A. Adams II

Reader considers

Key Standards Characteristics (Goals)

Goals: Want standards that...

- result in unambiguous calculations that are directly comparable across research studies
- are useful
- are easy to use
- are transparent
 - transparency in reporting
 - transparency in calculations
 - ease of adoption
 - reproducible

- are international or regional
 - balance between breadth and detail
- are convertible
 - Example: metrics reported for a north American application easily converted to a European one.
- are accessible
 - digital reporting
 - standard meta data / tagging
 - databasing
 - open / cheap access of results

Standards Scope

Scope: eco-Technoeconomic analyses of energy systems.

- Applications:
 - Electricity
 - Transportation
 - Energy Conversion
 - Energy Product Production
 - Energy Storage
- Scales
 - Large
 - Neighbourhood
 - Personal

• Focus On:

- Major system components
- Important supply chain elements
- Big-picture concepts
- "Major on the majors"
- Avoid
 - Prescribing minutae
 - Too tight definitions and requirements

Key Definitions

Key Performance Indicators (KPIs)

- Common metrics of quality
- Potential Examples:

 $NPV_{PSE-3} = 1.2 bln $CCA_{PSE-3} = $40.3/\text{tonne}$ $GHG_{PSE-3} = 4.5 \text{ MtCO}_2\text{e/yr}$ $\eta_{\text{therm,PSE-3}} = 45.3\% \text{ HHV}$ $PBP_{PSE-3} = 6.7 \text{ years}$

Intermediate Calculation Elements (ICEs)

- Used to compute KPIs
- Convertible from one standard basis to another. Example:

Example Standards: Size

- Size incredibly important! Example:
 - Same plants, 50% difference in size:

Pulverized Coal w/CCS 550 MW 10.6 ¢/kWh (standardized literature averages) Pulverized Coal w/CCS 225 MW 11.3 ¢/kWh (standardized literature averages)

6.6% LCOE Difference

• Different plants, same size, standardized conditions

Pulverized Coal w/CCS 550 MW 10.6 ¢/kWh (standardized literature averages)

Coal Oxyfuel Combustion w/CCS 550 MW 9.9 ¢/kWh (standardized literature averages)

7.1% LCOE Difference

- The effect of size is equal to the effect of the process technology itself!
 - Need to control this variable in order to make technology value judgments.

Source: Adams TA II, Hoseinzade L, Madabhushi P, Okeke IJ. Processes 5:44 (2017).

And Yet We Do It All The Time

Common example

 Plant 1: 750 MW power plant without CCS

• Plant 2: 500 MW power plant with CCS

- Same <u>Fuel Input</u>
- CCS parasitic effect
 - But what about the remaining 250MW of power out! I want it!

LCA Concept of Functional Unit:

- Need to be outputs based
 - Comparisons should be based on like products and scales
 - BUT! Per-unit costs (like LCOE) are sensitive to size
 - Capital costs are non-linear (economies-ofscale)
 - i.e. power law scaling
 - We'll need to choose good size standards for comparison.
 - Environmental impacts are linear, so per-unit impacts are fine

Example Standards: Size

- User would choose which size standard to pick
 - Others could compare directly
 - Others could use Intermediate Calculation Elements to convert to their size of interest.

Size Standards by Category

PSE-1:	Electricity, Municipal	550 MW net output		
PSE-2:	Electricity, Community	500 kW net output		
PSE-3:	Electricity, Building	10 kW net output		
PSE-4:	Fuels, Large plant	$1 \text{ GW}_{\text{HHV}}$ output		
PSE-5:	Fuels, Small plant	$10 \ \mathrm{MW}_{\mathrm{HHV}}$ output		
PSE-6:	Transport, Personal	200,000 km		
PSE-7:	Transport, Mass Transit	100,000 tonne-km		
Etc. (hypothetical numbers for sake of discussion)				

Example Standards: LCA Boundaries & Data

Example Standards: Regional Breakdown

LCA Standards by Region for PSE-1 (Electricity, Municipal). Electricity Grid Cradle-to-Product Emissions

Basis: 1 MWh Electricity, AC, grid quality, delivered		CO ₂ (<i>kg/MWh</i>)	NO _X (<i>kg/MWh</i>)	CH ₄ (<i>kg/MWh</i>)	GWP (<i>kgCO2e/MWh</i>)
PSE-1N:	North America	655	1.63	2.62	728
PSE-1E:	Central Europe	500	1.11	1.31	537
PSE-1S:	South America	157	0.37	0.93	183
Etc.	•••	•••		•••	•••

Similar tables would exist for many aspects of the supply chain

Numbers hypothetical for sake of discussion / do not use.

Approximated based on citations below.

Barros MV, Piekarski CM, de Francisco AC. Energies. 11:1412 (2018)

Thomas A. Adams II

Example Standards: Metrics

• Example: Efficiency. What is the efficiency of this system? Which do you report?

Example Standards: Transparency

New DSM-5 medical anxiety conditions*:

Aspen·alium·errata·phobia

Fear of others finding mistakes in your Aspen Plus models

Aspen·alium·quæstrum·iniquumo·phobia

Fear of others taking your Aspen Plus models and publishing papers with them really fast even though it took you, like, a year to make!

• Recent review of over 300 papers which use energy systems modelling found just 3 released their models to the public.

* Not really of course

Source: Subramanian ASR, Gundersen T, Adams TA II. Processes 6:238 (2018)

Thomas A. Adams II

DIAGNOSTIC AND STATISTICAL

DSM-5

Example Standards: Transparency

Techniques

Spreadsheets

With formulas!As journal supplementary material

Simulations and Flowsheets

Converged

•CAPE-OPEN compliant

LAPSE

Source Code (.py, .cpp, .m) •Compliable for non-experts •Binaries too •GitHub, CodeBase, LAPSE

Optimization

•GAMS code

LAPSE

Journal supplementary material

Thomas A. Adams II

Download Slides at PSEcommunity.org/LAPSE:2018.0807

Similar Standards Movements

- NETL/US DOE: Quality Guidelines for Energy Systems Studies
 - Internal / recommended
 - Modeling params (e.g. Aspen models)
 - Economic (e.g. debt/equity ratios)
 - Fuel standards (e.g. gas quality, price)
 - Used in making the "baseline" studies
 - Can help to address some standardization elements
 - Some likely to be adopted in proposed standard
 - USA Focused. A great start!

• ISO 14040 series

- Life Cycle Analyses
- Boundaries and Guidelines
- Not specific enough for standardization
- Incorporate as best practices
- ISO 50006/50015/17741
 - Energy management systems
 - Defines metrics like efficiency
 - Useful terminology
 - Analysis boundary definitions
 - Some portions incorporated
 - But eTEAs out of scope

Similar Standards Movements (continued)

- White paper: Techno-Economic Assessment & Life Cycle Assessment Guidelines for CO₂ Utilization (2018)
 - Technische Universität Berlin
 - RWTH Aachen University
 - Univ Sheffield
 - Institute for Advanced Sustainability Studies eV Potsdam
 - University of Michigan

- Proposes TEA standards in a parallel way to ISO 14040+ life cycle analysis standards
 - A similar best-practices theme
 - Means not specific enough for the crossresearch results application
 - Scope too specific/narrow
 - Well thought out and described
- An excellent start
 - Much that could be included in or greatly inform new ISO standard

Standardization Committees and Process

- Stage 1 (Now)
 - Letters of support from universities, companies and agencies
 - no commitments
 - no money
 - You can help by sending me a letter of support on your letterhead
 - Template available at link below
 - Interested? Join the mailing list at
 - <u>http://PSEcommunity.org/standards</u>

• Stage 2

• Standards Council of Canada will compile and create proposal to ISO

Standards Council of Canada Conseil canadien des normes

- Once approved, technical committee formed
- Mirror committees will be formed by participating countries. Join!

Wrap Up

- We can learn a lot from eco-technoeconomic meta studies
 - Critical for taking meaningful and nearterm action on climate change
 - Critical for policy and business
 - See through the hype.

- Current culture of the field:
 - Hide models and code
 - C.Y.A.
 - Nonstandard methods
 - Not working toward common goal
- Goal: Make it as easy as possible for others to use and understand your research for societal benefit
 - Join me!
 - <u>http://PSEcommunity.org/standards</u>

