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Abstract: The integration of scheduling and process planning can eliminate resource conflicts and
hence improve the performance of a manufacturing system. However, the focus of most existing
works is mainly on the optimization techniques to improve the makespan criterion instead of more
efficient uses of energy. In fact, with a deteriorating global climate caused by massive coal-fired
power consumption, carbon emission reduction in the manufacturing sector is becoming increasingly
imperative. To ease the environmental burden caused by energy consumption, e.g., coal-fired
power consumption in use of machine tools, this research considers both makespan as well as
environmental performance criteria, e.g., total power consumption, in integrated process planning
and scheduling using a novel multi-objective memetic algorithm to facilitate a potential amount
of energy savings; this can be realized through a better use of resources with more efficient
scheduling schemes. A mixed-integer linear programming (MILP) model based on the network
graph is formulated with both makespan as well as total power consumption criteria. Due to the
complexity of the problem, a multi-objective memetic algorithm with variable neighborhood search
(VNS) technique is then developed for this problem. The Kim’s benchmark instances are employed
to test the proposed algorithm. Moreover, the TOPSIS decision method is used to determine the
most satisfactory non-dominated solution. Several scenarios are considered to simulate different
machine automation levels and different machine workload levels. Computational results show that
the proposed algorithm can strike a balance between the makespan criterion and the total power
consumption criterion, and the total power consumption can be affected by machine tools with
different automation levels and different workloads. More importantly, results also show that energy
saving can be realized by completing machining as early as possible on a machine tool and taking
advantage of machine flexibility.

Keywords: integrated process planning & scheduling; energy saving; MILP models; carbon emission;
multi-objective optimization; TOPSIS

1. Introduction

Process planning and scheduling are two important functions in a flexible manufacturing
system (FMS) [1–3]. Process planning determines the best-fitting technological requirements as
well as corresponding manufacturing schemes with desired equipment to convert raw material
to qualified parts [4,5]. In contrast to process planning, scheduling relates more closely to shop
floor activities; it allocates operations to one of the available machines from another perspective,
e.g., makespan minimization [2]. Traditionally, these two functions are treated separately and
sequentially [6–9], and the critical failing is that this will cause resource conflicts in the shop
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floor. For instance, a previously determined process plan may not be used in actual manufacturing
procedure due to some bottleneck machines on shop floor because the real-life shop floor status
has not been considered in generating the process plan. Therefore, such resource conflicts greatly
restrict the flexibility in a FMS. Due to such limitations and shortcomings in applications of FMSs,
relative studies on integrated process planning and scheduling have been performed to achieve an
efficient use of an FMS. According to existing publications [8–16], corresponding research on integrated
process planning and scheduling (IPPS) are quite fruitful, and significant improvements have been
achieved with the objective of makespan minimization, which is a primary criterion to evaluate
the effectiveness of a schedule scheme. For instance, Doh et al. [10] adopted the priority dispatch
rules to quickly determine a feasible scheduling scheme; nevertheless, this method usually cannot
ensure a competitive solution. Kim et al. [8] proposed a symbiotic evolutionary algorithm for the IPPS
problem. However the proposed symbiotic evolutionary algorithm lacks effective local search methods.
Mathematical models of the IPPS problem have also been studied [15]; due to the complexity of the
problem, existing mathematical models cannot capture satisfactory results.

Nevertheless, with a rapidly deteriorating global climate and the urgency of energy efficiency
and carbon emission reduction requirements [17], environmental friendliness, which has never been
a major concern in existing research on the IPPS problem, should be considered to be a serious
topic [18,19]. The absence of sustainable practices will lead to negative impacts on the environment
and society [20,21]. Although there are many approaches to realize energy savings in manufacturing
processes, energy-effective scheduling is a very effective way with no capital investment to reduce
energy consumption in manufacturing processes. Li et al. [22] have pointed out that machine tools
have huge potential for energy saving. With a different perspective, energy savings have been achieved
through the optimization of CNC machining parameters in their research. By reasonably determining
machine tools, operation permutations (process plans), and operation sequences on machines, lot of
energy consumption can be reduced.

This research mainly considers the energy consumption reduction (also carbon emission reduction)
for the IPPS problem. The makespan and the total energy consumption have been considered as two
criteria. The main idea of the proposed method is to take the advantage of the flexibilities in the IPPS
problem and the idle time intervals on machines can be shortened or eliminated by properly assigning
operations to machines with the optimal operation starting times, and hence energy consumption
reduction caused by idle energy consumption on machines can thus be reduced. In this research,
a novel mixed-integer linear programming (MILP) model is established first, and, in tandem with
the complexity of the problem, a multi-objective memetic algorithm is then developed to capture the
non-dominated solutions in the optimal Pareto front. The TOPSIS decision method is also adopted
to determine the most promising non-dominated solution to strike a balance between the makespan
criterion and the energy consumption criterion. Different machine automation levels and workload
levels are considered and analyzed in both the MILP model as well as the proposed memetic algorithm;
computational results indicate that these two factors will affect the total energy consumption.

2. Literature Review

At the beginning of the research on the IPPS problem, process planning and scheduling are
integrated in a sequential manner [13]; this paradigm takes no advantage of the flexibilities in both the
process planning module and the scheduling module since there are still serious bottlenecks in actual
manufacturing activities. After that, relative research tends to integrate the two functions coherently to
achieve a superior overall system performance mainly by three means: (1) mathematical modelling
and corresponding solutions; (2) meta-heuristic-based approaches, such as genetic algorithm (GA);
and (3) other approaches, e.g., agent-based methods [14].

For the first kind of approach, Özgüven et al. [15] give a MILP model for small-scale IPPS instances;
nevertheless, their model belongs to the sequential paradigm where all the alternative process plans
should be generated in advance to accommodate the scheduling constraints. In cases where flexible
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process plans are expressed in network graphs and process plans cannot be generated manually,
their model cannot be used. Similar models can also be find in Tan et al.’s research [23]. In our previous
research [2], we presented some MILP models to achieve a true integration of process planning and
scheduling based on Wagner’s and Manne’s approach; complex network graph-based IPPS instances
have been solved. However, existing MILP models cannot efficiently solve middle- or large-scale
IPPS instances, since the Branch and bound method is a non-polynomial time algorithm. Therefore,
practical solution approaches, represented by meta-heuristic algorithms, received noteworthy research
attention. Kim et al. [8] first generalize the IPPS problem and give a set of benchmark instances with
various flexibilities; they proposed a novel meta-heuristic algorithm—the symbiotic evolutionary
algorithm—to optimize both process planning and scheduling schemes. Later, Li et al. [7] gives
a GA combined with learning effects to solve IPPS instances. They also developed a tabu search
(TS)-based hybrid meta-heuristic algorithm to obtain more promising results [24]. According to existing
publications regarding meta-heuristic-based approaches, embedding local search methods in plain
meta-heuristic algorithms can improve the quality of solutions. Lian et al. [6] adopted a novel algorithm,
imperialist competitive algorithm (ICA), to address the IPPS problem, and they obtained more
promising results on Kim’s benchmark. Other meta-heuristic algorithms have also been considered,
such as the particle swarm optimization (PSO) algorithm [25–27], honey bee mating optimization
(HBMO) algorithm [12], hybrid simulated annealing (SA) and TS algorithm [11], and the ant colony
algorithm [28]. Recently, Liu et al. [29] proposed a quantum-inspired hybrid algorithm to minimize
the makespan of IPPS instances, and outstanding outcomes have been observed. Other approaches in
solving the IPPS problem concentrate mainly on agent-based approaches [14,30] and priority dispatch
rule (PDR)-based approaches. PDR-based methods are practical and efficient; nevertheless, this kind
of method has been given less emphasis due to the lack of efficaciousness. Recently, Zhang et al. [31]
considered an IPPS problem in a flexible assembly job shop with sequence-dependent setup times and
part sharing; they use constraint programming, MILP and dispatching rules to tackle the problem and
the results show that constraint programming is the most effective approach while dispatching rules
are simple to implement.

In general, the IPPS problem can be described in a network graph [8]. As illustrated in Figure 1,
the network graph corresponds to a job to be processed; the starting node ’S’ and the ending node ’E’
are dummy nodes; representing the beginning and the end of a job. Most of the nodes are operation
nodes, in which the operation ID and alternative machine tools with corresponding processing times
are specified. Operation flexibility (OF) means that there is more than one feasible machine tool to
finish an operation. Arrows between nodes indicate the precedence relations: if node A points to node
B, operation B can only be processed after operation A directly or indirectly (sequencing flexibility,
SF). The OR node appears in a bifurcation of two link-paths and only one of the two OR link-paths
will be visited (processing flexibility, PF); otherwise, operations in both link-paths should be visited.
For instance, a feasible operation permutation in Figure 1 is 1→ 7→ 2→ 8→ 4→ 5→ 6→ 10.

Unfortunately, as one shortcoming of previous research, environmental friendliness has seldom
been considered in IPPS optimizations. With carbon emission and global warming becoming
increasingly severe problems, energy-efficient scheduling is attracting much more attention than
before. Massive consumption of coal-fired electricity in manufacturing sectors causes more greenhouse
gas and lots of carbon dioxide (CO2) will be released into the atmosphere directly; finally,
the greenhouse effect has arisen [32]. Therefore, carbon emission reduction appears especially
urgent [33]. To cope with such a grim situation, critical environmental regulations in many countries
have forced relevant parties to take actions for carbon emission reduction. Clearly, considering only the
economic criteria, e.g., makespan, in IPPS problems cannot satisfy the requirement of environmental
friendliness presently.
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Figure 1. The network graph of a part.

Recently, researchers have performed some explorations on carbon emission reduction or energy
saving in manufacturing activities (exact scheduling problems). He et al. [34] applied a nested
partitions algorithm to realize energy saving by reasonably sequencing operations for each machine.
May et al. [35] investigated the energy efficiency of a job shop manufacturing system; machine “switch
ons” and “switch offs” have been considered to save energy. Similar to their research, Lin et al. [36]
consider carbon footprint optimization in flow shop scheduling with parameter optimization; they
developed three strategies to reduce carbon emission where the machine “switch on”-“switch off”
technique was also adopted. As an intuitionistic method, the machine “switch on”-“switch off”
technique was first proposed by Mouzon et al. [37] to reduce the energy consumption of non-bottleneck
machines. Dai et al. [38] adopted the same technique for both makespan and total energy consumption
reduction using a genetic-SA algorithm in flexible flow shop scheduling optimization. Recently,
Meng et al. [39] developed some novel MILP models for the energy-conscious hybrid flow shop
scheduling problem with unrelated parallel machines; again, the strategy of machines turning off and
on has been adopted in their model.

Due to the considerable amount of additional energy in restarting machines as well as the
damage to the machine tools caused by frequent machine switch “ons” and “offs”, Zhang et al. [40]
adopted the machine speed scaling-based paradigm [41] to reduce energy consumption in a job shop.
Later, based on the novel shuffled frog-leaping algorithm, Lei et al. [42] realized the minimization
of both workload balance and total energy consumption in flexible job shop scheduling; in their
work, the energy consumption model is also constructed based on the “machine speed scaling”
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paradigm. In the machine speed scaling-based paradigm, a machine tool can work at different speed
levels with corresponding energy consumption levels and processing times. Wu et al. [43] suggested
a green scheduling algorithm in flexible job shop scheduling; they divided the machining speed
into three levels with corresponding machining power values; they adopted the NSGA-II algorithm
to optimize the makespan, the energy consumption, and the numbers of turning-on/off machines.
In their model, machine “turning-ons” and “offs” can minimize the energy consumption, but the
number of turning-on/off machines is minimized to avoid the damage to the machines. Since the short
processing times corresponds to high machining power values, generally, their model is a variant of
machine speed scaling-based paradigm. However, this paradigm sometimes goes against real-life
mechanical manufacturing environments, since the cutting speed is usually quite slow to increase
the cutting moment in rough machining, while the cutting speed in fine machining is fast to ensure
a satisfactory surface roughness. In addition, the cutting speed cannot be changed by traditional
machine tools, and in such a case the “machine speed scaling” technique cannot be applied to realize
energy saving.

Other researchers also developed energy-saving methods with corresponding optimization
algorithms in different scheduling situations. Wang et al. [44] developed a genetic algorithm-based
two-stage optimization technique to realize energy reduction in flexible job shop scheduling. Based on
the energy consumption characteristics, they performed machine selection in the first stage to reduce
both energy consumption and production cost; the operation sequencing on each machine is performed
in the second stage to obtain a feasible scheduling scheme. However, since the integrated optimization
of the flexible job shop scheduling problem can reduce conflicts of resources, the two-stage optimization
technique in their research may not be the best optimization scheme. Giglio et al. [45] solved an
integrated lot sizing and energy-efficient job shop scheduling problem using a relax-and-fix heuristic
algorithm; they show that their method can reduce energy consumption, machines idle times, and the
overall cost of the system. Some researchers also considered the optimal scheduling method with
time-sharing prices [46,47]; however, that belongs to another topic where only the time period with low
electric charge is considered, and this goes out of the scope of this research. For the IPPS problem, owing
to complexity in the integration of process planning and scheduling, studies on the IPPS problem with
energy-saving criteria appear to be limited according to existing publications. Recently, Zhang et al. [48]
considered the energy consumption during setup and inspection times for the IPPS problem using
the nonlinear process planning (NLPP) paradigm. However, the NLPP mode is a very elementary
integration pattern in the IPPS problem, and it cannot truly ingrate the process planning function
and the scheduling function closely [2]. For the cases where flexible process plans are expressed
using network graphs (Figure 1) the NLPP paradigm becomes totally powerless. More importantly,
as pointed out by Dahmus et al. [49], the energy consumption in a job shop is affected by many
factors, such as the type of machine tools (e.g., general-purpose machine tools or CNC machine
tools). Dahmus et al.’s research [49] also reveals that the workload of machines is the other factor that
determines energy consumption in a job shop.

3. Methodological Approach and Advantages

According to the literature review presented above, the energy consumption reductions in
scheduling problems are realized mainly by reducing the idle energy consumption; that is, avoid any
energy consumptions as much as possible when a machine is in the non-cutting state. Based on
this principle, there are mainly two methods in solving energy-efficient (or low carbon emission)
production scheduling problems in early research. In the first kind of method, the energy consumption
reduction is realized by turning off machine tools when they are in idle time intervals; in the other
method, the total energy consumption can be reduced by controling the processing time to edge out the
idle time intervals. In other words, the cutting times of an operation can be lengthened or shortened to
occupy the idle time intervals. Although the two methods seem very effective according to previous
publications, in many real-life situations in a flexible job shop frequent machine turning “ons” and



Processes 2019, 7, 120 6 of 24

“offs” will cause damage to machine tools. Moreover, a changeable processing time paradigm for
energy consumption is also impractical due to technical requirements in cutting processes; for example,
the surface roughness of a part highly relies on the cutting speed: with changeable cutting speed,
the actual cutting speed will deviate from the predesigned one and the surface roughness of a part will
not match the desired values specified in blueprint.

In general, the energy consumption in a job shop can be classified into three categories [50]:
the common energy consumption, the processing energy consumption and the idle energy
consumption; among the three, the common energy consumption stands for the indirect energy
consumed, such as lighting, air conditioning, ventilation, etc., and this indirect energy consumption is
not considered in this research. For the other two kinds of energy consumptions, Dahms et al. [49]
have presented an energy use breakdown of a machine tool as shown in Figure 2. It can be seen
that the total energy consumption can be divided into two parts—the constant part and the variable
part—and the two parts exactly correspond to the idle energy consumption and the processing energy
consumption respectively. In other words, there must be energy consumption whether the workpiece
is being processed or not if the machine tool is turned on. The constant energy consumption is
mainly determined by machine types (machine automation levels) and non-machining procedures,
e.g., the use of oil pumps. The variable part, however, relies on the workpiece being processed.

Figure 2. The energy use breakdown of a machine tool.

In contrast to previous research that energy consumption is reduced by machine “turning-ons”
and “offs” or controling the operation processing time, this research gives a novel perspective in both
energy consumption reduction and makespan minimization for the IPPS problem. As analyzed above,
there are some drawbacks in existing mainstream optimization methods in production scheduling
problems with energy awareness. To make the optimization results more practical or make the optimal
scheduling scheme match the real-life production situations as much as possible, machines are not
allowed to be shut down during idle time intervals and the operation machining times are also fixed
in this research; all the machines in this research have two statuses only: cutting status and standby
status (idle status). By properly allocating operations to the machines and determining the starting
times of operations, an energy-efficient scheduling scheme can be obtained.
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Since the machine automation levels and the workload levels will affect the energy consumptions,
two kinds of scenarios are considered to simulate different processing scenes in a job shop: the first
kind of scenario is the machine tool types (that is, the automation levels of machine tools); the other
kind of scenario relates to different machine workload levels. For different types of machine tools,
based on their automation degree, the constant energy use may be different. In general, the higher
degree of automation of a machine, the larger proportion of constant energy consumption it will
occupy [49].

The research on the energy-efficient IPPS problem is rather limited, according to the literature
mentioned in Section 2. The advances of this research can be summarized as follows:

• In this research, frequent machine turning “ons” and “offs” as well as changeable processing times
are not allowed to make the resultant scheduling scheme of the energy-efficient IPPS problem
more practical. The energy consumption reduction of the IPPS problem is realized by the optimal
scheduling scheme.

• Based on the two scenarios, we analyze the impacts of different machine automation levels
(different types of machine tools, represented by the α value in Figure 2) and different workloads
(represented by the β value in Figure 2) on the energy consumptions of IPPS instances. Before this
research, the impacts of machine automation levels on the energy consumption reductions have
seldom been discussed in energy-efficient production scheduling optimizations.

• There are two types of MILP models for the IPPS problem, and the Type-2 MILP model can realize
a true integration of process planning and scheduling [2]. Based on our previous Type-2 MILP
model [2], this research reports a novel multi-objective MILP model for the energy-efficient IPPS
problem for the first time where the energy consumption criterion together with the makespan
criterion is optimized simultaneously.

• Due to the complexity in solving the MILP model, a multi-objective memetic algorithm is
developed to accommodate multi-objective optimization of the IPPS problem. In the proposed
algorithm, the variable neighborhood search (VNS) is adopted to enhance the search ability of the
algorithm. Instead of the abusive weighted sum method, the Pareto-based method [51] is adopted
in the proposed memetic algorithm; this multi-objective optimization paradigm allows a set of
non-dominated solutions for the decision maker. To determine the most promising scheduling
scheme from the Pareto front, the TOPSIS decision method is adopted.

Figure 3 presents the flowchart of the proposed multi-objective memetic algorithm. It can be seen
that the algorithm can be divided into two parts. The first part is the procedure of multi-objective
memetic algorithm where the VNS local search method is introduced to explore more competitive
solutions. The other part is the procedures of the TOPSIS method; the main steps of TOPSIS are
elaborated in the figure.

To summarize, compared with existing research, this paper performs energy-efficient scheduling
optimization from a novel and practical perspective: the energy-efficient scheduling optimization
without machine turning “ons” and “offs” is performed; moreover, a novel MILP model is established
and a VNS-based memetic multi-objective algorithm together with the TOPSIS decision method is
presented to obtain an energy-efficient scheduling scheme. The remainder of this paper will be
organized as follows. Section 4 presents the MILP model for the multi-objective IPPS problem.
Section 5 introduces the proposed multi-objective memetic algorithm, and corresponding results
with discussions will be reported in Section 6. Last section gives the conclusion as well as further
research directions.
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Figure 3. The work flow of the proposed algorithm.

4. Mathematical Modelling

In traditional MILP models of the IPPS problem, all the available operation permutations
(process plans) should be generated in advance; however, this method is total powerless in dealing
with network graph-based IPPS instances in this paper because one cannot generate all the possible
operation permutations in advance. In our previous research [2], novel MILP models (called Type-2
models) are reported to address such drawbacks. The MILP model for the energy-efficient IPPS
problem in this paper is established based on the Type-2 model and the Manne’s modelling
technique [52]. In a Type-2 model, operation precedence relationships are described by a pre-ordered
set, a back-ordered set and a set of 0–1 variables to determine which operation should appear or be
processed before the other one. In Manne’s approach, there is a set of variables Zijj′ to determine
whether operation j before operation j′ in the same job; besides, the operation sequence on the same
machine should also be determined using the corresponding 0-1 variables. After this, the whole
scheduling scheme can be determined. In the following, each constraint set will be detailed. For the
sake of completeness, the subscripts, notations, sets, parameters, and variables are listed below.

Subscripts and notations
i, i′ jobs, 1 ≤ i ≤ |n|,
j, j′ operations, 1 ≤ i ≤ |ni|,
k, k′ machines,
h combinations,
Oij the j-th operation of job i,
Oihj the j-th operation of job i using the h-th combination of that job.
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Sets and parameters
A a very large positive integer,
pijk the processing time of Oij on machine k,
Rih the set that contains the operations belonging to the h-th combination of job i,
Ki the set of combinations of job i,
n the set of all the jobs,
ni the set of all the operations in the network graph of job i,
Mij the set of available machines for Oij,
Vijj′ 1, if Oij is to be processed before Oij′ represented directly by the network graph; 0, otherwise,
Qijj′ 1, Oij should be processed directly or indirectly before Oij; 0, otherwise,
Pk the rated power of machine k,
Pcutk the cutting power of machine k, Pcutk = Pidlek + (1− α)βPk,
Pidlek the idle power of machine k, Pidlek = αPk.

Variables
Cmax makespan,
EC total energy consumption,
Yih 1, if the h-th combination of job i is selected; 0, otherwise,
Xihjk 1, if operation Oihj is processed on machine k; 0, otherwise,
Zijj′ 1, if operation Oij is processed directly or indirectly before Oij′ ; 0, otherwise,
Cihj the completion time of Oihj,
Wiji′ j′ 1, if Oij is processed before Oi′ j′ on a machine; 0, otherwise,
MCk the completion time of the last operation on machine k,
MCTk the total production time of the operations on machine k (the time in cutting on machine k).

Objectives
The first objective is to minimize the makespan, and the other one is to minimize the total

energy consumption.
min Cmax (1)

Constraints
min EC = ∑

k
MCTk · Pcutk + ∑

k
[(MCk −MCTk) Pidlek] (2)

Constraints

∑
h∈Ki

Yih = 1, ∀i (3)

∑
k∈Mij

Xihjk = Yih, ∀i, ∀h ∈ Ki, ∀j ∈ Rih (4)

A ·Yih ≥ Cihj, ∀i, ∀h ∈ Ki, ∀j ∈ Rih (5)

Cihj′ ≥ Cihj + ∑
k′∈Mij′

Xihj′k′ pij′k′ , ∀i, ∀h ∈ Ki, ∀j, j′ ∈ Rih, j 6= j′, Vijj′ = 1 (6)

Zijj′ + Zij′ j = 1, ∀i, ∀j, j′ ∈ ni, Qijj′ + Qij′ j = 0, j 6= j′ (7)

Cihj′ ≥ Cihj + ∑
k′∈Mij′

Xihj′k′ pij′k′ − A
(

1− Zijj′
)

, ∀i, ∀h ∈ Ki, ∀j, j′ ∈ Rih, j 6= j′, (8)

Ci′h′ j′ ≥ Cihj + Xi′h′ j′k′ pi′ j′k′ − A
(

1−Wiji′ j′
)
− A

(
2− Xihjk − Xi′h′ j′k′

)
,

∀i, i′, i 6= i′, ∀h ∈ Ki, ∀h′ ∈ Ki′ ∀j ∈ Rih, ∀j′ ∈ Ri′h′ , k, k′ ∈ Mij ∩Mi′ j′ , k = k′
(9)

Cihj ≥ Ci′h′ j′ + Xihjk pijk − A ·Wiji′ j′ − A
(

2− Xihjk − Xi′h′ j′k′
)

,

∀i, i′, i 6= i′, ∀h ∈ Ki, ∀h′ ∈ Ki′ ∀j ∈ Rih, ∀j′ ∈ Ri′h′ , k, k′ ∈ Mij ∩Mi′ j′ , k = k′
(10)
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Cmax ≥ Cihj, ∀i, ∀h ∈ Ki, ∀j ∈ Rih (11)

MCk ≥ Cihj − A
(

2−Yih − Xihjk

)
, ∀i, ∀j ∈ Rih, ∀k ∈ Mij, ∀h ∈ Ki (12)

MCTk =
n

∑
i=1

∑
j∈Rih

∑
h∈Ki

pijk

(
Yih + Xihjk

)/
2, ∀i (13)

In the proposed MILP model, the network representation of a job is first decomposed into
at least one combination; a feasible process plan can thus be obtained by properly arranging the
operations belonging to a certain combination. For example, there are four operation combinations
in the example in Figure 1, according to the two OR nodes. Once any one of the four combination
is selected, e.g., the combination (O1, O2, O3, O6, O7, O9, O10) is selected, a part can be completed
by properly arranging the operations in the combination. Constraint set (3) states that exactly one
combination is selected for each job to generate a process plan. Constraint set (4) relates the variables
Xihjk and Yih; this means that if the h-th combination of job i is used, the corresponding operation of
this combination of job i, e.g., Oihj, will be assigned to an available machine. Constraint set (5) forces
the completion time of the operations in an unselected combination of job i to be zero. Constraint set (6)
schedules two operations of the same job by determining the completion time of the two operations.
If the completion time of operation j is less than or equal to the starting time of operation j′, then
operation j should be scheduled before operation j′. For two operations of the same job that have
no precedence relationships, constraint set (7) determines which operation should be processed
ahead; in other words, one of the two 0-1 variables should take value 1 and the other take value 0.
Following this line, constraint set (8) schedules the operations that have no precedence relationships.
Constraint sets (9) and (10) arrange different operations on a machine by determining the completion
times of two operations that will be processed on the same machine. Constraint (11) determines
the makespan of the whole schedule scheme. Constraint set (12) is introduced to obtain the latest
completion time of operations on machine k; it includes the time in cutting and the time in the idle
state of that machine. Finally, the actual time in cutting of machine k is expressed in constraint (13).
Since the IPPS problem is an NP-hard problem, the model proposed above cannot be used due the
intolerable computational time; therefore, this research suggests a multi-objective memetic algorithm
to address such NP-hard problem.

5. Multi-Objective Memetic Algorithm

5.1. Encoding & Decoding

Compared with well-known NSGA-II algorithm, the proposed multi-objective memetic algorithm
can achieve both the local exploitation and global exploration since a local search method is added
in the memetic algorithm. As shown in Figure 4, the multi-string coding method is adopted in the
proposed algorithm. The first part is the scheduling string; it adopts the operation-based representation
paradigm [53]. In the scheduling string, the permutation of job IDs means the sequence of the
operations to be processed in the decoding procedure: if number i appears exactly for the j-th time, the
corresponding operation can be found in the j-th position of job i’s operation string. The number of
positions of the scheduling string is predetermined and it equals the sum of the maximum possible
number of operations of each job, e.g., ∑i |Rih|max. If the actual number of operations in a selected
combination of a job is less than the maximum one, e.g., |Rih| < |Rih|max, corresponding zeros will be
filled in the positions. This operation-based coding scheme avoids unfeasible scheduling schemes in
the decoding procedure. In Figure 4, there are 12 positions in the scheduling string, and this means
that each job adopts the process plan with the maximum number of operations.

The second string is the process plan string; it contains the information of the selected process
plan (combination) of a job. The number i in the j-th position corresponds to the i-th process plan



Processes 2019, 7, 120 11 of 24

(combination) of job j, and this combination is adopted. According to Figure 4, the number in the third
position of the process plan string is 4; this means that the forth combination is adopted in job 3.

Figure 4. The coding scheme.

The third string is the operation strings. The number of operation strings corresponds to the
number of jobs. In each operation string, each position stands for an operation of that job, and the
operation ID as well as the ID of the selected machine are specified. The number of positions is exactly
the number of actual operations of the job using the correspond process plan (combination). It can be
seen that such coding scheme reflects the logical relationship of the process planning module and the
scheduling module. Table 1 gives a clear description of the three strings.

Table 1. Description of three strings.

Names Number of Positions Purpose

Scheduling string ∑i |Rih|max at most
Operations belonging to different jobs will be
processed sequentially according to the sequence
in this string.

Process plan string |n| Indicate which operation combination will be
adopted for each job.

Operation string
There are |n| operation
strings; each has |Rih|max
positions at most

The operation IDs and machine IDs of the
corresponding operations are specified in each
position; each operation string stands for an
operation combination.

The active scheduling paradigm [54] is adopted in the decoding procedure. For each position
in the scheduling string, if the number i in the position is not equal to zero, then the operation of
job i can be determined: if number i appear exactly for j times, the target operation can be located
in the j-th position in the operation string of job i. If there is a ′0′ in the scheduling string, jump to
the next position directly. For the case of Figure 4, the number in the first position is 3, and it is the
first time the number 3 appears; therefore, the corresponding operation is operation 2 of job 3 which
can be located in the first position of the third operation string and further, this operation is to be
processed by machine 3 according to Figure 4. Then, the processing time can be obtained based on
the target operation with the machine. The operation is then assigned to the selected machine: if no
operation has been assigned to the machine, the target operation is assigned to the machine directly
with the starting time max{Cih,j−1, 0}; in the other case, if the target operation is to be assigned to
a machine which has already processed at least one operation, the machine idle time intervals between
two operations will be checked. Suppose MSkl and MEkl stand for the starting and the ending time
of the l-th idle time interval of machine k, the target operation can be inserted into the interval only
if max{Cih,j−1, MSkl}+ pijk ≤ MEkl ; otherwise, this operation will be appended to the current last
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position of the machine with the starting time max{Cih,j−1, MSkl}. The procedures discussed above
repeat until all the operations have been assigned to the machines.

5.2. Crossover & Local Search

The crossover operator is used for elite retention as well as new individual exploitation.
The crossover procedure is responsible for the evolution of individuals. Based on the proposed
coding scheme, the crossover process in this multi-objective memetic algorithm is decomposed into
two parts. For the two individuals, first, some jobs are randomly selected with the corresponding
job IDs recorded; the process strings as well as operation strings in each individual are selected and
they are exchanged in two individuals. In the case of Figure 5, the first two jobs have been selected
and the process plan strings together with corresponding operations strings in the dashed boxes
will be exchanged. Second, the scheduling strings of the two individuals must be adjusted using
a position-based crossover method [55]. As presented in Figure 5, “P1” and “P2” are two former
or old scheduling strings in the first and the second individuals while “O1” and “O2” in the figure
stands for the newly generated scheduling strings of the first and the second individuals. The two
new scheduling strings are generated from the old ones. For the new scheduling string of individual 1
(marked with “O1” in Figure 5), all its positions are set with “0”s at first and then the job IDs of the
selected jobs in the former scheduling string of the other individuals, e.g., “P2”, are copied into the
corresponding positions of “O1”. The job IDs of the unselected jobs in the former scheduling string of
the individual “P1” are filled into the remainder positions of “O1” with the same order as they appear
in “P1”. With the same method, the other new scheduling string, “O2”, can also be obtained.

Figure 5. The crossover operator.

In the regular multi-objective optimization algorithms, e.g., NSGA-II, local search methods are
usually neglected. Existing research papers show that embedding local search methods into the main
body of an algorithm can enhance the search ability of the algorithm. In the proposed multi-objective
memetic algorithm, the problem specific VNS-based local search method is considered. In VNS,
two neighborhood structures are adopted and they are used repeatedly in VNS procedure. Since the
neighborhood structure usually uses the knowledge of a certain problem, it can provide more promising
results. The first one is the N5 neighborhood structure [56] where only the operations in the head and
the rear of a critical block are needed to be swapped to shorten the makespan. The other neighborhood
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structure [57] tries to shift an operation in the critical path to another available machine to shorten the
critical path. The VNS procedure continues till there is no further improvements.

5.3. Multi-Objective Optimization

In this research, the makespan criterion as well as the energy consumption have both been paid
attention to; therefore, the two criteria are treated equally. Traditionally, the weighted sum method
is widely applied in multi-objective optimization; nevertheless, such a method ignores the variety
of solutions and hence this brings difficulty for the decision makers. Deb’s NSGA-II algorithm [51]
gives another perspective in multi-objective optimization based on the GA; they developed a systemic
classification method called the fast non-dominated sorting method to distinguish the individuals
and a selection method to retain the diversity of solutions. The whole population are divided into
several parts according to the resultant Pareto fronts; The individuals in the optimal Pareto front are
first considered. Usually, only part of the individuals is required to be selected in a certain Pareto
front to form the new population, and in such a case, the crowding distance values are used to judge
whether an individual in this Pareto front should be selected. Since the resultant optimal Pareto front
can bring convenience to the decision makers, the proposed multi-objective memetic algorithm adopts
Deb’s approach. After that, the TOPSIS decision method is adopted and the most satisfied solution
is determined among all the individuals in the optimal Pareto front. During the decision process,
we assume that both the two criteria are equally important; that is, the weights vector in TOPSIS can
be written as w = [ 1

2 , 1
2 ]. As illustrated in Figure 3, a normalized decision matrix is first constructed;

with the weights vector, the weighted decision matrix can then be established. Based on the ideal and
negative-ideal solutions, the relative closeness to the ideal solution can be calculated, and the best
solution will finally be determined.

6. Experiments with Discussions

The proposed algorithm is coded in C++ language and is implemented on a computer with
an i7-7700 3.6 GHz CPU and 16 GB of memory. The well-known Kim’s benchmark instances [8] are
adopted and the characteristics of energy consumption of the IPPS problem have been investigated
in detail. Based on the initial trials, both the population scale as well as the number of iterations are
set to 800, and the crossover probability is 0.7. In Kim’s benchmark, as shown in Table 2, there are
24 instances and the number of instances varies from 6 to 18. For example, the first instance contains
6 jobs and the maximum number of operations are 79; however, for the extreme case (Instance 24),
all the 18 jobs are scheduled and there will be 300 operations at most. This benchmark instance set
covers all the three flexibilities, e.g., OF, sequencing flexibility, and processing flexibility. Table 3 gives
the power values of 15 machines [58], and the power values range from 5 kw to 28 kw. To calculate the
corresponding carbon emission values, we assume that the processing times in Kim’s benchmark are
counted in minutes.

The influences induced by different machine types and machine workloads on the energy
consumptions have been discussed in this research. Three scenarios have been generated to simulate
machine tools with different automation levels by setting the α values to 0.35, 0.55, and 0.75, respectively.
As discussed in Section 3, the low automation level machine tool takes less idle energy and this
corresponds to a small α value. Similarly, three scenarios for different machine workloads can be
realized by setting the β values to 0.3, 0.5, and 1.0, respectively. In the case where β = 0.3, it means
that the workload is relatively light and β = 1 means machines work in full loads.

For the most complex instance, Instance 24, the average computational time is about 460 s and the
computational time of other instances is less than 460 s. For the plain NSGA-II algorithm, since there is
no local search method and the algorithm takes no extra time to perform the local search procedure,
the computational time is about 200 s and it is less than that of the proposed algorithm; nevertheless,
as shown in Section 6.1, the proposed algorithm captures more promising non-dominated solutions.
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Table 2. Instances in Kim’s benchmark.

Number Jobs Job ID Operations

1 6 1, 2, 3, 10, 11, 12 79
2 6 4, 5, 6, 13, 14, 15 100
3 6 7, 8, 9, 16, 17, 18 121
4 6 1, 4, 7, 10, 13, 16 95
5 6 2, 5, 8, 11, 14, 17 96
6 6 3, 6, 9, 12, 15, 18 109
7 6 1, 4, 8, 12, 15, 17 99
8 6 2, 6, 7, 10, 14, 18 96
9 6 3, 5, 9, 11, 13, 16 105
10 9 1, 2, 3, 5, 6, 10, 11, 12, 15 132
11 9 4, 7, 8, 9, 13, 14, 16, 17, 18 168
12 9 1, 4, 5, 7, 8, 10, 13, 14, 16 146
13 9 2, 3, 6, 9, 11, 12, 15, 17, 18 154
14 9 1, 2, 4, 7, 8, 12, 15, 17, 18 151
15 9 3, 5, 6, 9, 10, 11, 13, 14, 16 149
16 12 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15 179
17 12 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18 221
18 12 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17 191
19 12 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18 205
20 12 1, 2, 4, 6, 7, 8, 10, 12, 14, 15, 17, 18 195
21 12 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 16, 18 201
22 15 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18 256
23 15 1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18 256
24 18 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 300

Table 3. Machine power values used in computation.

Machine ID Power (kW) Machine ID Power (kW) Machine ID Power (kW)

1 25 6 19 11 7
2 12 7 7 12 21
3 17 8 5 13 9
4 18 9 23 14 13
5 12 10 16 15 28

6.1. Experiment 1

To reflect the advantage of the proposed multi-objective memetic algorithm, we first compare
the Pareto fronts obtained by the proposed algorithm and the traditional NSGA-II algorithm,
and corresponding Pareto fronts of Instance 24 are presented in Figure 6. It can be seen that the optimal
non-dominated solution obtained by the proposed multi-objective algorithm are generally better than
the ones obtained by the plain NSGA-II algorithm because the local search methods have not been
considered in traditional NSGA-II algorithm and therefore the Pareto front of NSGA-II is distributed
inferior to the Pareto front of the proposed algorithm. This reflects the powerful search capability of the
multi-objective memetic algorithm. For the makespan criterion, the minimum value of the makespan
is about 530 min using the proposed memetic algorithm, and the best makespan value obtained by the
plain NSGA-II algorithm is about 545 min, and this means that the proposed multi-objective memetic
algorithm performs better than the plain NSGA-II algorithm: due to the VNS local search in memetic
algorithm, the search ability have been enhanced in the proposed algorithm.
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Figure 6. The Pareto front of the two algorithms.

Figures 7–9 present three Gantt charts of Instance 24. The first and the second Gantt charts
represent the two extreme cases in the optimal Pareto front: The first Gantt chart considers the
makespan more than the other criterion while the second scheduling scheme puts more emphasis on
the carbon emission minimization criterion; the third scheduling scheme is obtained by the TOPSIS
method and it strikes a balance between the two criteria. The makespan as well as the carbon emission
values of the three scheduling cases are summarized in Table 4. Clearly, the first scheduling scheme
has the minimum makespan while the value of the other criterion is relatively worse than other two
cases. For the second case, as discussed above, it moves to the other extreme: the makespan value is
the largest among the three cases while the carbon emission value reaches the lowest. According to
the two extreme cases, it is quite necessary to consider both the two criteria and considering only
the makespan or the carbon emission criterion is not enough to meet the low-carbon manufacturing
requirement. The third scheduling scheme presented in Figure 9 is obtained by the TOPSIS decision
method and it strikes the balance between the two criteria. According to Table 4, both the values of
the two criteria are acceptable. Compared with the operation scheduling in Figure 8, the production
efficiency of Figure 7 is much better. By compactly assigning operations to machines, the makespan is
shortened. However, the carbon emissions in this case have not been emphasized and the massive
carbon emissions caused by energy consumption in this case reflects the necessity of multi-objective
optimizations in energy-efficient IPPS problem. In Figure 8, the carbon emission has been considered
as a priority and it can be seen that the low-carbon scheduling strategy can be concluded as follows:

• Assign operations to the machines with low powers as much as possible. For example, the power
values of machines 1, 3, 4, 6, 9, 10, 12, and 15 are larger than 15kw and only few operations are
assigned to machines 1, 6, 9, and 10 according to Figure 8. In this way, the machine with low
constant energy use will be assigned more operations to save energy; the negative effect is that
the makespan criterion will deteriorate because more operations will accumulate and wait to
be processed.

• Finish operation processing as early as possible on the machines with large powers. For example,
operations processed by machines 1, 9, and 10 are sequenced compactly according to Figure 8 and
the machines will be shut down once the machining procedures of the operations are finished;
in this way, the idle energy consumptions on these machines can be reduced.

• From Figure 8, energy-efficient scheduling can also be realized by tight arrangements of operations
on machines because this can edge out the idle time intervals on machines and therefore the idle
energy consumption can be reduced.
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Figure 7. The Gantt chart that mainly considers the makespan criterion.
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Figure 8. The Gantt chart that mainly considers the energy consumption (carbon emission) criterion.
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Figure 9. The Gantt chart that considers both the two criteria.
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Table 4. Results comparisons of Instance 24.

Case 1 (in Figure 7) Case 2 (in Figure 8) Case 3 (in Figure 9)

makespan carbon emission makespan carbon emission makespan carbon emission

531 (min) 13,340.3 (kg) 810 (min) 2036.32 (kg) 680 (min) 2267.88 (kg)

6.2. Experiment 2

In this experiment, the energy consumption characteristics are discussed in different situations
with different machine workloads (different β values) using different types of machine tools (different α

values). Instances in Kim’s benchmark can be classified into three categories, e.g., small-scale instances,
medium-scale instances, and large-scale instances, according to the information in Table 2. In this
experiment, Instances 1, 12, and 24 are selected to represent the small-scale, the medium-scale, and the
large-scale instances. The energy consumption including both the cutting energy consumption and the
idle energy consumption of the three instances are summarized in the histogram in Figure 10.

Figure 10. The energy consumption of three instances.

Figure 10a gives the energy consumption of the three instances using low automated machines
(α = 0.35). It is easy to understand that the total energy consumption increases with the number
of operations (also the scale of instances) because processing more operations means more energy
consumption. For the idle energy consumption, marked in cyan color, there is no apparent fluctuation
since the idle energy consumption takes a relative fixed percentage in each instance; more importantly,
machines are not allowed to be turned off in this research unless all the operations are finished and this
is the other reason there is no significant differences between idle energy consumptions of the instances
in Figure 10a. since each machine has only two status—in machining state or in idle state—and all
the 15 machines are used in all the three instances, the idle power consumption of machines can
be deemed as a constant. For the cutting energy consumption, according to Figure 10a, it relates
closely with the scale of instances and machine workloads. Similar situations can also be observed
in Figure 10b,c where the fluctuation of idle energy consumptions is much less than that of cutting
energy consumptions. However, with a higher automation level of machine tools, the idle energy
consumptions in Figure 10b,c are larger than the case in Figure 10a. In cases of Figure 10b,c, the α

values are set to 0.55 and 0.75, respectively, and we can intuitively see that the proportion of idle energy
consumption to the whole energy consumption has increased. The cutting energy consumptions in
Figure 10b,c are almost the same as the ones in Figure 10a; the reason is that the number of operations
as well as the workload levels of the corresponding instances are the same in Figure 10a–c.
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From the analysis presented above, an energy-efficient scheduling can be realized by reducing
the idle energy consumptions of machine tools; that is, use of low automation level machine tools can
improve the energy use rate. If we define the energy use rate as:

∑k MCTk · Pcutk

∑k [(MCk −MCTk) Pidlek]
(14)

it can be found that the energy use rate can further be improved by increasing the number of jobs in a
scheduling scheme because in this case the idle time intervals can be edged out and this will reduce
the idle energy consumption. In Figure 10 when there are fewer jobs, such as in Instance 1, the energy
use rate is close to 1 and this means that the idle energy consumption occupies a high proportion
and the energy use in this case is inefficient. For the instance with more jobs (more operations), the
energy use rate can be much higher because the extra operations occupy the idle time intervals in the
Gantt chart. The extreme case is the energy consumption of Instance 24 in Figure 10a with α = 0.35
and β = 1. With more operations and low automation level machine tools, it achieves a high energy
use rate.

Figure 11 gives an intuitive normalized representation of the proportion the machining energy
consumption and the idle energy consumption. According to Figure 11a,d,g, using low automation
level machines can help improve the energy use rate because such machines are usually equipped with
only basic components, e.g., coolant pumps and manual tool change devices, and hence consume less
energy. For high-automation-level machines, however, they consume more energy even in non-cutting
status because other components e.g., CNC systems, are not allowed to be turned off. The influence
of machine workload on the energy consumption is also demonstrable; a large β value means more
energy will be consumed in processing the operation. With more operations and heavy workloads,
e.g., cases c, f, and i, the energy use rate of the whole production will be improved. Also, it can be seen
from Figure 11c,g that in the best case, about 80% of the total energy will be used in cutting processes;
however, this value drops to about 55% in the worst case. In other words, about half of the total energy
will be used in non-cutting processes in the worst case.

Figure 11. The proportion of energy consumptions.
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7. Conclusions

This research performs a study on the energy-efficient IPPS problem that has seldom been
considered before. Due to the limitations in previous research where frequent machine turning “ons”
and “offs” will cause damage to machine tools and also deteriorate the thermal balance of machine tools,
in this research the machines in a job shop are not allowed to be shut down even in the idle time interval
unless all the operations of that machine have been processed. A novel MILP model is established;
due to the complexity in solving the MILP model, we then developed a multi-objective memetic
algorithm to address this problem; in the proposed algorithm, the VNS method is applied to enhance
the local search ability. Different scenarios about machine automation levels and workloads have been
generated to study the characteristics of energy consumptions. Typical instances (Kim’s benchmark) are
adopted in the experiments. Computational results show that the proposed multi-objective memetic
algorithm can obtain more promising non-dominated solutions than the traditional NSGA-II algorithm.
Compared with single-objective optimization method, multi-objective optimization results reveal the
necessity to consider both energy efficiency and the makespan criterion in the IPPS problem.

According to the results under different scenarios, some managerial insights for energy
consumption reduction (also carbon emission reduction) can be concluded as follows.

• Due to low constant energy use of machines with low automation levels, operations are suggested
to be processed by machines with low automation levels. In such a case, the idle energy
consumption can be reduced. This strategy can be applied to the cases where only few operations
to be processed because there will be many idle time intervals.

• Increasing the number of operations or jobs is another way to improve energy use rate; there will
be no idle time intervals between two operations on a machine and therefore, the idle energy
consumption can be reduced.

However, in real-life production situations, the processing time of an operation is usually
uncertain; therefore, the IPPS problem with deterministic processing times does not match the actual
situation on the shop floor. The makespan as well as the energy consumption reduction for the IPPS
problem with uncertain processing times will be considered as a further research direction and the
fuzzy sets [59] can be used to describe the uncertain processing times. To reduce the coal-fired electricity
consumption, the optimal scheduling method for the IPPS problem with time-sharing prices can also
be considered.
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