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Abstract

Growing social and economic pressures demand technological innovations

that enable the widespread usage of unconventional sources of water (e.g., seawa-

ter, grey water). This motivates the emerging fit-for-purpose paradigm, wherein

water is provided at the precise quality level of the intended application. Un-

fortunately, to date, the fundamental advances in materials and nanosystems

engineering have been slow to advance this paradigm. We highlight the critical

need to bridge scientific research at the molecular and nano-scales and tech-

nology development at the device and systems scales for the implementation of

sustainable fit-for-purpose water infrastructure. Specifically, we present four pil-

lars from computational and data sciences to bridge between scientific research

and technology development, namely superstructure optimization, model-based

design of experiments, inverse material design, and uncertainty quantification.

As such, we highlight opportunities to collaboratively revolutionize water sus-

tainability engineering, but emphasize open communication between data scien-

tists and water-focused researchers using a common vocabulary as a significant

hurdle.
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Graphical Abstract

Introduction

Driven by factors such as economic and population growth, aging infrastruc-

ture, and increased concerns regarding pollution, water sustainability research

is undergoing a paradigm shift to emphasize the highly interconnected and in-

terdependent nature of Earth-water-human systems. Moreover, an increased5

awareness of the vulnerabilities within existing water supply and management

infrastructure has driven interest in the use of non-traditional water resources

(e.g., seawater desalination, wastewater reuse) to meet growing demands. As

such, several modifications and alternatives to centralized water treatment sys-

tems that produce water of a single, potable quality have been proposed. For10

example, distributed systems that incorporate regenerative treatment technolo-

gies tailored to provide fit-for-purpose water closer to its point of use could be
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incorporated as part of larger networks [1]. Within this framework, dissolved

solutes in waste waters (e.g., nutrients, metal ions) may be viewed as renewable

resources that can be recovered. These opportunities have catalyzed research15

into systems that maximize water reuse and minimize environmental impact by

utilizing a series of treatment processes and recycle loops to recover valuable

solutes while producing water at a purity level demanded by the requirements

of its users. Ultimately, the successful design of these systems will require ad-

dressing fundamental questions from the molecular to systems scales related20

to the development, adoption, and integration of treatment technologies into

sustainable networks that ensure robust and resilient infrastructure (Figure 1).

Concurrent with efforts to re-envision the design of the water supply and

management infrastructure, advances in chemistry, materials science, and molec-

ular engineering are providing the science and engineering community with un-25

precedented abilities to design, characterize, and manipulate materials at the

molecular through nanoscales [2]. As such, significant opportunities exist to

empower the rational design of materials to positively impact water security by

coupling this control to the rigorous design of treatment networks through the

development of detailed structure-property relationships. For instance, zirco-30

nium metal organic frameworks (MOFs) are excellent candidates for the design

of selective sorbents that target the removal of harmful organic contaminants

from water treated for direct potable reuse [3, 4]. Enabled by thermorespon-

sive solvents, directional solvent extraction (DSE) [5, 6] can treat high salinity

brines from desalination processes using low-cost waste heat as the primary35

energy input. Due to their ease of operation, modular design, and low en-

ergy demands, membrane-based technologies are exciting prospects for clean

water technology [7, 8, 9, 10]. Self-assembled block polymer materials allow for

the creation of membranes with pore wall chemistries that are readily tailored

to enable solute-specific separations and detection. For example, membranes40

with pore walls tailored to detect and capture metal ions, if appropriately de-

signed, could be used for resource recovery or remediation efforts [11, 12, 13].

Nanocomposite membranes, which are fabricated by incorporating nanomate-
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rials into the matrix of conventional membrane structures, can be designed to

promote the inactivation of microorganisms that lead to disease and biofouling45

[14]. Alternatively, nanocomposite membranes can be designed to enable local-

ized solar-thermal heating that enhances membrane distillation processes [15]

that may find use in remote and rural regions. While the promise of these ma-

terials is exciting, transformative advances for sustainable water have been slow

to manifest in practice. Due to their time- and resource-intensive natures, the50

empirically-driven, heuristic methods that guide most efforts to enhance ma-

terial properties and device performance are one impediment to realizing this

potential. Additionally, these methods are typically applied within the narrow

framework of a single process flow and do not incorporate feedback from holis-

tic system design approaches that identify alternative process connectivities or55

other opportunities for materials deployment.

Accelerating materials discovery necessitates a move away from classical

Edisonian methods to principled and data-driven frameworks that can guide

material design and process synthesis to overcome the gaps in knowledge that

inhibit the translation of new materials and devices from the laboratory scale to60

effective and sustainable water treatment technologies (Figure 1). In this paper,

we present four opportunities for scientists from diverse fields to work at the in-

tersections of materials science, computational science, civil and environmental

engineering, mechanical engineering, and chemical engineering to revolutionize

water sustainability engineering by fully realizing the fourth paradigm of mate-65

rials science [16] (Figure 2).
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Figure 1: In the bottom-up approach to sustainable water engineering, new (macro)molecular

structures enable novel materials with desired properties that are incorporated into devices

for target applications. These devices are then integrated into process networks wherein the

system topology enables non-traditional applications such as nutrient recovery and wastewater

treatment which form an essential part of the water distribution infrastructure in the fit-for-

use paradigm. Computational and data science tools can accelerate this process to facilitate

top-down analysis and discovery of materials. In the top-down approach, superstructure opti-

mization is used to design resilient infrastructures and novel system configuration for specific

water purification and solute recovery applications. These designs dictate targets for material

properties that guide the inverse design of materials. Likewise, bottom-up analysis facilitates

rapid screening of new materials in the context of fully optimized systems and infrastructure.

Multiscale uncertainty quantification and propagation unite all the computational and data

science tools into a holistic molecules-to-infrastructures framework.
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Figure 2: In the proposed paradigm, data science capabilities optimize the materials discov-

ery process by maximizing the amount of useful information gained from each iteration and

enabling multiscale analysis.
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Opportunity 1: Superstructure optimization enables rapid bottom-up

and top-down analysis

Superstructure optimization is a classical paradigm in process systems en-

gineering with ubiquitous applications including water distribution networks70

[17, 18], water supply chains [19], and sensor placement [20]. First, the modeler

postulates a superstructure at the desired length scale that encodes all possible

system configurations. Next, an optimization problem is formulated over the

superstructure. For example, minimize water production cost by searching over

all feasible combinations of design choices (e.g., selection and size of equipment,75

flow rates). Finally, the optimization problem is solved numerically, resulting in

one (or more) designs with optimal topology (integer decisions) and operating

conditions (continuous decisions) identified. Often, superstructure optimization

elucidates novel system topologies. For example, Du et al. [21] discovered per-

meate split designs for a single-feed, multi-product seawater reverse osmosis80

desalination network using superstructure optimization. Thus, demonstrating

how commercially-available materials, if optimally integrated into devices and

systems, can overcome operational challenges such as boron removal. Yenkie

et al. use superstructure optimization to calculate quantitative performance

thresholds that define when various separation pathways minimize production85

costs in an integrated biorefinery [22]. We foresee superstructure optimization

playing a pivotal role in establishing holistic molecules-to-systems design frame-

works that encompass all aspects of sustainable water.

Extending established top-down superstructure optimization methods to

encompass emerging fit-for-purpose paradigms and the additional constraints90

needed to address resource recovery and water reuse can help to focus research

efforts into these highly-integrated, complex systems on the most impactful ar-

eas of water sustainability research. In this domain, there is a great need to

understand the basic cost and performance drivers [23] for new sustainable wa-

ter technologies in the context of existing or future infrastructure, regulations,95

and public opinion with many stakeholders [24]. Emerging efforts in this arena
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are focused on establishing top-down guidance at the device level by establish-

ing the materials property targets needed to enable novel process configurations

[21, 25] (Figure 3a). Moreover, top-down approaches are beginning to span the

divide between the materials and systems scale by embedding empirical corre-100

lations that guide materials selection within the optimization framework. For

example, the Robeson plot, which quantifies the trade-off between permeability

and selectivity for membranes was considered when optimizing the design of bi-

nary gas separation systems [26, 27, 28]. Incorporating these structure-property

relationships into the optimization framework can both quantify the relative im-105

portance of competing material properties (Figure 3b) and elucidate the poten-

tial for performance gains at the systems level from technological breakthroughs,

i.e., shifting the Robeson plot. As such, superstructure optimization frameworks

of the future could inform both how to design and manufacture nanostructured

materials and how to integrate them into resilient infrastructures with many110

competing objectives.
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Figure 3: (a) Superstructure Optimization: In [25] we propose a superstructure optimiza-

tion strategy to intensify membrane separations using continuous diafiltration cascades. The

full superstructure formulation encoding multiple recycle strategies for the cascade is shown

at the top. A solution showing optimum strategies for feed injection, product withdawal and

recycle is obtained by eliminating streams whose flow rate is zero and is shown in the bottom

of the figure. The optimum configuration is obtained after a sensitivity analysis to identify

membrane selectivity values needed to outperform existing technologies for lithium ion bat-

tery recycling. (b) Material Property Targets: In another work, we studied the removal

of heavy metal contaminants from water using adsorptive nanoprous membranes. Targets

for competing material properties are defined by operational (process) and consumer needs.

Generation 1 materials (baseline) already exist. Generation 2 materials are tailored for target

applications such as heavy metal removal, and can be designed by significantly improving any

one of the two competing material properties (vertical or horizontal movement into the target

design space), or by modest improvements in both material properties (diagonal movement

into target design space)
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Superstructure optimization is also well-positioned to guide molecular engi-

neering via bottom-up analysis. For already characterized materials, rigorous

superstructure optimization enables rapid comparison against competing tech-

nologies in the context of fully optimized systems and can identify potential115

applications for materials. Large databases of material properties, derived from

high throughput experiments and/or computations, now enable data-driven dis-

covery via machine learning and data science methods which has given rise to

materials informatics, the so-called fourth paradigm of materials science [16].

Recent efforts propose superstructure optimization formulations to design crys-120

talline material structures, such as MOFs, based on the constraints imposed

by process separations.[29, 30] Extending this bottom-up analysis to soft ma-

terials, such as polymeric membranes, remains a challenge. Although empiri-

cal structure-property relationships exist for some polymer structures [13], the

fundamental understanding of the molecular interactions and transport mech-125

anisms that solute-specific separations are still rudimentary [31]. Nevertheless,

we anticipate materials informatics will lead to new insights and more accu-

rate structure-property relationships needed for direct molecules-to-systems op-

timization. Furthermore, we foresee opportunities to combine molecular sim-

ulations and superstructure optimization to enable high-throughout screening130

of emerging materials using systems-scale metrics (e.g., separation selectivity,

energy usage, product cost) as benchmarks for performance.

Opportunity 2: Model based design of experiments accelerates hy-

pothesis driven discovery

A fundamental challenge in the hypothesis driven discovery currently utilized135

to establish structure-property relationships is designing experimental cam-

paigns that maximize useful information gained [32]. Classical design of ex-

periments techniques (e.g., multi-level factorial, partial factorial designs) help

establish empirical models (e.g., polynomial response surfaces), which although

predictive, rarely offer insights into fundamental scientific phenomena. In con-140
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trast, model based design of experiments (MBDOE) frameworks directly con-

sider differential and/or algebraic equations grounded in scientific and engineer-

ing fundamentals (e.g., conservation laws, thermodynamics) in their formula-

tion. MBDOE techniques are popular in biology, pharmacology, and reaction

engineering, as these experiments are often time- and resource-intensive. For145

example, Láınez-Aguirre et al. use a fully Bayesian MBDOE framework to es-

timate nonlinear differential algebraic pharmacokinetics models which enable

dosing regimens optimized to individual patients [33]. In another recent exam-

ple, Lu et al. [34] use MBDOE to discern between competing kinetics models for

chemical-looping combustion. Despite the fact that similar challenges exist in150

sustainable water treatment (e.g., scheduling of membrane cleaning, identifying

degradation pathways of contaminants), MBDOE techniques have seldom been

leveraged in this arena.

We foresee MBDOE as an essential paradigm to ensure that the most useful

data is collected when establishing structure-property relationships. As men-155

tioned in Opportunity 1, the transport, thermodynamics, and reaction mecha-

nisms that enable water treatment technologies are often not sufficiently under-

stood. We believe it is possible to postulate model collections where each model

corresponds to specific scientific hypotheses about the dominant physical and

chemical phenomena. MBDOE then facilitates design of multifaceted experi-160

mental campaigns to discern the most probable subset of models (hypotheses).

This proposed paradigm is especially powerful in the elucidation of regimes

where a single mechanism dominates and the identification of conditions where

transitions between mechanisms occur. For example, it could potentially be uti-

lized to elucidate where transport through membranes transitions from being165

governed by a solution-diffusion mechanism to a pore flow dominated regime.

Moreover, MBDOE can enable the design and analysis of high throughput tran-

sient experiments, thereby eliminating the time required for a test system to

reach equilibrium.[35] This capability may be particularly useful when testing

new technologies against realistic feed solutions. Often materials characteriza-170

tion is executed using idealized solutions that contain a single dissolved com-
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ponent. In practice, however, water treatment technologies are challenged by

complex, multi-component solutions whose composition varies with time. As

such, there is a critical need to assess material and device performance in a

broader spectrum of feed solution conditions. In this regard, the proposed ca-175

pabilities of MBDOE would greatly accelerate development of sustainable water

technologies that can robustly operate over wide operating ranges with many

contaminants.

Opportunity 3: Adaptive design of experiments enables systematic

inverse material design180

The convergence of materials informatics and data science with physical and

synthetic chemistry to establish inverse material design methods is imminent.

The goal is to predict computationally (macro)molecular and/or self-assembled

structures that archive target material properties. The nearly limitless de-

sign space of candidate materials cannot be enumerated with conventional high185

throughput computational screening methods [36, 37]. Instead, in the adaptive

design of experiments paradigm, a surrogate or machine learning model is con-

structed to predict material properties (e.g., solubility, tensile strength) from

input design variables (e.g., molecular structure, alloy composition). Design of

experiments methods then postulate new materials to synthesize or simulate us-190

ing the surrogate model. Recent successful applications include nanofabrication

and nanoparticle self-assembly [38, 39], drug design [40], and high strength al-

loys [41]. In Bayesian optimization methods, domain specific knowledge and ob-

served data are incorporated into the prior distribution of the Gaussian Process

(GP) surrogate model.[42] The computationally inexpensive GP model enables195

optimization of experimental conditions that balance exploration (sampling re-

gions of high uncertainty) and exploitation (sampling regions with best predicted

material performance). New observations are leveraged to improve the GP sur-

rogate model using Bayes rule, making the procedure adaptive (self-learning).

Adaptive designs have been shown to outperform pure exploitation approaches200
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in several studies [41].

Data-driven inverse materials design methods will soon enable novel sus-

tainable water technologies. Yet these applications pose numerous challenges

and opportunities. Thus far, many adaptive design of experiments successes

are with either limited design spaces (e.g., ternary alloys) or crystalline mate-205

rials with well-defined and predictable structures. In contrast, soft materials

such as polymeric and nanocomposite membranes have extremely large design

spaces because they are processed far from equilibrium and therefore, possess

non-equilibrium structures. New mathematical descriptions grounded in phys-

ical and chemical understanding are needed to encode all of the design choices210

for soft materials. Depending on the target material properties, inexpensive

high throughput computational predictions may not be available. In such cases,

molecular simulations are often needed to elucidate the self assembly process and

ultimately predict structure and properties of soft materials [43]. This trade-

off between computational expense and molecular-scale detail underscores the215

need for systematic methods to guide inverse materials design. Finally, water

treatment technologies are often multifaceted and utilize a combination of phe-

nomena to achieve their goal. This broad design space necessities advances in

multiobjective and multifidelity adaptive design of experiments methods that

can both navigate competing design goals (material targets) and assimilate het-220

erogenous data from many sources.

Opportunity 4: Multiscale uncertainty quantification derisks technol-

ogy development

Ultimately, using data-science to help bridge the gap between materials and

water sustainability engineering has the promise to inform the molecular-scale225

design of devices and systems that enable the development of resilient, secure,

and sustainable infrastructure. We believe optimization under uncertainty, a

well-established technique for risk mitigation in supply chains and water recy-

cle networks [44], will play a critical role in realizing the fit-for-purpose water
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paradigm, with data science methods informing uncertainty sets (probability230

distributions) [45, 46] as information is propagated over the relevant design

scales. Recently, Bhat et al. demonstrated how Bayesian uncertainty upscaling,

which encompasses modeling fundamental thermodynamic and transport phe-

nomena, bench-scale demonstrations, and superstructure optimization under

uncertainty, can derisk CO2 capture technologies. [47] As illustrated in Figure235

2, we see great needs and opportunities to expand formula uncertainty quan-

tification across molecular, material, device, systems, and infrastructure scales

for suistainable water. For example, Edisonian iterations between molecular

simulations and experiments are at the core of the existing materials discov-

ery paradigm (Figure 2). Yet emerging UQ frameworks enable rigorous cali-240

bration of force field parameters and assessment of predictions from molecular

simulations [48]. We see opportunities to develop new multi-fidelity design of

experiments algorithms to co-optimize allocation of computational and physi-

cal resources in order to establish systematic feedback loops between molecular

simulations and physical experiments. Supported by rigorous statistical analy-245

sis, molecular simulations and physical experiments provide rich heterogeneous

datasets with uncertainty estimates to derive (differential) algebraic surrogate

(i.e., reduced order, timescale bridging) models that enable computationally

tractable optimization under uncertainty [49, 50]. Here, there are significant

opportunities to extend the surrogate modeling paradigm to grey-box mod-250

els, which combine physics-informed equations with a data-driven component

that quantifies model form uncertainty [47, 51]. Using these uncertainties, su-

perstructure optimization can provide quantitative material property and cost

targets that serve as input for inverse materials design. Critically, this vision

necessitates integrating innovations in data science and UQ with fundamental255

scientific and engineering principles to accelerate sustainable water technologies

faster than both fields working separately.
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Figure 4: Uncertainty quantification (UQ) unifies all aspects of sustainable water engineering

into comprehensive molecular-to-infrastructure design framework. Together, molecular simu-

lations and UQ enables accurate force-field selection and calibration. This provides molecular

structure and material property predictions with quantified uncertainties 1© to inform lab-

oratory experiments and DOE. Likewise, multifaceted laboratory experiments provide data

2© for molecular simulation validation, creating a feedback loop. Multifideltiy design of both

laboratory and computational experiments provides rich heterogeneous data with uncertainty

estimations 3© for multiscale model reduction. This then provides tractable surrogate (low fi-

delity) models with quantified uncertainty descriptions 4©, which are inputs for superstructure

optimization under uncertainty. These optimization problems elucidate possible applications

for new materials, material property targets, and device, system and infrastructure designs

that are robust to uncertainties (variable feed compositions, rare event, etc.). These results,

especially property targets, 5© are inputs for inverse design of materials. Adaptive design

of experiments (e.g., Bayesian optimization) then proposes tailored materials, 6© and 7©, for

synthesis, laboratory characterization, and computational exploration.
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Conclusions

In this paper, we highlight four opportunities for emerging data-science

frameworks to establish new paradigms for sustainable water technologies: su-260

perstructure optimization, design of experiments, inverse material design and

uncertainty quantification. Many engineering challenges in the sustainable wa-

ter domain are likely intractable for existing computational paradigms, but pro-

vide timely and impactful applications to motivate methodological advances in

data and computer science. Data-driven tools cannot alone revolutionize the265

field. Instead, we foresee collaborative efforts that combine domain specific

knowledge with machine learning paradigms as essential to realizing holistic

molecules-to-infrastructures engineering frameworks that can usher in the next

era of materials discovery for sustainable water enterprises.
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