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Abstract: The methodology of profile monitoring combines both the model fitting and statistical
process control (SPC) techniques. Over the past ten years, a variety of profile monitoring methods
have been proposed and extensively investigated in terms of different process profiles. However,
monitoring tasks still exhibit a primary problem in that the errors surrounding the functional
relationship are frequently assumed to be independent within every single profile. However, the
assumption of independence is an unrealistic assumption in many practical instances. In particular,
within-profile autocorrelation often occurs in the profile data. To mitigate the within-profile
autocorrelation, a monitoring method incorporating an autoregressive (AR)(1) model to cope
with autocorrelation is proposed. In this paper, the reflow process with small samples in surface
mount technology (SMT) is investigated. In Phase I, three different process models are compared
in combination with the first-order autoregressive model, while an appropriate profile model is
sought. The Hotelling T2 and exponentially weighted moving average (EWMA) control charts are
used together to monitor the parameter estimates (i.e., profile shape) and residuals (i.e., profile
variability), respectively.

Keywords: profile monitoring; polynomial regression model; sum of sine function; Hotelling’s T2

control chart; EWMA control chart

1. Introduction

Statistical process control (SPC) has globally been applied for dealing with process monitoring
in a variety of manufacturing processes [1]. The control charting technique is typically designed to
monitor a univariate statistic, e.g., the sample average, standard deviation, range of a sequence of
sample data, among others. However, several productive processes (e.g., reflow oven, heat treatment,
etc.) have proven difficult to manage with a traditional SPC operation. The difficulty in these cases
arises because a quality characteristic cannot be suitably characterized. If the quality characteristic of
a product or process can be represented by a functional form between the quality characteristic and
the input variable, then effective monitoring can be established. This scenario is the so-called “profile
monitoring”.

A major problem for many profile monitoring models lies in the dependence of within-profile
residuals, i.e., within-profile autocorrelation. This problem may cause the parameter estimates of
the fitted model to be unstable or it might make monitoring performance unsatisfactory. By this
account, within-profile autocorrelation is often present and it should not be intentionally ignored.
Jensen et al. [2] applied a mixed model to monitor nonlinear profiles in order to account for the
correlation structure. Chicken et al. [3] has proposed a semiparametric wavelet method for monitoring
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the changes in sequences of nonlinear profiles. In their paper, no assumptions are made on the nature
of form or the changes between the profiles other than finite square-integrability. Based on a likelihood
ratio test involving a change-point model, the method uses the spatial adaptability properties of
wavelets to detect the profile changes. Qiu et al. [4] proposed a new control chart to deal with
the within-profile autocorrelation. Hung et al. [5] used support vector regression to describe the
within-profile relationship. In [6], a B-spline approach was presented for process profile modeling.
To mitigate the dependency of the process data, the bootstrap method was utilized. Ghahyazi et al. [7]
used a multistage process in phase II to monitor a simple linear profile. In that paper, a first-order
autoregressive correlation model was first modeled. Subsequently, a U statistic is utilized to eliminate
the cascade effect and the control scheme is modified accordingly. Zhang et al. [8] proposed that a
Gaussian process model be applied to the characterization of the within-profile correlation. Herein,
two multivariate control charts (Hotelling T2 and multivariate EWMA) were proposed to monitor the
linear trend term and the within-profile correlation separately in phase II. Khedmati and Niaki [9]
proposed using the U statistic for the general linear profiles to eliminate the effect of between-profile
autocorrelation of error terms in phase-II monitoring. Based on the simulation results, this proposed
method could provide a significantly better result in detecting shifts in the regression parameters.
Jensen et al. [10] used a nonlinear model for fitting the profiles, thus reducing the profiles to a smaller
set of parameter estimates. In that paper, a T2 control chart using the difference-covariance matrix is
employed to perform profile monitoring. The proposed statistic that was based on the differences was
modified to account for the correlation between the profiles in phase I and phase II analysis.

The main objective of this research is to construct a monitoring system that can compensate for
the one-step-ahead residuals, particularly for the reflow process with small samples in surface mount
technology (SMT). In the reflow process, it is of critical importance to monitor the oven temperature
condition and to identify potential process irregularity before the product quality becomes worse.
In this paper, 15 profiles of the reflow process from [11] will be investigated.

The three different parametric models will be considered as the modeling candidates. Afterwards,
the different fitted models are evaluated by means of R2

adj, Akaike information criterion (AIC), and
Schwarz information criterion (SIC). Next, in terms of the best-fitted model, phase I and II process
monitoring is performed.

The remainder of this paper is organized, as follows. Section 2 presents the three different fitting
models, together with the autocorrelation effect. The basic engineering details of the reflow process
will be elaborated in Section 3. Simulation results of profile monitoring are presented to demonstrate
the performance of different fitting models. Lastly, the conclusions of the paper and the summary of
our findings are remarked in Section 4.

2. The Proposed Method for Monitoring Process Profiles

In the proposed framework, three different models are investigated to seek an appropriate profile
model. Additionally, the Hotelling T2 and the EWMA control charts are employed in order to monitor
the profile shape and the profile residual, respectively. The flowchart is shown in Figure 1. First, the
different process models are compared on the basis of R2

adj, AICC, and SICC. According to the parameter
estimates of the profile model, the nonlinear profile can be monitored and analyzed. In phase I, the
Hotelling T2 control chart is used to evaluate the process stability and remove any outlying profiles.
The Hotelling T2 control chart is also considered for phase II analysis via the out-of-control average
run length (ARLOUT). An EWMA control chart is utilized to check the residuals of the fitted model if
the autocorrelation effect is changed or not.
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2.1. Constructing the Profile Model

To evaluate and determine an appropriate process model, R2
adj is firstly considered to be an

immediate measure so that the fitted performance can be more quickly compared. However, the
performance evaluation of model fitting merely considers R2

adj that can cause the problem of overfitting.
Hurvich and Tsai [12] had pointed out that the AIC would generate the overfitting problem when the
fitting samples belong to a smaller number. Although Hurvich and Tsai [12] claimed that the AICC

could enhance the accuracy of model selection, the overfitting problem can still occur to circumvent
better estimation solutions. When referring to [13], we can find that the SICC seems to be able to deal
with the overfitting problem for the small sample case. To deal with the accuracy of model selection
and the overfitting problem, in this paper, the AICc and SICc are simultaneously adopted, with the
expectation of obtaining adequate results. The small sample SICc and AICc criteria derived by [13] are
described, as follows:

SICc = log(σ̂2
k ) +

log(n)k
n− k− 2

(1)

AICc = log(σ̂2
k ) +

n + k
n− k− 2

(2)

In (1) and (2), the variance estimate is denoted by σ̂2
k =

n
∑

j=1
(yj − ŷj)

2/(n − 1). Here, k is the

number of the parameters in the process model. The number of measurement points that are in the
profile is denoted by n. It is of particular importance to note that the variance estimate σ̂2

k is calculated
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after the autocorrelation effect has been discounted by using the first-order autoregressive model,
which will be addressed shortly.

2.1.1. Polynomial Model

The polynomial model with one input variable can be defined by

yjp = β′pxj + ηjp, p = 1, . . . , q; j = 1, . . . , n (3)

where the first-order autoregressive model is defined by ηjp = φηj−1,p + ε jp, which is logical in
deeming the profile as a time series data set. Since the autocorrelation effect often occurs in profile
monitoring, the first-order autoregressive model (i.e., AR(1)) is considered as the disturbance term, η,
and is incorporated into the profile model. Therefore, the profile model will include the first-order
autoregressive parameter to compensate. The parameter φ is the first-order autoregressive (AR(1))
coefficient. The noise ε jp is the error term of white noise and its variance estimate is indicated by σ̂2

k , as
in Equations (1) and (2). Also, β′p =

[
β0p, β1p, . . . , βrp

]
is the vector of unknown parameters in the

polynomial function, the vector of regressors is denoted by x′ j =
[
1, xj, x2

j , . . . , xr
j

]
and r denotes the

order of the model in (3). Note that all of the parameters in Equation (3) are estimated by using the
ordinary least squares estimation method (see [11]).

2.1.2. Model of the Modified Sum of Sine Functions in two Different Forms

The modified sum of sine functions is represented in the original form as

yjp =
k

∑
r=1

arp sin
(
brpxj + crp

)
+ ηjp, r = 1, . . . , k; p = 1, . . . , q; j = 1, . . . , n (4)

where ar is the amplitude, br is the frequency, and cr is the horizontal phase constant at each sine wave
term. For example, when the profile model is considered as the modified sum of two-sine functions,
then the model can be defined by

yjp = a1p sin(b1pxj + c1p) + a2p sin(b2pxj + c2p) + ηjp (5)

where xj denotes the input variable for the jth measurement, βp denotes the parameter vector in profile
p (β′p = [a1p, a2p, b1p, b2p, c1p, c2p]), and the ηjp term is defined, as in Equation (3). As mentioned
above, the parameters a1 and a2 are the amplitude of the function, b1 and b2 determine the period, and
c1 and c2 influences the horizontal shift. The parameter estimation is performed by using the nonlinear
least squares estimation method (see [11]).

To strengthen the fitting of nonlinear models by means of the modified sum of sine functions,
we also use the nonlinear mixed effects model (NLME) to test the fitted performance, which then is
extended into a nonlinear model with random effects. The generic form of NLME is given by the
following equation:

yjp = f (βjp, xj) + ε jp, βjp = Ajpθ+ Bjpγjp, p= 1, . . . , q, j = 1, . . . , n (6)

In (6), f is the function governing within-profile behavior, βjp is a vector of group-specific model
parameters, Ajp is a design matrix for combining fixed effects, θ is a vector of fixed effects, Bjp is
a design matrix for combining random effects, γjp is a vector of multivariate normally distributed
random effects with γjp ∼ N(0, D), where D is a covariance matrix for the random effects, and
ε jp is a vector of errors, which is assumed to be independent, identically, normally distributed, and
independent of γjp, ε jp ∼ N(0, σ2).
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According to the mixed model that β = A · Fixed e f f ect + B · Random e f f ect, the estimated
profile parameters (β) of the two-sine function in terms of the NLME model can be described in
Equation (7): 

a1p
b1p
c1p
a2p
b2p
c2p


= A ·



a1

b1

c1

a2

b2

c2


+ B ·



a1p − a1

b1p − b1

c1p − c1

a2p − a2

b2p − b2

c2p − c2


(7)

In Equation (7), the A and B are assumed to be the 1 matrix, the bar symbol refers to an average.
The NLME form can then be represented, as follows:

yjp = [a1 + (a1p − a1)] sin[(b1 + (b1p − b1)xj) + (c1 + (c1p − c1))]+

[a2 + (a2p − a2)] sin[(b2 + (b2p − b2)xj) + (c2 + (c2p − c2))] + ε jp
= (a1, f ixed + a1p,random) sin((b1, f ixed + b1p,random)xij + (c1, f ixed + c1p,random))+

(a2, f ixed + a2p,random) sin((b2, f ixed + b2p,random)xij + c2, f ixed) + ε jp

(8)

The parameter estimates are obtained by using the maximum likelihood estimation method
(see [2]). Herein, it should be noted that the NLME model does not include the AR(1) term. In previous
literature (see [2]), the NLME model has been used to solve the problem of autocorrelation. Therefore,
the two fitting models together with AR(1) and the NLME model are compared in phase I analysis.

2.2. Phase I and II Monitoring and Analysis

In phases I and II, the parametric T2 control chart is used to check whether the process is in the
statistical control status and to identify potential outliers. Here, β̂p is the estimate of the parameter

vector. Over the entire profile data, the sample mean vector β̂ and the sample variance-covariance
matrix S = s2{β̂} can be computed by using the parameter estimates that were obtained from different
fitting models. For example, the estimate of the parameter vector for the fourth order polynomial with
AR(1) is defined as

[
β̂0 β̂1 β̂2 β̂3 β̂4 φ̂

]
; the estimate of the parameter vector for the sum of

two-sine functions with AR(1) is defined as
[

â1 â2 b̂1 b̂2 ĉ1 ĉ2 φ̂
]
.

According to the aforementioned parameter estimates, the T2 control chart (Brill, 2001) is
described by

T2
c,p = (β̂p − β̂)′S−1

c (β̂p − β̂), p = 1, 2, . . . , q, (9)

where Sc is the sample variance-covariance estimator, as defined by

Sc =
1

q− 1

q

∑
p=1

(β̂p − β̂)(β̂p − β̂)′ (10)

In (10), q is the number of profiles in the process data. The approximate upper control limit (UCL),
as derived by [14], is as follows:

UCLc =
(q− 1)2

q
Bα,k/2,(q−k−1)/2 (11)

In Equation (11), Bα,k/2,(q−k−1)/2 is the upper α percentage point of a beta distribution with
parameters k/2 and (q− k− 1)/2, where k is the number of parameter estimates. According to [15],
the T2 control chart in (9) is shown to be ineffective in detecting sustained shifts in the mean vector.
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In this regard, the alternative T2 control chart that was proposed by [16] is also considered. The control
chart is defined by

T2
D,p = (β̂p − β̂)′S−1

D (β̂p − β̂), p = 1, 2, . . . , q (12)

In (12), the variance-covariance estimator (SD) is calculated by using successive differences in the
following:

SD =
V̂′V̂

2(q− 1)
(13)

where v̂p = β̂p+1 − β̂p for p = 1, . . . , q− 1 and the transpose of these q− 1 difference vectors are
stacked into the (q− 1)× k matrix V̂, as follows:

V̂ = [v̂′1v̂′2 · · · v̂′q−1]
′ (14)

In [17], the approximate UCLD for a large sample size (q > k2 + 3k) can be estimated according to

UCLD = χ2(1− α, k), (15)

where k denotes the degrees of freedom and α denotes the significance level. Sullivan and Woodall [15]
argue that the simulation results can be used to discover that the T2

C control chart (see Equation (9))
performs worse in detecting the step change and the ramp shift in the mean vector during phase I than
the T2

D chart, as shown in (12). Based on this fact, in this paper, the T2
D control chart is employed to

evaluate the different fitting models while identifying the outlying profiles.
While phase I is executed, the process should be able to achieve a stable situation. Subsequently,

the data of the in-control profiles is employed to estimate the unknown parameters. In phase II,
the exponentially weighted moving average (EWMA) chart is additionally used for detecting the
autoregressive (AR) effect in residuals in order to determine whether the AR parameter in the process
model should be re-estimated. In sum, the T2

D control chart is used to monitor the parameters of the
model (i.e., profile shape). In the meantime, the EWMA control chart is used to monitor the residuals
(i.e., profile variability). The EWMA statistic is computed by

EWMAε(j) = θej + (1− θ)EWMAε(j− 1), j = 1, 2, . . . , n, (16)

where ej is the jth residual; θ(0 < θ ≤ 1) is a smoothing constant and the starting value is assumed
EWMAε(0) = 0. An out-of-control signal is issued as soon as EWMAε(j) < LCL or EWMAε(j) > UCL,
where

LCL = 0− Lεσ̂ε

√
θ

2− θ
, UCL = 0 + Lεσ̂ε

√
θ

2− θ
(17)

In (17), σ̂ε denotes the standard error of the residual as σ̂k in Equations (1) and (2); Lε(> 0) is a
half-length that is designed to generate a specific in-control ARL. Under this monitoring framework,
the ARLOUT performance of the T2 control chart, together with the EWMA chart, is evaluated for
phase II analysis in the next section. In terms of the aforementioned methods, the proposed monitoring
framework can be formalized as pseudo-code 1 in the appendix.

3. Experimental Results for Profile Monitoring

In this section, the proposed monitoring framework is illustrated and evaluated while using the
simulated reflow process in SMT. The application domains of the monitoring system and some
implementation issues are discussed. In terms of the simulation results, the analysis of profile
monitoring can be done in three parts: (i) making a comparison of the fitting performance between
the polynomial regression with AR(1), the modified sum of sine functions with AR(1), and the NLME
model; (ii) screening the outlying profiles by means of the T2

D control chart for phase I analysis; and,
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(iii) testing the proposed T2
D control chart with the EWMA control chart, while also monitoring the

process parameters and the residual in phase II analysis.

3.1. Fundamentals of Reflow Process

The operation of the reflow process is the heating sequence for assembling printed circuit boards
(PCB) using solder paste at successively higher temperatures. As an assembly moves through a
soldering system, it will perform a controlled temperature curve in order to achieve the required
quality. Such a temperature curve is also called a “temperature profile”. The temperature profile is
often measured along a variety of technical dimensions, such as slope, soak, time above liquidus, and
peak. In general, reflow soldering processes contain four stages. Each operation presents a unique
temperature profile: preheat, thermal soak (dwell), reflow (liquidus), and cooling. Figure 2 shows a
typical example of a schematic temperature profile.Processes 2019, 7, x FOR PEER REVIEW 8 of 21 
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Figure 2. A typical temperature profile.

In the preheat zone step, the changes of the temperature curve can be described as an ascending
tendency from normal temperature to approximately 150 ◦C. In this step, the ascending temperature
facilitates the removal of solvent and water vapor in the solder paste. Rapid heating helps the flux
softening temperature to be reached quickly, so the flux can spread quickly and cover the maximum
area of solder joints. It also integrates some activator into the actual alloy liquid. Furthermore, because
some parts of the motherboard cannot deal with the sharp temperature changes, the rate of temperature
change in the preheating zone is set to between 1.5 ◦C/s and 3 ◦C/s.

When the operation approaches the thermostatic zone, the temperature is usually maintained in a
region of 150 ± 10 ◦C. This operational zone is a flat temperature profile to enhance the effect of the
soldering, and it especially prevents tombstoning. The reflow zone is also called Time Above Liquidus
(TAL). The TAL is the period of time above the maximum temperature at which crystals can coexist
with the melt in thermodynamic equilibrium. The peak of reflow temperature usually depends on
the melting temperature of the solder, while also taking into account the temperature that assembled
components can endure. For instance, a typical lead-free manufacturing process must not exceed the
limit of 260 ◦C, which is the highest temperature that tantalum capacitors can endure.

Following the reflow zone, the product is cooled and the solder joints are solidified so that it
can rejoin the assembly process. Note that Figure 2 only provides an overall, schematic diagram of
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the temperature profile of the reflow process. In fact, the temperature control in the reflow process
belongs to a nonlinear profile pattern. Hence, any linear approximation approach will not be suited
to this research. The high nonlinearity and curvature somewhat warrants the need for a new profile
monitoring approach. In this paper, the practical data of the same product type is gathered so as to
form individual profiles for process monitoring. The production line in the SMT practice is essentially
constructed with high flexibility to deal with the different types of products. Hence, to perform profile
monitoring of a wide variety of low-volume products in small-to-moderate batches is our research
target. Note that the data set that was used in this research is available upon request.

3.2. Comparing and Evaluating the Different Profile Models

In this section, the polynomial regression model, the modified sum of sine functions, and the
NLME model are first used to fit the reflow process data. The polynomial models of orders 3–5 and
the modified sum of 1–3 sine functions are selected for model fitting. In every profile, n measurements
in the ith random profile are collected over time, as indicated by (xjp, yjp), for p = 1, 2, . . . , q and
j = 1, 2, . . . , n. The polynomial models are as shown in Equation (3). The modified sum of sine
functions and the nonlinear mixed effects models are as shown in Equations (4)–(7).

In here, seven models, including the polynomial model of different orders with AR(1), the
modified sum of sine functions with AR(1), and the NLME model, are tested. Fifteen profiles of 48
data points that were collected each in the reflow process are individually modelled by using the seven
different models, and the parameter estimates are utilized for phase I monitoring. To compare the
fitting results, four performance measures (R2

adj, RSS, SICc, and AICc) are selected as the performance
measures. Moreover, the number of times that each model is chosen best over 15 profiles is also
reported. The computational results are displayed in Table 1 and Figures 3–5. From the fitting results in
Table 1, it can be seen that the modified sum of two-sine functions exhibits a better fitting performance
(with less SIC and AIC) than the other fitted models. Typically, using a large sample of profiles for
parameter estimation in the phase I analysis is necessary, especially for nonlinear profiles. In this study,
only fifteen profiles can be obtained due to a technical limitation. The excellent fitting performance that
is shown in Table 1 and Figures 3–5 must be attributed to the appropriateness of model selection and
the flexibility of the chosen models under investigation. If the fitting performance is not satisfactory,
then more profile data need to be collected for the estimation purpose before proceeding to the phase
II analysis.

The particularly high performance based on the four measures arises from the suitability of
the modified sum of two-sines with AR(1) for the reflow process data. Thus, the model previously
mentioned is considered to be the best model to undertake research. The polynomial model of order 4
with AR(1) outperforms the other polynomial models, thus being considered as the benchmark model.
These two process models with AR(1) show great flexibility in dealing with complex model-building
situations, and therefore they are also expected to be extensively applied in a wide variety of nonlinear
processes. They will be selected for evaluation in phase I and II monitoring.
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Table 1. The fitting performances for polynomial, sum of sine, and nonlinear mixed effects model
(NLME) models. (a) The fitting performances of the polynomial with first-order autoregressive (AR(1))
model; (b) The fitting performances of the sum of sine with AR(1) model; (c) The number of times
each model was chosen best over 15 profiles; (d) The fitting performances of NLME model based on
two-sine function.

The Different Order The Fitting Performance for Polynomial with AR(1) Model

R2
adj AICC SICC RSS

3rd order 0.9873 4.6003 3.7309 1522.7104

4th order 0.9904 4.3485 3.5279 1126.4767

5th order 0.9908 4.3158 3.5465 1048.1086

The Different Order The Fitting Performance for Sum of Sine with AR(1) Model

R2
adj AICC SICC RSS

One-sine model 0.9863 4.6576 3.7417 1677.0915

Two-sine model 0.9955 3.1722 2.4029 517.3413

Three-sine model 0.9909 3.4961 2.8972 994.5594

Models R2
adj AICC SICC RSS

3rd order polynomial
with AR(1) 0 0 0 0

4th order polynomial
with AR(1) 0 0 0 0

5th order polynomial
with AR(1) 0 0 0 0

One-sine with AR(1) 0 0 0 0

Two-sine with AR(1) 9 9 10 7

Three-sine with AR(1) 6 6 5 8

¯
R

2

adj
AICC SICC RSS

NLME model 0.9929 3.9730 3.5039 718.9822
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3.3. Simulations for Phase I Analyses

In phase I, following [18] and [16], the T2
D chart is used for identifying the outlying profiles. First,

the statistic T2
D of the parameter estimates (including the AR(1) parameter) is calculated based on

Equation (12). Based on the polynomial regression model of order 4 and the modified sum of two-sines,
the control limit of T2

D control chart is plotted in Figure 6. Since no outlying profiles are found in the
15 phase I runs, as in the common SPC practice, no profiles need to be removed prior to the phase II.
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On the other hand, three types of the hypothetical process abnormalities are also tested in order to
assess and compare the performance of phase I monitoring. The first scenario assumes that the preheat
zone has a lower temperature slope. The maintenance of temperature in the dwell zone is assumed to
be unstable for the second scenario, and in the third scenario the temperature is set to over-heating in
the reflow zone. Figure 7 shows the three outlying profiles along with the average baseline using 15
in-control profiles. In common practice, these three types of abnormality will not happen at the same
time. Accordingly, in our paper, we test each abnormal profile separately.Processes 2019, 7, x FOR PEER REVIEW 12 of 21 
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Figure 7. The simulations of abnormal profiles.

In this simulation, the significance level of α = 0.05 is used as the significance level for any
individual profile, i.e., T2

p , p = 1, . . . , 15, and to construct the control limits [14,17]. The three simulated
abnormal profiles are individually added to the 15 in-control profiles. The T2

D statistic is computed
for the polynomial regression and the modified sum of two-sine functions with the AR(1) model.
Figures 8 and 9 show the monitoring results of the T2

D control charts for abnormal profiles 1, 2, and 3.
The simulated results reveal that the T2

D control charts are able to identify the outlying situations if the
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abnormal profiles are present. It is worth to note that the T2
D control chart is like a moving range with

individual observations, and it is not affected by shifts in the mean vector, and as a result of which it
has greater power.
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Figure 9. Detect the abnormal profiles using the sum of sine function with the 15 in-control profiles. (a)
Detecting the abnormal profile 1; (b) Detecting the abnormal profile 2; and, (c) Detecting the abnormal
profile 3.

The polynomial model of order 4 with AR(1) and the modified sum of two-sine functions with
AR(1) can account for the autocorrelation effects appropriately, so the simulated abnormal profiles can
be successfully detected. From a fitting performance viewpoint based on Table 1, the modified sum
of two-sine functions with AR(1) takes the lead between the compared models. From an operational
point of view, the polynomial model of order 4 can be adopted, since it contains fewer unknown
parameters to be estimated and it is easier to implement in practice than the modified sum of two-sine
functions. By contrast, the modified sum of two-sine functions explains the data variance better and
is more powerful than the polynomial model of order 4. Therefore, during the pre-production stage
where the process insights should be fully gained for the purpose of process adjustment/optimization,
the modified sum of two-sine functions can be considered instead.
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3.4. Simulation Results for Phase II Monitoring

The objective of phase II is to detect shifts quickly in the process. The reliable control limits can
be established to achieve effective on-line monitoring in phase II when the in-control process data
is stable. The proposed monitoring framework uses the composite method to monitor two possible
process irregularities. First, the T2

D control chart is applied, so that the profile shape of the fitted model
can be monitored. Second, the autocorrelation of residuals is monitored by using the EWMA control
chart. If the process has been confirmed to be stable, then the 15 in-control profiles will be employed in
order to estimate the parameters of the fitted model, the mean vector, and the variance-covariance.
The parameter estimates are used to replace the unknown parameters in Equations (3)–(7), plus an
error term to simulate the profile data. The practical process is assumed to follow the modified sum
of two-sine functions with the error term to simulate the process changes. The variance of the fitted
model is estimated by using the mean square error (MSE), over the 15 in-control profiles, from the
model-building stage. The error term of the process model is assumed to be normally distributed
with zero mean and constant variance. Next, the T2

D and EWMA control charts are employed to
implement the phase II analysis, evaluating the detection performance as the process parameters shift.
The control limits are constructed using the parameter estimates of the three different fitting models
(the polynomial regression model of order 4 with AR(1), the modified sum of two-sine functions
with AR(1), and the traditional polynomial regression model of order 4) to evaluate and compare
the monitoring performances. The traditional polynomial regression model of order 4 is only used
as a benchmark. To monitor the process shape on a fair basis, in each fitting model the different
control limits should be particularly designed to have an approximately equal in-control ARL (i.e.,
ARLIN = 100) when using 10,000 simulation cycles. Moreover, the smoothing constant (θ) in the EWMA
chart is set to 0.02, as in [11] and [19]. Here, in each experiment, 20,000 profiles are simulated for
ARLOUT evaluation in terms of the shifts of different scales in the six parameters of the modified sum
of two-sine functions. Note that, based on an earlier experiment, using a typical ARLIN in our study,
like 370 or even larger, will cause indistinguishable performance in ARLOUT in the presence of a small
scale of parameter change. The formal procedure in the Phase II analysis is represented as pseudo-code
2 in the Appendix A.

In the ordinary SMT operation, if the process recipe is suitably tuned before volume production,
then the profile specification should be pre-determined and only subjected to a minuscule adjustment
as a result of product changes. Therefore, seven different types of shifts are considered in our simulation
study. The shifts of these process parameters are applied to the amplitude, the frequency, and the
horizontal phase constant in the model, as shown in Equation (5). The simulation results of ARLOUT

can be used to evaluate the on-line monitoring capability. These ARLOUT values are calculated by
setting equally spaced parameter shifts every 100 simulated profiles (maximum ARLIN = 100) and
then averaging across 20,000 simulation cycles. The parameter shift in the scale of σβ ranges from
0.5 to 3 for the six process parameters. Any parameter shift will cause the change of curve shape that
is closest to the type of sustained shift in SPC practice. Figure 10a shows the comparative profiles
under various shifts of different process parameters. In order to detect the autocorrelation effect in the
residuals of each profile, the EWMA control chart is used to implement the related monitoring tasks
using the different scales of the autocorrelation coefficient, from 0.1 to 0.9 (see Figure 10b).



Processes 2019, 7, 104 16 of 21

Processes 2019, 7, x FOR PEER REVIEW 15 of 21 

 

from the model-building stage. The error term of the process model is assumed to be normally 
distributed with zero mean and constant variance. Next, the 2

DT  and EWMA control charts are 
employed to implement the phase II analysis, evaluating the detection performance as the process 
parameters shift. The control limits are constructed using the parameter estimates of the three 
different fitting models (the polynomial regression model of order 4 with AR(1), the modified sum 
of two-sine functions with AR(1), and the traditional polynomial regression model of order 4) to 
evaluate and compare the monitoring performances. The traditional polynomial regression model of 
order 4 is only used as a benchmark. To monitor the process shape on a fair basis, in each fitting 
model the different control limits should be particularly designed to have an approximately equal in-
control ARL (i.e., ARLIN = 100) when using 10,000 simulation cycles. Moreover, the smoothing 
constant (θ ) in the EWMA chart is set to 0.02, as in [11] and [19]. Here, in each experiment, 20,000 
profiles are simulated for ARLOUT evaluation in terms of the shifts of different scales in the six 
parameters of the modified sum of two-sine functions. Note that, based on an earlier experiment, 
using a typical ARLIN in our study, like 370 or even larger, will cause indistinguishable performance 
in ARLOUT in the presence of a small scale of parameter change. The formal procedure in the Phase II 
analysis is represented as pseudo-code 2 in the Appendix A. 

In the ordinary SMT operation, if the process recipe is suitably tuned before volume production, 
then the profile specification should be pre-determined and only subjected to a minuscule adjustment 
as a result of product changes. Therefore, seven different types of shifts are considered in our 
simulation study. The shifts of these process parameters are applied to the amplitude, the frequency, 
and the horizontal phase constant in the model, as shown in Equation (5). The simulation results of 
ARLOUT can be used to evaluate the on-line monitoring capability. These ARLOUT values are calculated 
by setting equally spaced parameter shifts every 100 simulated profiles (maximum INARL 100= ) 

and then averaging across 20,000 simulation cycles. The parameter shift in the scale of σ β  ranges 

from 0.5 to 3 for the six process parameters. Any parameter shift will cause the change of curve shape 
that is closest to the type of sustained shift in SPC practice. Figure 10a shows the comparative profiles 
under various shifts of different process parameters. In order to detect the autocorrelation effect in 
the residuals of each profile, the EWMA control chart is used to implement the related monitoring 
tasks using the different scales of the autocorrelation coefficient, from 0.1 to 0.9 (see Figure 10b). 

 
(a) 

Processes 2019, 7, x FOR PEER REVIEW 16 of 21 

 

 
(b) 

Figure 10. Phase II analysis. (a) Detecting the curve changes using different shifts of process 
parameters; and, (b) Detecting the autocorrelation effect of residuals using exponentially weighted 
moving average (EWMA) control chart. 

Table 2 gives the ARLOUT estimates for shifts of the six parameters. The experimental results 
indicate that, for monitoring the shape of the model, both of the composite models perform 
reasonably well regardless of whether the data is modeled by the modified sum of two-sine functions 
or the polynomial regression model. We also use the EWMA control chart to monitor residuals if any 
autocorrelation effect in addition to the AR(1) already included in the model is exhibited. The results 
show that the modified sum of two-sine functions, combined with AR(1), performs much better than 
the pure polynomial regression model as 1.5λ ≥ . Even so, it is very difficult to compare the 
modified sum of two-sine functions and the polynomial regression model in the composite approach, 
although the former performs slightly better than the latter. In a word, it is reasonable to allege that 
the modified sum of two-sine functions can be a viable modeling option for nonlinear profiling 
monitoring circumstances where only small samples are available for the reflow process. 

Table 2. The average run length (ARL) comparison for different parameter shifts using three different 
models. (a) 1a  from 1a  to 

11 aa λσ+ ; (b) 1b  from 1b  to 
11 bb λσ+ ; (c) 1c  from 1c  to 

11 cc λσ+ ; (d) 2a  from 2a  to 
22 aa λσ+ ; (e) 2b  from 2b  to 

22 bb λσ+ ; (f) 2c  from 2c  to 

22 cc λσ+ ; (g) The ARL for monitoring the autocorrelation of residuals. 

(a) 

Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1) 
λ  0.5 1 1.5 2 2.5 3 

( )2
OUT DARL T  72.7286 40.0651 18.9343 9.2455 4.8773 2.8661 

Control Chart Based on the Sum of Two-sine Functions with AR(1) Model 
λ  0.5 1 1.5 2 2.5 3 

( )2
OUT DARL T  71.0655 40.0492 18.6020 9.0533 4.7834 2.8495 

Control Chart Based on the Polynomial Regression of Order 4 
λ  0.5 1 1.5 2 2.5 3 

( )2
OUT DARL T  75.8772 45.8895 21.2343 10.5677 7.0577 3.0632 

Figure 10. Phase II analysis. (a) Detecting the curve changes using different shifts of process parameters;
and, (b) Detecting the autocorrelation effect of residuals using exponentially weighted moving average
(EWMA) control chart.

Table 2 gives the ARLOUT estimates for shifts of the six parameters. The experimental results
indicate that, for monitoring the shape of the model, both of the composite models perform reasonably
well regardless of whether the data is modeled by the modified sum of two-sine functions or the
polynomial regression model. We also use the EWMA control chart to monitor residuals if any
autocorrelation effect in addition to the AR(1) already included in the model is exhibited. The results
show that the modified sum of two-sine functions, combined with AR(1), performs much better
than the pure polynomial regression model as λ ≥ 1.5. Even so, it is very difficult to compare the
modified sum of two-sine functions and the polynomial regression model in the composite approach,
although the former performs slightly better than the latter. In a word, it is reasonable to allege that the
modified sum of two-sine functions can be a viable modeling option for nonlinear profiling monitoring
circumstances where only small samples are available for the reflow process.
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Table 2. The average run length (ARL) comparison for different parameter shifts using three different
models. (a) a1 from a1 to a1 + λσa1 ; (b) b1 from b1 to b1 + λσb1

; (c) c1 from c1 to c1 + λσc1 ; (d) a2 from
a2 to a2 + λσa2 ; (e) b2 from b2 to b2 + λσb2 ; (f) c2 from c2 to c2 + λσc2 ; (g) The ARL for monitoring the
autocorrelation of residuals.

Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

72.7286 40.0651 18.9343 9.2455 4.8773 2.8661

Control Chart Based on the Sum of Two-sine Functions with AR(1) Model

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

71.0655 40.0492 18.6020 9.0533 4.7834 2.8495

Control Chart Based on the Polynomial Regression of Order 4

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

75.8772 45.8895 21.2343 10.5677 7.0577 3.0632

Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

73.5965 41.9621 19.6273 8.9772 4.8677 2.9916

Control Chart Based on the Sum of Two-sine Functions with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

73.5521 40.9701 18.2644 8.7256 4.7681 2.8211

Control Chart Based on Polynomial Regression of Order 4

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

74.9043 52.3352 21.2921 10.8889 7.8225 4.5232

Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

74.8687 40.2647 18.5716 9.0064 4.9945 2.8466

Control Chart Based on the Sum of Two-sine Functions with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

74.4160 40.1462 18.3835 8.8046 4.6832 2.7475

Control Chart Based on the Polynomial Regression of Order 4

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

78.3815 55.6741 22.7029 15.3900 6.3135 3.6904

Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

71.2188 40.5620 19.4892 9.1471 5.0632 2.9617

Control Chart Based on the Sum of Two-sine Functions with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

70.7991 39.8413 19.2414 8.7882 4.7695 2.8921

Control Chart Based on the Polynomial Regression of Order 4

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

79.4577 59.0987 21.8773 9.9247 6.9499 3.1433
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Table 2. Cont.

Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

77.9581 40.7159 17.8598 9.5453 5.2117 2.9759

Control Chart Based on the Sum of Two-sine Functions with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

77.6478 40.7232 17.7346 9.0055 4.9806 2.8821

Control Chart Based on the Polynomial Regression of Order 4

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

80.9116 51.3598 25.5898 11.8557 6.0081 4.3123

Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

72.7417 41.3423 18.8105 9.0889 4.9321 2.8128

Control Chart Based on the Sum of Two-sine Functions with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

72.0051 40.9314 18.6684 9.0452 4.8423 2.7555

Control Chart Based on the Polynomial Regression of Order 4

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

74.3391 45.2862 22.9480 11.3352 5.8202 3.4110

εij=φεij−1+aij,aij∼N(0,σ2)

Autocorrelation
coefficient φ

0.1 0.3 0.5 0.7 0.9

ARLOUT(EWMA) 76.4314 50.9765 26.2965 13.8156 8.7692

4. Conclusions

This paper presents a new monitoring framework for dealing with the autocorrelation effect that
exists in the errors around the functional relationship when only small samples are available. The
research framework includes model building and phase I and II analyses. The central idea of the
proposal is how to construct an appropriate profile model that is capable of dealing with the time series
effect. Using different profile models (the polynomial regression model, the modified sum of two-sine
functions, and the nonlinear mixed effects model), the phase I and II analyses of reflow process data
can be conducted. In phase I, the Hotelling T2

D control chart is utilized to screen the outlying profiles.
When the outlying profiles are investigated and removed, then the same control charts with the EWMA
control chart for monitoring autocorrelation are used for phase II monitoring, where the detectability
of parameter shifts in terms of ARLOUT is evaluated. According to the comparison results, some
concluding remarks and suggestions can be provided:

1. If the profile pattern exhibits a significant autocorrelation effect, then the proposed framework
can use a different profile model with AR(1) and the proposed model selection procedure to
strengthen the fitting performance. Furthermore, we feel safe to conclude that the sum of two-sine
functions with AR(1) can be a viable modelling option for nonlinear profiling monitoring instances
where only small samples are available for the reflow process.

2. In phase I of the reflow process that is investigated in this paper, two types of composite models
all have good monitoring ability for identifying outlying profiles. However, the nonlinear mixed
effects model cannot resolve the problem of autocorrelation in the residuals. This situation will
cause difficulties in monitoring when autocorrelation is present.
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3. According to the phase I results of the reflow process that was investigated in this study,
the Hotelling T2 control chart can produce satisfactory performance for monitoring of the
process profile.

4. On the whole, the proposed monitoring framework displays better detecting performances than
the traditional polynomial regression model in phase II analysis for the reflow process that
is discussed in this paper. In addition, the proposed EWMA control chart is also effective in
detecting changes of the autocorrelation effect in residuals. This study pinpoints a major finding,
a fact that the modified sum of two-sine functions is able to statistically fit the nonlinear profile of
the reflow process data extremely well. In the proposed framework, the Hotelling T2 control chart
and the EWMA control chart work in harmony to simultaneously monitor the parameter estimates
(i.e., profile shape) and residuals (i.e., profile variability), respectively. The simulation results in
phases I and II illustrate the proposed monitoring framework. Therefore, the practitioner can
follow the guidelines of model building and process monitoring that are demonstrated in this
paper, as the nonlinear profile monitoring task of the reflow process is necessary.

5. To achieve desirable monitoring performances for other potential applications, the parameter
setting of the control chart bears further scrutiny. A real-data examination of phase II analysis
should be further conducted to complement the research outcomes that are delivered in this paper.
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Appendix A

1. The pseudo-code for the proposed monitoring framework:
Input the reflow process data
Do

Use three nonlinear models to fit the data;
Calculate (R2

adj, SSE, SICc, AICc);

While (the goodness of fit test is satisfied)
If (autocorrelation in the residuals)
{
Incorporate the time series model;
}
Construct the fitted model for each profile data
Calculate the T2 statistics using the vector of parameter estimates
Calculate the control limits for the T2 statistics
If (T2

C > UCLC) or (T2
D > UCLD)

{
Do
Remove the out-of-control profiles;
Recalculate the T2 and its upper control limit to check for any out-of-control profile;
While (all out-of-control profiles removed)
}

Calculate ARLIN and ARLOUT for phase II analysis
2. The pseudo-code for Phase II analysis



Processes 2019, 7, 104 20 of 21

For (the number of executions = 1:10,000)

Count = 0;

For (the number of simulated profiles = 1:20,000)

Count = count + 1;

Index = 0;

If (T2 > UCLT2)

RL (the number of simulations) = the number of simulated profiles;

Break;

Else

For (the sampling number of each profile = 1:48)

Calculate EWMA Z(the sampling number of each profile)

If (Z > UCLEWMA or Z < LCLEWMA)

Index = 1;

Break;

End

End

If (index = 1)

RL (the number of executions) = count;

Break;

End

End

End

End

Calculate ARL;
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