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Abstract: In view of rock burst accidents frequently occurring, a basic framework for an intelligent
early warning system for rock bursts (IEWSRB) is constructed based on several big data technologies
in the computer industry, including data mining, databases and data warehouses. Then, a data
warehouse is modeled with regard to monitoring the data of rock bursts, and the effective application
of data mining technology in this system is discussed in detail. Furthermore, we focus on the K-means
clustering algorithm, and a data visualization interface based on the Browser/Server (B/S) mode is
developed, which is mainly based on the Java language, supplemented by Cascading Style Sheets
(CSS), JavaScript and HyperText Markup Language (HTML), with Tomcat, as the server and Mysql
as the JavaWeb project of the rock burst monitoring data warehouse. The application of data mining
technology in IEWSRB can improve the existing rock burst monitoring system and enhance the
prediction. It can also realize real-time queries and the analysis of monitoring data through browsers,
which is very convenient. Hence, it can make important contributions to the safe and efficient
production of coal mines and the sustainable development of the coal economy.

Keywords: rock burst; data mining; clustering analysis; intelligent early warning; data warehouse

1. Introduction

During the process of coal mining in underground coalmines, many severe dynamic disasters can
easily occur. Among them, the rock burst is the most common and typical disaster, which refers to
the instantaneous release of elastic strain energy with the mass ejection of coal rocks and gas waves,
thereby resulting in sudden and violent damage to the roadway or working face. Hence, a rock burst
has great destructiveness and seriously threatens the safe production of coalmines. For example, a rock
burst accident occurred in the Luling coalmine of Huaibei city on 13 May 2003 and caused 86 casualties;
in 2005, a gas burst accident caused by a rock burst occurred in Haizhou coalmine of Liaoning province,
causing 214 deaths [1–4]. Additionally, there are 23 other countries and regions othere than China
where rock bursts have occurred over the last 280 years, such as Britain, Poland, France, Germany,
Russia, Ukraine, South Africa, United States, Japan, Australia and so on.

A rock burst is a transient and complex dynamic process, and its early warning analysis and
calculation are four-dimensional mechanical problems with the characteristics of multi-scale time and
space effects. Hence, the experience-identification and previous early warning index systems applied
to rock burst-prone coalmines have been unable to meet the requirements to date. With respect to
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the large numbers of productive practices, the study of rock burst accidents has many difficult issues
to resolve, and the imperfect and inadequate early warning system is the most prominent problem.
Hence, according to the different mining conditions, the study of the main effect factors and risk
sources of rock burst precursory patterns, the development of an intelligent early warning method of
rock bursts, and an intelligent recognition algorithm of rock burst precursors with multi-parameter
characteristics based on big data and data mining technologies are very important for the study object
of this paper.

As we all know, in Poland, the study with regard to rock bursts is very advanced, and its
monitoring system has been installed in all rock burst-prone coalmines, mainly using the methods
of microseismic events, drilling chip and comprehensive prediction. Currently, the ARAMIS M/E
microseismic monitoring system and the ARES-5/E earth-sound monitoring system developed in
Poland are widely used around the world. In China, according to the characteristics of the strong
destructivity, complexity and suddenness of rock bursts in Chinese coalmines, the monitoring methods
of microseismic events, electromagnetic radiation, drilling chips and ground sound are carried out [5–9].

From the point of view of the theoretical study of rock bursts, different geological conditions of
coalmines have different induced factors on rock bursts. Hence, according to collected monitoring data
of rock bursts (i.e., precursor information) only, the prediction of a rock burst and its grade can make
full use of the method of pattern recognition. Among them, artificial neural networks and support
vector machines which mainly focus on improving the prediction accuracy are the two most commonly
used study methods in this field. However, these two methods still have errors which may cause
serious disasters or accidents, because the prediction result of a large burst-liability of rock bursts may
be adjusted as a small burst-liability of rock bursts.

2. Architectural Design of the System

In this paper, a framework for an intelligent early warning system for rock bursts (IEWSRB) is
constructed, firstly according to the principles of intellectualization, multifunction, modularization
and standardization; subsequently an IEWSRB that aims to achieve real-time monitoring, data sharing
and integration is designed. This system can collect, transmit, pretreat, analyze and store the rock burst
monitoring data of underground coalmines in real time, continuously and accurately. Moreover, it can
handle the database to provide monitoring data and early warning information for the supervisor in
the office in a timely and accurate manner.

According to the aforementioned analysis, the overall structure of IEWSRB is constructed and
shown in Figure 1. Based on the design target and the principle of the distribution design of each model,
it is divided into four subsystems: monitoring, data management, model analysis and data product.
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The intelligent early warning system, which is based on the principle of “equivalent drilling chip”
and “rock burst risk determined by multi-factors”, not only shows backwards system compatibility
(i.e., rock burst monitoring can fully rely on existing devices), but can also enhance its performance.
Hence, IEWSRB has several distinctive features as follows:

(1) Automatic comprehensive monitoring: this system can realize multilevel and omni-directional
monitoring, and facilitate the collection, management and analysis of data. However, the data for
the monitoring of rock bursts in the past has had to be collected by artificial means or by using a
single-parameter monitoring method;

(2) The functional modules are independent: the system adopts a distributed, open and modular
design. It can assemble the monitoring module of different modules flexibly to make up the final
monitoring system and does not need the two-fold development of software;

(3) Intelligent early warning: the system can realize the early warning and prediction of rock
burst by using the real-time monitoring data monitored by the industrial Ethernet based on the early
warning model for rock bursts, which is deduced by a data mining algorithm;

(4) Separation of operation between monitoring and field: the operations of centralized monitoring,
analysis, decision-making and management can be carried out in the surface office, thereby realizing
separation between monitoring and field. The management will be more scientific;

(5) Data sharing: monitoring data can be shared in various mining areas, greatly improving the
utilization of data;

(6) The human–computer interaction interface is friendlier: data can be transmitted to users
by a visual interface and provides various personalized needs, thereby effectively improving the
user’s efficiency.

3. Design of System Data Warehouse

The IEWSRB is an integrated system based on monitoring data of rock bursts in coalmines. Among
them, the monitoring data have many characteristics, such as multiple data types, diverse sources and
a large amount of data. Previous database technologies, such as Oracle and Redis, have had difficulty
meeting the needs of data storage and management in coalmines. Data warehouse technology in big
data technology provides a new way to solve the problems that exist in the online monitoring of rock
bursts in coalmines.

As a new method of database application, the data warehouse is actually a derivative of
database technology, and has been widely used in supermarkets, banks and other fields. However,
the application of data warehouse technology in the field of rock bursts is still in the exploratory stage.

3.1. Calculation of Critical Energy Density

The kinetic energy of the broken coal-rock mass thrown into the free space depends largely on its
average initial velocity. According to the literature written by Qi and Dou [10], when the initial velocity
is less than 1 m/s, a rock burst is impossible, while when the initial velocity is larger than 10 m/s, a
rock burst is easily induced. When the rock burst occurs, the required energy must exceed the break
energy of the coal-rock mass and the minimum kinetic energy accumulated in the coal-rock mass.
Once the elastic strain energy accumulated in the coal rock exceeds the sum of the aforementioned
energy, a rock burst is likely to occur [11–13].

Epmin =
1
2

ρV2 (1)

where Epmin is the minimum kinetic energy required to induce the rock burst; V is the average
initial velocity of the broken coal-rock mass, V = 10 m/s; and ρ is the average density of the broken
coal-rock mass.

E f min =
σ2

c

2E
(2)
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where Efmin is the minimum energy required to destroy the coal-rock mass, σc is the tensile strength of
the unit coal and rock mass, and E is the constant of the broken coal and rock mass.

Emin = Epmin + E f min (3)

where Emin is the critical energy value of the rock burst.
In this paper, in order to better explain the aforementioned phenomenon, we take a special

coalmine condition as an example. The average density of the no. 5 coal in this coalmine, the mechanical
properties of which are displayed in Table 1, is 1340 kg/m3 and the minimum kinetic energy required
to generate an impact rock burst per unit of rock mass is 67 kJ/m3. The elastic modulus of the no.
5 coal is 6.58 GPa, with a unidirectional compressive strength of 17.90 MPa. The minimum energy
required to destroy the unit coal and rock mass is 24.347 kJ/m3, and the critical energy density of the
rock burst at the stope is 91.347 kJ/m3. When the stope energy density is greater than 91.347 kJ/m3,
there is a possibility of a rock burst.

Table 1. Mechanical properties of coal and rocks.

Lithology Tensile
Strength/MPa

Pressure
Resistance/MPa

Modulus of
Elasticity/GPa

Poisson
Ratio Cohesion/MPa Internal Friction

Angle/◦

No. 5 Coal 1.411 11.543 6.58 0.22 2.42 19
Roof 2.243 22.786 16.55 0.18 5.24 25
Floor 2.632 27.342 23.22 0.27 6.44 23

3.2. Architecture and Logical Model of Data Warehouse

The technical architecture of the rock burst data warehouse is divided into two parts: the foreground
and the background, as shown in Figure 2. The foreground is commonly known as the front-end display,
which is displayed to the user community in an intuitive and understandable way. The final display
form includes graphs, line graphs, pie charts and other graphic forms. The background is necessary
for carrying out the cleaning and pre-processing of the monitoring data, and then saving it to the
corresponding table of the data warehouse according to the monitoring mode, so that the data can be
expediently retrieved and displayed in the foreground.Processes 2019, 7, x FOR PEER REVIEW 5 of 19 
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The data warehouse is an extension of the relational database technology, and most of the current
data warehouse is based on relational databases. The design of the data warehouse is based on the
relationship between various data tables, and each data warehouse contains one or more tables, each of
which has a primary key ID and monitors data about rock bursts. Using multi-dimensional modeling,
the fact that tables can be cut by dimension prevents problems caused by a table having too much data.
Moreover, a table corresponds to multiple dimension tables, and a summary of multiple dimension
tables can be viewed as a collection of information in the same space.

From the point view of rock bursts, the data warehouse can be divided into drill cuttings,
microseismic, stress online, and so on. In this section, based on the requirement of rock burst
monitoring and the intelligent early warning system, two databases—HAB_TP and HAB_AP—in the
data warehouse are established.

In the case of HAB_TP, a fact table (MonitorItem) and a dimension table (Station) are designed.
(a) The MonitorItem fact table is used to store the automatically monitored data (including drill

cutting, microseismic, and stress online), as shown in Table 2. In the monitoring mode, Z represents
drill cuttings data, W represents microseismic data, and Y represents stress online data;

(b) The Station dimension table is used to store the geographical location of the monitoring mining
area, such as the mine name, latitude and longitude, city and mining company to which the mining
area belongs as shown in Table 3. The star model of the HAB_TP data warehouse is shown in Figure 3.

Table 2. MonitorItem fact table properties.

Column Name Data Type Size (Accuracy) Annotation

MonitorItemID Int 4 Time keyword, primary key
StationID Int 4 The name of mine

CollectionTIme datetime 4 Acquisition time
CollectionType char 1 Monitoring way (Z, W, Y)
CollectionValue decimal 5 (7,2) Monitoring measurement

Table 3. Station dimension table properties.

Column Name Data Type Size (Accuracy) Annotation

StationID Int 4 Major key
StationName varchar 20 The name of mine

Latitude Decimal 5(5,2) Latitude
Longitude Decimal 5(5,2) Longitude’

City varchar 20 Mining area
Group varchar 20 Mining group
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In HAB_AP, a fact table (MonitorFact) and five-dimension tables (CollectionTime, ColTunnel,
Drillings, SlightShock, StressOnline) are designed.
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(a) The metadata description of the monitoring fact table is shown in Table 4;
(b) The structure of the time dimension table is shown in Table 5;
(c) The structure of the monitoring lane dimension table is shown in Table 6;
(d) The structure of the drill cutting monitoring dimension table is shown in Table 7;
(e) The structure of the microseismic monitoring dimension table is shown in Table 8;
(f) The structure of the stress online monitoring is shown in Table 9.

Table 4. MonitorFact fact table metadata.

Name MonitorFact

Summary All monitoring conditions related to impact ground pressure
Objective Used for the analysis of impact factors

Dimension Time, monitoring roadway, drilling cutting monitoring, microseismic
monitoring, stress online monitoring

Fact Monitoring fact sheet

Table 5. Collection of time dimension table properties.

Column Name Data Type Size (Accuracy) Annotation

ColTimeID Int 4 Major key
ColYear varchar 4 Monitoring year

ColMonth varchar 2 Monitoring month
ColDay varchar 2 Monitoring Day

ColHour varchar 2 Monitoring hours
ColMinute varchar 2 Monitoring minutes

Table 6. ColTunnel dimension table properties.

Column Name Data Type Size (Accuracy) Annotation

ColTunnelD Int 4 Major key
ColTunneName varchar 20 Monitoring roadway name
ColTunneCode Int 4 Coding of roadway
ColTunneMine varchar 20 Roadway mine
ColTunneCity varchar 20 City of the roadway

Table 7. Drillings dimension table properties.

Column Name Data Type Size (Accuracy) Annotation

DrillingslD Int 4 Major key
DrillingsNumber Int 4 Monitoring hole number
DrillingsLocation Int 4 Monitoring position (distance/m)

HoleDepth varchar 4 Deep hole
AmountCoal varchar 20 Amount of pulverized coal/kg

Table 8. Slight shock dimension table properties.

Column Name Data Type Size (Accuracy) Annotation

SlightShocklD Int 4 Major key
CumEnergy Int 15 Accumulated energy/J

VibrationTime Int 4 Vibration frequency
MaxEnergy Int 15 Maximum energy/J
AveEnergy Int 15 Average energy/J
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Table 9. Stress online dimension table properties.

Column Name Data Type Size (Accuracy) Annotation

StressOnlinelD Int 4 Major key
StressOnlineNumber Int 4 Monitoring hole number

SensorDepth Int 4 Sensor depth
StressOnlineValue Int 15 Stress value /MPa

The star data model of the HAB_AP data warehouse is shown in Figure 4.
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4. Application of Cluster Analysis Technology in Rock Bursts

4.1. Clustering Algorithm and Formula Selection

Clustering analysis does not require artificial division and supervision. A set of data can be
grouped by a fixed number, in which the data in each group have the highest similarity. The data are
usually divided based on their distance, and the similarity and dissimilarity are the criteria for this
division. It is an unsupervised learning process [14].

We use X to represent a set of sample data and use a set of ordered classes (X, s) or (X, d) to
represent the input of the cluster analysis, while s and d are the criteria for measuring the similarity or
dissimilarity between samples. The output of the clustering system is a partition, and C = {C1, C2, . . . ,
Ck} occurs, where Ci (i = 1, 2, . . . , k) is a subset of X. Equations (4) and (5) are as follows.

C1
⋃

C2
⋃

. . .
⋃

Ck = X (4)

Ci
⋂

Cj = ø, 1 ≤ i 6= j ≤ k (5)

where C1, C2, . . . , Ck are called the classes.
The rock burst occurring in coalmines is a dynamic disaster caused by multiple factors. It has the

same characteristics as natural earthquakes, such as suddenness, complexity, randomness, difference
and predictability. In addition, the complexity of the monitoring system makes the monitoring
data extremely ambiguous. K-means clustering does not require the artificial definition of the
partitioning conditions, but directly uses computer-automated iteration for accurate data partitioning.
The application of the K-means clustering algorithm in the prediction of rock bursts can provide
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accurate warning information for disaster prevention, effectively protecting the personal safety,
reducing economic losses, and helping to further study the mechanism of rock bursts.

The K-means clustering algorithm is one of the ten classical algorithms, and it is a mature and
widely used method. The calculation steps of the K-means clustering algorithm take the k points to
make a preliminary classification, dividing the closest data objects, and changing the values of each
cluster center through iterative iteration until the final clustering results cannot be iterated.

Assuming the sample data set is divided into c categories, the general steps are as follows:
(1) Select the initial center of c categories properly;
(2) In the k times iteration, the distance from the c center to any sample is classified into the center

of the shortest distance.
(3) Update the center value of the category using mean methods;
(4) For all c cluster centers, if the value is kept unchanged after the iterative method of (2) and (3),

the iteration ends; otherwise, it iteratively continues [15–17].
The greatest advantage of this algorithm is its simplicity and convenience. Additionally, the key

to the K-means algorithm lies in the choice of distance formula and the selection of the initial center.
Because the amount of coal powder, stress online, and microseismic energy are all practical data
with unit metrics, the Mahalanobis distance is used as the distance formula for calculation. Then,
the function of the digital square sum of the errors is viewed as the clustering criterion function,
thereby forming one class or cluster.

There are M sample vectors marked as X1 – Xm, the mean is recorded as vector µ, and the
covariance matrix is denoted as S. Then, the Mahalanobis distance of the sample vector X to µ is
expressed as

D(X) =

√
(X− µ)TS−1(X− µ) (6)

The Mahalanobis distance between the vector Xi and Xj is defined as

D
(
Xi, Xj

)
=
√(

Xi − Xj
)TS−1

(
Xi − Xj

)
(7)

From the above analysis, if two identical samples are set up in two different populations, the
Mahalanobis distance between the two samples is usually different. When the Mahalanobis distance is
used for the calculation, the amount of the total sample data must be larger than the dimension of the
sample data set. Otherwise, the inverse matrix of the covariance matrix of the total sample data cannot
be calculated. If this case occurs, it can only be calculated with the Euclidean distance [18–21].

The usage of the Mahalanobis distance has advantages and disadvantages. The advantages of the
Mahalanobis distance are that since the Mahalanobis distance between two points is independent of
the measurement unit of the data source, it is not affected by the dimension, and it can also exclude
the interference of the correlation between the variables; the disadvantage is that the Mahalanobis
distance amplifies tiny changes in data.

4.2. K-Means Clustering Algorithm Simulation Experiment

Figures 5 and 6 are the results of the clustering simulation obtained by using the classic K-means
clustering algorithm built in Matlab 9.1 which is developed by the MathWorks company of Natick
city, MA, US in 2016, and its improved K-means clustering algorithm for the Incorporated Research
Institutions for Seismology (IRIS) data set. Table 10 is a comparison of the accuracy of the two
clustering results.

From Figures 5 and 6 and Table 10, we can see that the improved K-means clustering algorithm is
more accurate than the K-means clustering algorithm with Matlab, and the clustering effect is better.
The code of the improved K-means clustering algorithm can be seen in “Appendix A”, which is after
the section “Future work”.
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Table 10. Comparison results of Matlab’s own K-means and the improved K-means clustering.

Clustering Algorithm Correct

Matlab with K-means 90.4%
Improved K-means 93.8%

4.3. Result Analysis of the Improved K-Means Clustering Algorithm in Rock Bursts

The mechanism of rock bursts is very complicated, and the induced process of rock bursts is a
dynamic process. The sample data collected from the rock burst monitoring data with great changes
during a period of time are cleaned and pre-processed and stored in the data warehouse. Then,
the K-means clustering algorithm is used to cluster the analysis on the data set according to the actual
situation of the rock burst. The data in the sample set are divided into three categories: samples
without a rock burst, samples that are going to induce a rock burst, and samples with a rock burst.
After the clustering results are obtained, the new monitoring data only needs to be put into the data
warehouse and use the K-means algorithm to cluster again, and then we can continuously classify the
new monitoring data and scientifically carry out the work of disaster prevention and reduction [22–24].

Data are sampled from the monitoring results, including drilling cuttings, largest single seismic
energy and stress online, from the Panel 27307 of a coalmine during 10 April 2017 to 13 August 2017.
Then, the improved K-means clustering algorithm is used for the clustering analysis in Matlab 2016a,
and the cluster number is set up to 3. Figure 7 represents the clustering results.
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In Figure 7, the red dots indicate the situation where the danger needs to be alerted, the blue
indicates that the danger is likely to be subject to early warning, and the green point indicates a
relatively safe situation. The top four red data points correspond to the most dangerous situation in
23 April, 1 May, 3 May and 7 July, respectively. It is consistent with the actual situation, so this early
warning clustering algorithm is effective. However, it should be noted that when there is only a small
number of data sets, the sample may be misclassified due to the small number of samples and the
complex mechanism of the rock burst, and the K-means algorithm may not be able to predict the rock
burst correctly.

The following is an example analysis of rock burst prediction on test data in the field. We also
summarize the following warning values: the critical value of drill cuttings (1–12 m: 4.8 kg), the warning
value of microseismic (single event: 105 J), and the online warning value of stress, as shown in Table 11.
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Table 11. Stress online early warning value.

8 m 14 m

Yellow alert 9 MPa 11 MPa
Red alert 12 MPa 14 MPa
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5. Realization of Visualization of Rock Burst Data

5.1. Architecture Design and Development Environment

The data mining system of rock bursts is composed of four modules: the software startup module,
data acquisition module of rock bursts, data mining module of rock bursts and data visualization
module. Users need to register an account in the software startup module to save and analyze their
data mining results, and also to observe the data curve in real time. The data acquisition module for
rock bursts can obtain the rock burst data from different data sources, in preparation for later data
mining. The data mining module includes a variety of different data mining algorithms, processing
and analyzing the rock burst data. The data visualization module is used to display the results of the
data curve intuitively.

(1) Tomcat was originally developed by James Duncan Davidson of Sun Microsystems and became
a free web application server recently. It belongs to the lightweight application servers, and is widely
used in application scenarios where the concurrency number is not large. It has strong support for the
Java language, and is the first choice for developing Java Server Pages (JSP) programs [25–27];

(2) MySQL is the traditional relational database management system. It was developed by the
Swedish MySQL AB and is currently owned by Oracle Corporation. Moreover, MySQL is currently the
most popular relational database and is often integrated into web development projects. MySQL has
the characteristics of high speed and low cost, and is open source, and it occupies a large proportion of
the market;

(3) IntelliJ IDEA is one of the best-integrated tools for the Java language development environment,
especially in the aspects of intelligent code assistants, code prompts, J2EE support, various versioning
tools (git, svn, github, etc.), JUnit, CVS integration, etc. These aspects of functionality are far superior
to other development tools and its flagship version also supports HTML, CSS, PHP (Hypertext
Preprocessor), MySQL, Python, etc. Hence, it can develop multi-language capabilities [28], such as
JavaWeb programs, PHP development, etc.

The visual interface of the IEWSBR was developed in Intellij IDEA2017. When the Web project
was created, the project was based on the Maven carrying out the package, and the whole architecture
was developed on the basis of the SpringMVC framework. The SpringMVC framework, which is based
on a framework of MVC, is a module of Spring. The operation process is such that the first request will
be sent to C, and then the controller goes to the M model (pojo, action, service, dao) layer processing,
the result is finalized and sent back to the controller, the controller will be rendered through the viewer,
and finally it will be returned to the terminal (response).

5.2. Implementation of Software Startup Module

To meet the needs of different users in different environments, the IEWSBR adds the functions
of registered users and user logins in the software startup module to assign different permissions.
This system can mine rock burst data for different individual needs, save data mining results to local
folders, facilitate the communication and transmission between the staff, and also watch data reports
in real time in the data visualization interface. The software startup interface is shown in Figure 9.
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5.3. Rock Burst Data Acquisition Module

The IEWSRB has three modes of importing data: manually importing it into the Mysql database,
importing it into the Mysql database with Excel, and writing the program into the Mysql database
automatically. The first two methods require data pre-processing, which standardizes the disordered
monitoring data. This work is actually quite cumbersome, and it is necessary to review the integrity
and accuracy of the massive monitoring data. When the data is complete and the indicators are
complete, the abnormal and duplicated data will be filtered out. The data that do not conform to the
rules are deleted, leaving the data stored in the database or Excel [29].

Creating a database connection requires roughly three steps: activating the driver, setting up
connection information, and opening the connection, where the properties of the data source is as follows:

db.url = jdbc:mysql://localhost:3306/hab_tp
db.username = root
db.password = root
db.dirverClass = com.mysql.jdbc.Driver

Once the connection is established, we can use the instance of SimpleJdbcCall to invoke any stored
procedure and the SQL statement of the database. The detailed code of part for the stored procedure
called by the login operation is displayed in the section “Appendix B”.

5.4. Data Visualization Module

The visualization module of IEWSRB is designed to display the results directly and visually to users
through the Browser/Server (B/S) structure. It is composed of data tables, columns, broken lines and
pie charts. The interface for data query is shown in Figure 11. According to the requirements, we can fill
in the query interval, query data type and query results. If the data query button in Figure 10 is clicked,
the query result page in the form of a fold line will be displayed, as shown in Figures 11 and 12.
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6. Conclusions

This paper combines the research status of data mining technology and rock burst monitoring
technology, adhering to the “Internet+” concept, applying data mining technology to IEWSRB. With the
current advanced computer technology and communication technology as the background, we describe
the problems which exist in the domestic rock burst monitoring and early warning, and clarify the
functions and requirements of the IEWSRB. After describing the overall system architecture, the data
processing, data warehouse establishment and data mining technology are deeply studied, and the
clustering algorithm in data mining technology is applied in the IEWSRB. A data mining system for
rock bursts is designed and implemented, and the following study results are obtained:

(1) According to the characteristics of the monitoring data of the rock burst, the rock burst
data warehouse is reasonably designed by using the data warehouse technology. It is fit for a
flexible configuration pattern, and is suitable for the measurement area and measured points in
underground coalmines;

(2) The K-means algorithm is improved based on the clustering algorithm, and the speed and
accuracy of the clustering algorithm are improved. This has a significant effect, which is explored for
use in the IEWSRB;

(3) A visual interface based on the rock burst data warehouse is designed and developed, and a
visual interface based on the B/S mode based on the Java language is supplemented by CSS, JS, HTML
and other languages. Tomcat is used as the server, MySQL is established as the impact pressure
monitoring data warehouse, and the monitoring data and historical data are displayed and analyzed
in a curve. Not only can real-time monitoring data be viewed, but other monitoring data can also be
imported into the view and data mining. Moreover, a variety of data mining algorithms can be added
for comparison, which is most suitable for rock burst monitoring.
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7. Future Work

The IEWSRB fuses many technical achievements in the field. In the course of interdisciplinary
learning, there are some difficult problems to be solved, which are limited by personal ability and time,
and some of these problems need to be further studied and solved.

(1) The environment of coalmines is complex, and their influence on rock bursts varies greatly.
The structural design of the IEWSRB and the clustering algorithm in this paper need further
implementation and improvement. It is expected that the intelligent prediction system in different
mining areas may be inconsistent with the actual situation. There is a certain error in prediction
accuracy in different mining areas and under different geological conditions.

(2) The application of a data mining algorithm in the IEWSRB needs further improvement.
When the monitoring data fluctuates slightly, it will have a great influence on the results of the
clustering early warning, and so the question of how to optimize the clustering algorithm is one study
direction. Then, a data mining algorithm in addition to the clustering algorithm applied to the IEWSRB,
such as a neural network, association rules and so on, should be found.

(3) The visualization interface in IEWSRB needs to be more diversified, so as to improve the
visibility and enhance the User Interfac (UI) design of the human–machine interaction interface,
thereby making it friendlier.

(4) The hot topic of monitoring data for rock burst is addressed, as well as the system construction
and visualization realization for IEWSRB. However, during the monitoring processes, various signals
coming from environmental noise or generally false signals, which are not useful for monitoring
and prediction, may occur. To solve this problem, several studies have been conducted; for instance,
a sort of alarm system based on the warning network was set up to detect the electromagnetic signals;
the Mamdani fuzzy classifier based on the improved chaos immune algorithm and Iris database was
developed for the classification and recognition of acoustic emission and interference signals [8,30].
Despite the tremendous efforts that have already been made, in view of the diversity and magnitude
of monitoring data and signals, the issue of how to separate the various signals into useful signals and
false signals based on the data mining and data warehouse technologies, which are in line with the
current technological situation and industrial needs, needs further study.
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Appendix A

%N is the number of classes of data
%data is the input data with no classification label
%u is the center of each category
%re is the data returned with the classification label
function [u re] = KMeans(data, N)

[m n] = size(data); % m is the number of data, n is the data dimension
Ma = zeros(n); % The maximum number per dimension
mi = zeros(n); % The smallest number per dimension
u = zeros(N, n); % First of all, random initialization
for i = 1:n

ma(i) = max(data(:, i)); % The maximum number per dimension
mi(i) = min(data(:, i)); % The smallest number per dimension
for j = 1:N
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u(j, i) = ma(i) + (mi(i) −ma(i))*rand(); % Random initialization
end

end
while 1

pre_u = u; % The central position of the last time
for i = 1:N

tmp{i} = [[];
for j = 1:m

tmp{i} = [tmp{i};data(j, :) − u(i, :)];
end

end
quan = zeros(m, N);

for i = 1:m
c = [[];

for j = 1:N
c = [c norm(tmp{j}(i, :))];

end
[junk index] = min(c);

quan(i, index) = norm(tmp{index}(i, :));
end

for i = 1:N
for j = 1:n

u(i, j) = sum(quan(:, i).*data(:, j))/sum(quan(:, i));
end

end
if norm(pre_u-u) < 0.1 % Iterate until it does not change

break;
end

end
re = [[];

for i = 1:m
tmp = [[];
for j = 1:N

tmp = [tmp norm(data(i, :)-u(j, :))];
end

[junk index] = min(tmp);
re = [re;data(i, :) index];

end
end

Appendix B

BEGIN
set n_result = −200;
label_proc:BEGIN

declare n_error integer default −200;
declare continue handler for sqlexception set n_error = −100;
if(uname is null or passw is null) then

set n_result = −1001;
leave label_proc;

end if;
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SELECT
u.c_uid as userId,
u.c_name as userName,
u.c_password as password

FROM
t_user u

WHERE
u.c_name = uname

AND u.c_password = passw;
if(found_rows() <> 1)then

set n_result = −1002;
leave label_proc;

end if;
if(n_error = −100) then

set n_result = −1003;
leave label_proc;

else
set n_result = 1;

leave label_proc;
end if;

end label_proc;
END
BEGIN

set n_result = −200;
label_proc:BEGIN

declare n_error integer default −200;
declare continue handler for sqlexception set n_error = −100;
if(uname is null or passw is null) then
set n_result = −1001;
leave label_proc;
end if;
SELECT

u.c_uid as userId,
u.c_name as userName,
u.c_password as password

FROM
t_user u

WHERE
u.c_name = uname

AND u.c_password = passw;
if(found_rows() <> 1)then

set n_result = −1002;
leave label_proc;

end if;
if(n_error = −100) then

set n_result = −1003;
leave label_proc;

else
set n_result = 1;
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leave label_proc;
end if;

end label_proc;
END
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