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Abstract: Polyimides with excellent physicochemical properties have aroused a great deal of
interest as gas separation membranes; however, the severe performance decay due to CO2-induced
plasticization remains a challenge. Fortunately, in recent years, advanced plasticization-resistant
membranes of great commercial and environmental relevance have been developed. In this review,
we investigate the mechanism of plasticization due to CO2 permeation, introduce effective methods to
suppress CO2-induced plasticization, propose evaluation criteria to assess the reduced plasticization
performance, and clarify typical methods used for designing anti-plasticization membranes.

Keywords: polyimide; plasticization; membrane; gas separation; carbon dioxide

1. Introduction

1.1. Natural Gas Process

Narrowly speaking, natural gas—a term in the energy field—is referred to as a mixture of
hydrocarbons and non-hydrocarbon gases that naturally exist underground. The typical composition
of raw natural gas is shown in Table 1, based on samples from eight different locations worldwide [1,2].
Methane is the main component of raw natural gas—one of the raw materials. It is consumed during
combustion for heat release or chemical production. When producing the same amount of energy, CO2

emissions by natural gas are ~26% less than oil and coal [3]. Therefore, natural gas is regarded as a
source for the cleanest and lowest carbon emitting fossil fuel in the world [4].
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Table 1. Typical composition of raw natural gas [1,2].

Component Composition Range (mol%)

CH4 29.98–90.12
C2H6 0.55–14.22
C3H8 0.23–12.54
C4H10 0.14–8.12

C5+ 0.037–3.0
N2 0.21–26.10

H2S 0.0–3.3
CO2 0.06–42.66
He 0.0–1.8

According to the BP (British Petroleum) Statistical Review of World Energy (2018), 2017 witnessed
the fastest rates of rapid increases in natural gas consumption (3.0%; 96 billion cubic meters) and
production (4.0%; 131 billion cubic meters) [5]. Furthermore, Figure 1 clearly illustrates that in
2017, the share of natural gas in global primary energy consumption by fuel consistently increased to
23.4% [6]. Undoubtedly, strong natural gas growth can be expected in the near future. This is supported
by an increase in the levels of industrialization and power demand, continued coal-to-gas switching,
and the growing availability of low-cost supplies [7]. In conclusion, the rapid increase in natural gas
consumption has driven the necessity for natural gas processing to meet pipeline requirements.
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Figure 1. Shares of global primary energy consumption by fuel [6].

It has been widely recognized that variations in raw natural gas consumption are considerably
region-dependent [8], which is supported by the worldwide composition data of raw natural gas
(shown in Table 2). Nevertheless, nations tightly control the composition of natural gas prior to entry
into the industrial pipeline grids. Take the U.S. for example, where Table 3 shows a whole set of criteria
defining the upper limits of common impurities. Therefore, to remove the undesired components and
ultimately meet the requirements of target composition specifications, preconditioning is required for
all raw natural gases. Furthermore, the greenhouse effect generated by CH4 must also be taken into
consideration. Generally speaking, if CH4 is released during the purification and shipment of natural
gas, it may cause a severe greenhouse effect.
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Table 2. Composition of natural gas reservoirs (volume percent) in some regions of the world [9].

Component Groningen
(Netherlands)

Laeq
(France)

Uch
(Pakistan)

Uthmaniyah
(Saudi Arabia)

Ardjuna
(Indonesia)

CH4 81.3 69 27.3 55.5 65.7
C2H6 2.9 3 0.7 18 8.5
C3H8 0.4 0.9 0.3 9.8 14.5
C4H10 0.1 0.5 0.3 4.5 5.1

C5+ 0.1 0.5 - 1.6 0.8
N2 14.3 1.5 25.2 0.2 1.3

H2S - 15.3 - 1.5 -
CO2 0.9 9.3 46.2 8.9 4.1

Table 3. Composition specifications for natural gas delivery to the U.S. national pipeline grid [10].

Component Specification

CO2 <2%
H2O <120 ppm
H2S <4 ppm

C3+ content 950–1050 Btu/scf; dew point: <−20 ◦C
total inert gases (N2, He) <4%

Notes: ppm, parts per million; and scf, standard cubic feet.

CO2 can reduce the calorific value of natural gas and result in global warming. CO2 and
H2S contribute to the corrosion of natural gas pipelines; therefore, numerous studies have been
conducted to remove such acidic gases [11,12]. The most extensively used methods include cryogenic
distillation [13,14], amine absorption [15], pressure swing adsorption (PSA) [16,17], and membrane
separation technologies. Of these, cryogenic distillation requires a large amount of energy to condense
permanent gases such as CO2 [16]. Therefore, a hybrid system combining amine absorption with
membrane separation is preferred due to its high energy efficiency [18].

The amine absorption process has displayed favorable performance in extracting CO2 from the
CO2/CH4 gas mixtures. However, the high capital and operating costs remain a problem. Membrane
technology is a good alternative for gas separation, ascribed to its low capital investment and ease of
operation. It also exhibits the efficiency of the membrane units, and advantages of design flexibility
and compactness [19]. This technology is expected to be the superior gas separation method when
CO2/CH4 selectivity is increased to 40 [20]. However, the presence of CO2 and/or other highly sorbing
components can result in membrane plasticization and swelling.

1.2. Membrane Materials Used for Gas Separation

Progress in membrane technology has been largely dependent on high-performance membrane
materials. Inorganic membranes are not discussed in this paper due to their expensive module
fabrication and limited industrial applications, even though considerable progress has been achieved
in this field. This review focuses on polymer membranes. To date, a variety of promising
polymer membranes, including cellulose acetate (CA) [21,22], polycarbonate (PC) [23–27], polysulfone
(PSF) [28–30], polymethyl methacrylate (PMMA) [31–33], polyimide (PI), and polymer of intrinsic
microporosity (PIMs) [34–37], have been developed to meet the demands of the gas separation industry.

There are many promising polymer membrane materials, yet the gas separation market is only
dominated by a few. This can be explained by the different operating conditions between research
laboratories and industrial applications. Current commercial membranes are used under high pressure,
and high concentrations of plasticizing impurities such as water, BTEX aromatics (The term “BTEX
aromatics” refers to benzene, toluene, ethylbenzene, and xylene), and other heavy hydrocarbons [10].
Performance stability, chemical resistance, and low capital cost should also be incorporated into the
criteria of producing industrially available membranes [20].
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In particular, cellulose acetate, polyimides and perfluoropolymers are commercially available
polymers used for fabricating CO2 removal membranes [10]. The performance of CA-based
membranes, and a range of polyimide membranes, have been summarized in detail by
Scholes et al. [38] and will not be discussed in this review.

Throughout this paper, the term polyimide represents aromatic polyimide. Aromatic polyimides
contain the imide group—a constitutional unit in the polymer backbone (illustrated in Figure 2). It is a
linear and heterocyclic aromatic polymer, widely used to synthesize films, fibers, molding powders,
coatings, and composites. Its outstanding heat resistance, relatively high resistance to chemical solvents,
strong mechanical strength, and high selectivity in major gas pairs (such as CO2/CH4 and O2/N2),
make polyimide an attractive candidate amid many polymeric membranes. Since the manufacture of
commercial polyimides membranes, many have been developed for gas separation, and used in the
separation process by the DuPont (USA) and Ube (Japan) industries [39].
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Strong plasticization resistance is required in several gas separation applications such as
CO2/CH4, propylene/propane, and butadiene/butane separations, which can be attributed to the
presence of highly sorbing components. The CO2/CH4 separation containing CO2 sorbates, is more
frequently encountered in industrial applications such as high-pressure natural gas sweetening and
enhanced oil recovery (EOR). Hence, there is a growing concern over the development of polyimide
membranes with a reduced plasticization effect and minimal loss of selectivity. Numerous studies
over the past decade have been carried out to investigate the mechanisms and suppression methods of
plasticization [40].

1.3. Plasticization in Polyimides

Plasticization is usually defined as the increased segmentation mobility of polymer chains [41].
CO2 permeability will rise with increased feed pressure after a critical point, which is generally
regarded as the mark of being plasticized. Simultaneously, an undesired loss of gas pair selectivity
is often observed. Under the high pressure of CO2, the polymer matrix swells, subsequently
resulting in possible free volume changes and inter-chain spacing. Consequently, the mobility of
the polymer segments increases, thus weakening the size-sieving ability of polyimide membranes.
The plasticization phenomena can be demonstrated by the obvious loss of selectivity. Therefore,
developing membrane materials that can maintain gas selectivity in the presence of aggressive feed
streams is of utmost importance.

Some intriguing methods for prominently improving the plasticization resistance of polyimide
membranes are illustrated in this article. Among them, crosslinking, such as thermal crosslink, diamine
crosslink, diol crosslink, semi-interpenetrating networks, ultraviolet (UV) crosslink, and hydrogen
bonding, is a practical and widely used method described in the literature. Furthermore, mixed matrix
membranes (MMMs) or polymer blending have also been proposed to resist plasticization.

This review mainly focuses on approaches to suppress the notorious CO2-induced plasticization
of polyimide membranes. Furthermore, the mechanism, attractive advantages, and unavoidable
weakness of each method are specified in the corresponding sections and illustrated in some cited
literature. Some recent achievements and representative work are discussed in detail. It is fundamental
to understand plasticization mechanisms and principles in order to design polyimide membranes with
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less plasticization effect. In the end, a promising prospect is provided to instruct further research and
propose some constructive suggestions.

2. Plasticization Mechanism

Plasticization often takes place in the presence of highly condensable gases (such as CO2),
especially under aggressive conditions (like high pressure and low temperature). There have
been numerous studies on plasticization during the separation process of mixed gases such as
CO2/CH4, propylene/propane [42–46], and ethylene/ethane [47,48]. This review mainly focuses
on the CO2-induced plasticization phenomenon, which usually happens during the natural gas
sweetening process where CO2 acts as a plasticizer.

Plasticization can be observed through multiple measures. The most commonly used approach is
monitoring CO2 permeability while increasing CO2 feed pressure to observe the changes in polymer
chain segmental mobility. During the gas permeation process, CO2 permeability coefficients of most
glassy polyimides will descend first due to the saturation of Langmuir sites. The polymer matrix will
swell when CO2 concentrations reach a critical point. Then, an obvious acceleration in gas permeability
is observed with increasing CO2 partial pressure [49] (Figure 3 [41]). Feed pressure at the minimum
point of a CO2 permeability curve is commonly defined as the plasticization pressure, which is an
important indicator of plasticization. Simultaneously, a loss in gas pair selectivity occurs.
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at 35 ◦C [41]. Notes: 6FDA, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride; and 6FpDA,
4,4′-(9-fluorenylidene) bis (2-methyl-6-isopropylaniline).

Changes in the physical properties of membranes such as glass transition temperature (Tg),
membrane thickness, and refractive index, can also indicate plasticization [50]. However, the
occurrence of one sign is not necessarily accompanied by changes in other chemical or physical
properties. In the case of polyethersulfone (PES), for example, although the decreased CO2/CH4

selectivity indicates that the polymer is plasticized, CO2 permeability at 25 ◦C decreases by 54% as the
CO2 feed pressure increases from 0 to 27 atm [51]. This indicates that polymer matrix plasticization
will not necessarily lead to an increase in permeability of all gases.

The polymer matrix can absorb a certain amount of CO2 at modest pressure, leading to a significant
reduction in the glass transition temperature [52]. In the range of low pressure, decrease in the
permeability coefficient with increasing partial pressure is caused by the diminution of the solubility
coefficient. In the range of high pressure, the positive correlation between the permeability coefficient
and partial pressure is typical plasticizing behavior, which cannot be described by the dual mode
mobility model [53].

After a systematic study of the plasticizing phenomena caused by CO2 in 11 different glassy
polymers, Bos et al. believed that the plasticization of a glass polymer could be defined as a function
of the increase in the CO2 permeability coefficient to the pressure of the feed gas, and the minimum
pressure required to increase the permeability coefficient was defined as the plasticizing pressure [54].
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It is generally believed that the diffusion coefficient increases when CO2 concentrations exceed
the critical value required by plasticization (namely, when the feed pressure exceeds the plasticizing
pressure), subsequently leading to the increment of the permeability coefficient [55]. For glass polymers,
the plasticization phenomenon occurs when polymer CO2 concentrations reach critical levels. However,
the critical pressure is polymer-dependent. Plasticization pressures of different polyimide membranes
reported in the literature are listed in Table 4.

Plasticization induces chain relaxation and results in increased diffusivity of all gases in the feed
mixture. Therefore, the reduction in membrane selectivity can be observed. A plasticization problem
is that it can be inhibited by limiting the flexibility of polymer segments. There are many approaches
that are currently being used to inhibit polymer segment flexibility, which are critically discussed in
the subsequent sections.
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Table 4. Different plasticization pressures reported in the literature.

CL Method SU-1 or BC-1 SU-2 or BC-2 SU-3 or BC-3 Crosslinker or Fillers Plasticization
Pressure (atm) Ref.

Decarboxylation CL 6FDA DAM DABA - ~34.02 [56]
Decarboxylation CL 6FDA DAM DABA - - [57]

Decarboxylation CL 6FDA CADA1
/CADA2

BTDA
/DSDA - 30 [58]

Decarboxylation CL 6FDA MPP PP - 30.62 [59]
Decarboxylation CL 6FDA DAT DATCA - 30 [60]

Heat at 350 ◦C Matrimid - - - >39.48 [61]

TR - - - - 20
(partial pressure) [62]

TR 6FDA HAB - - >25 (fugacity) [63]
Diamino 6FDA durene - EDA 48.99 [64]
Diamino 6FDA durene - CHBA 48.99 [65]
Diamino 6FDA durene - PAMAM/DAB 30 [66]
Diamino 6FDA Matrimid - p-xylenediamine >32 [67]

Diol 6FDA mPD DABA EG 35 [19]
Diol 6FDA 6FpDA DABA EG - [41]
Diol 6FDA DAM DABA CHDM - [68]
Diol 6FDA DAM DABA EG/CHDM 40 [69]

Semi-IPN Matrimid - - Thermid FA-700 >49.35 [70]
Semi-IPN Matrimid - - DCFT >30 [71]
Semi-IPN 6FDA NDA TMPDA azide 30 [72]

Ionic 6FDA durene - N,N′-dimethylpiperazine 25 [73]
MMMs 6FDA durene DABA ZIF-8 30 [74]
MMMs w-PS - - ZIF-8 - [75]
MMMs 6FDA durene - zeolite T 19.74 [76]

MMMs Matrimid - -
MIL-53(Al)

ZIF-8
Cu3BTC2

- [77]

MMMs Matrimid
6FDA

DAT
durene DAM Ni2(dobdc) - [78]

Blending Matrimid PSF - - 35 [79]
Blending Matrimid P84 - - 14.80 [80]
Blending Matrimid cPIM-1 - - 20 [81]
Blending Torlon cPIM-1 - - 30 [82]

In this table: CL, crosslink; SU, structure unit; BC, blending component; TR, thermal rearrangement; DAM, 2,4,6-trimethyl-1,3-phenylenediamine; DABA, 3,5-diaminobenzoic
acid; CADA1, carboxylic acid-containing diamine with -CF3 group; CADA2, carboxylic acid-containing diamine with -H group; BTDA, 3,3′,4,4′-benzophenonetetracarboxylic
dianhydride; DSDA, 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride; MPP, 3,3-bis[4-(4-amino-3-methylphenoxy)phenyl]phthalide; PP, 3,3-bis[4-(4-aminophenoxy)phenyl]phthalide;
DAT, 2,6-diaminotriptycene; DATCA, 2,6-diaminotriptycene-14-carboxylic acid; HAB, 3,3′-dihydroxy-4,4′-diamino-biphenyl; EDA, 1,2-ethylene diamine; CHBA, 1,3-cyclohexanebis
(methylamine); PAMAM, polyamidoamine; DAB, diaminobutane; mPD, m-phenylene diamine; EG, ethylene glycol; CHDM, cyclohexane-1,4-diyldimethanol; DCFT, phenolphthalein
dicyanate; NDA, 1,5-naphthalenediamine; TMPDA, 2,3,5,6-tetramethyl-1,4-phenylenediamine; ZIF-8, zeolite imidazole framework-8; w-PS, waste polystyrene; MIL-53(Al), aluminum
terephthalate; Cu3BTC2, copper benzene-1,3,5-tricarboxylate; PSF, polysulfone; and cPIM-1, carboxylated polymer of intrinsic microporosity-1.



Processes 2019, 7, 51 8 of 31

3. Methods to Reduce CO2-Induced Plasticization

Extensive studies have been carried out and have successfully achieved suppression of polyimide
membrane plasticization. Many criteria are available to classify these approaches, which are
considerably involved in the formation of crosslink networks. Some crosslink networks are formed
firmly by physical bonds such as hydrogen bonds, while others are formed by chemical bonds. A wide
range of methods can achieve chemical bonds of polymer chains such as thermal treatment, chemical
crosslinking using diamine or diol, formation of semi-interpenetrating networks, and UV crosslinking.
Crosslinking is a practical and widely used approach to inhibit the plasticization of membrane materials.
Some typical technologies of crosslinking are introduced in the following sections.

3.1. Thermal-Induced Crosslink

Rapidly quenching polyimide polymers can significantly suppress undesirable plasticization
and introduce excess free volume into the polyimide matrix, thereby leading to greater stabilization
in typical solvents. To illustrate, aromatic carboxylic acids along backbones can be dehydrated to
form anhydride, which is subsequently decomposed into aryl radicals. A hydrogen atom will be
abstracted from the backbone to bond covalently with the aryl radical, which is likely to occur in
specific reactive sites.

Steric hindrance of both functional and pendant groups must be taken into consideration while
designing the crosslink points, since some structures (such as –CF3) are too large for steric reactivity.
Fine-tuning crosslink networks is not possible using this method, because the sites and extent of
the crosslink are not measurable or quantifiable as a result of the non-definitive and insufficiently
understood mechanism.

Matrimid 5218 has been utilized as the model polyimide to investigate the plasticization
phenomenon [61]. After thermal treatment at 350 ◦C, the 15 and 30 min heat-treated Matrimid
films did not plasticize in the whole range of CO2 feed pressure (up to about 40 bar, i.e., 39.48 atm).
Noticeably, CO2 permeability gradually approached a limiting constant value with increasing feed
pressure. All thermally-treated films became insoluble. Upon pressure elevation, the 15 and 30 min
heat-treated films showed up to 11% and 30% higher selectivity, respectively, compared with the
untreated membranes. This can be attributed to the densification of the polymer matrix.

3.1.1. Decarboxylation-Induced Crosslinking

A novel polyimide 6FDA-DAM-DABA (2:1) has been successfully synthesized [56]. The sample
quenched from above Tg exhibited enhanced plasticization resistance, where plasticization pressure is
about 34.02 atm (500 psi). Quenching polyimide brings a large free volume into the polyimide matrix
and endows it with enhanced plasticization resistance. Through decarboxylation at high temperature
(slightly below the Tg), thermally crosslinked polyimide linked by covalent bonds has more free
volume compared to diol or diamine crosslinking agents. Thermal gravimetric analyzer (TGA) and
C13-NMR (nuclear magnetic resonance) measurements prove that the free acid polymer undergoes
decarboxylation under such conditions. Then, the residual aryl radicals react through some generated
active sites to form the crosslinked structure. Figure 4 shows possible crosslinking sites through
diamines in the free acid polymer.

The 6FDA-DAM:DABA(3:2) polyimide was prepared by tuning the proportion of monomers in
order to study the effect of thermal treatment on plasticization resistance [57]. The results revealed
that thermally crosslinked membranes showed no signs of plasticization up to 47.63 atm (700 psi) for
pure CO2 gas, or 1000 psi for 50/50 CO2/CH4 mixed-gas separation.
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Figure 4. Possible crosslinking sites through diamines in the free acid polymer: (A) through the DAM
methyl; (B) biphenyl crosslink; and (C) at the cleaved CF3 site [56].

Triptycene—a rigid three-dimensional (3D) symmetric structure with a 120◦ included angle of two
benzene rings—can dramatically disturb polymer chain packing and enlarge polymer free volumes.
Therefore, introducing triptycene building units into polymer chains should enhance permeability
performance. Three triptycene-based polymers, including 6FDA-DAT, 6FDA-DAT/DATCA (9:1),
and 6FDA-DAT/DATCA (8:2), were synthesized by our group [60] (DAT, 2,6-diaminotriptycene; and
DATCA, 2,6-diaminotriptycene-14-carboxylic acid). Figure 5 shows chemical structures of 6FDA-DAT
and 6FDA-DAT/DATCA. No plasticization was observed for crosslinked 6FDA-DAT/DATCA (9:1)
and 6FDA-DAT/DATCA (8:2) at CO2 pressure up to 30 atm for pure gas, and a partial CO2 pressure
up to 20 atm for (CO2:CH4 1:1) mixed gases. In addition, 6FDA-DAT/DATCA (9:1)-450 had the
highest CO2 pure gas permeability of 305.8 Barrer with a CO2/CH4 ideal selectivity of 27.8, while
6FDA-DAT/DATCA (8:2)-350 had the highest CO2/CH4 ideal selectivity of 43.7 with a CO2 pure gas
permeability of 58.5 Barrer.

Two carboxylic acid-containing diamines, CADA1 and CADA2, were successfully synthesized
to polymerize with 6FDA, BTDA, and DSDA, respectively [58]. The synthesis route is illustrated in
Figure 6. The CO2-induced plasticization phenomenon was not observed at a CO2 pressure up to
30 atm for 6FDA-CADA1-425, which had a CO2 permeability of 917.4 Barrer with a CO2/CH4 ideal
selectivity of 28.11.
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Figure 6. (a) Synthesis routes of dinitro monomers, diamines as well as and 6FDA-, BTDA-, and
DSDA-based carboxylic acid-containing polyimides, (b) and (c) show the energy-minimized chain
conformations of 6FDA-CADA1 and 6FDA-CADA2 polymers, respectively (using Material Studio
7.0) [58].

In the above work, the temperature sufficient to complete the crosslink reaction was 425 ◦C, which
is higher than the Tg of most polymers. Therefore, the follow-up objective was to lower the crosslinking
temperature, by adopting two phenolphthalein-based polyimides, 6FDA-MPP and 6FDA-PP [59].
Figure 7 shows chemical structures of 6FDA-CADA2, 6FDA-MPP, and 6FDA-PP. No plasticization
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was observed in the 6FDA-MPP-400 and 6FDA-PP-400 polyimides at a CO2 pressure up to 30.62 atm
(450 psi). The results found that 6FDA-MPP-400 obtained the best performance with a CO2/CH4 ideal
selectivity of 39.2 and a CO2 permeability of 193.8 Barrer.
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Figure 8 illustrates two different mechanisms, revealing how polymer chains crosslink under
thermal treatment. The free carboxylic acid groups exist along the polymer chains, allowing the
polymers to go through a series of changes (Figure 8a). Polymers containing lactone rings are supposed
to cleave their lactone ring, which directly decomposes causing polymer chain breaks. Such types
of crosslink reactions occur in the presence of oxygen (heated in air atmosphere). This thermal
oxidative crosslinking method is widely applied during the preparation of carbon molecular sieve
(CMS) membranes. In our current work, the crosslinking temperature of the lactone ring containing
polyimides significantly decreased to 350 ◦C, which is lower than the pre-polymer’s glass transition
temperature. If the lactone ring-based polyimide is adopted to spin hollow fiber membranes, the porous
substrate of the membrane will be preserved during thermal oxidative crosslinking.

3.1.2. Thermally Rearranged (TR) Polymers

Thermally rearranged (TR) polymers are highly permeable polymers that, at high temperatures,
convert polyimide or polyamide into heterocyclic polybenzothiazole (PBT) or polybenzoxazole (PBO).
It was originally proposed that polyimides containing ortho-positioned functional groups (for example
–OH) can be used to prepare rearranged polymers with altered chain pain packing, with confined spatial
location due to the thermal rearrangement [62]. Figure 9 shows changes in conformation–polymer
chains and spatial relocation due to chain rearrangement in confinement. As a result, TR polymers
show excellent resistance to plasticization at CO2 partial pressure as high as 20 atm. In contrast to
glassy polymers, TR polymer membranes do not exhibit substantially reduced selectivity, even at
elevated CO2 fugacity (~15 atm).

Some TR polymers show strong resistance to plasticization. For the polyimide synthesized
from 3,3′-dihydroxy-4,4′-diamino-biphenyl (HAB) and 6FDA (hexafluoroisopropylidene-diphtalic
anhydride), pure CO2 permeation curves pass through a minimum pressure at about 20 atm, which
then begins to increase [63]. However, when the HAB–6FDA polyimide precursor were converted to
polybenzoxazole (PBO) by heating under flowing N2, plasticization pressure points were not observed
for CO2 up to 25 atm. In addition, more TR conversion would result in a higher permeability of CO2

and CH4, as well as higher plasticization fugacity than those of the polyimide.
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3.2. Chemical Crosslinking

When polymer chains are chemically crosslinked by covalent bonds, the crosslink networks
are quite stable in harsh environments and can sufficiently inhibit the rotation of polymer chains.
Polyimides contain many activated sites on polymer chains that are able to establish covalent bonds.

Typical reactive sites are imide bonds. In theory, all polyimides can be crosslinked on their imide
groups and show improved plasticization resistance. Crosslink networks can also be tailored according
to the characteristic functional group of specific polymers. This method with an encouraging prospect
is shown in Section 3.2.1.

Beyond using imide bonds as crosslinking sites, the crosslinking reaction can also take place
through reactive functional groups and other crosslinking agents as introduced in Sections 3.2.2–3.2.4.

3.2.1. Polyamine Crosslinking

Imide bonds in polyimide membranes can react with specific diamine monomers to cleave
the imide ring, thereby crosslinking the polymer chains. This is a promising approach to crosslink
polyimide membranes, which possess the imide bond. Introducing amine bonds further introduces
improved properties such as hydrophilicity and stability in solvents.

To collectively optimize the permeability and selectivity, the molecular structure and steric
constraints must be considered as key factors. In addition, different kinds of diamines react distinctly
when crosslinked with polyimide chains. Some factors that are less related to diamines themselves,
may also play critical roles in the performance of polyimide membranes such as side-reactions and
degree of crosslinking.

Previous work has reported on the crosslinking of monomeric and polymeric diamines with
polyimide membranes. Figure 10 illustrates some diamines acting as the crosslinkers reported in the
literature. Monomeric diamines fall into two classes: aliphatic and aromatic diamines.
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This crosslinking method is often followed by thermal treatment to enhance CO2 plasticization
resistance. However, thermal treatment may lead to the release of diamine monomers and
decomposition of the crosslinked polymer networks.

Diamine-Monomer Crosslinking

Shao et al. chose 1,2-ethylene diamine (EDA)—a linear aliphatic diamine—to prepare crosslinked
6FDA-durene, and then treated the membrane material with thermal annealing at 250 ◦C [64].
The modified membrane material exhibited plasticization pressure at 48.99 atm (720 psi), while
the original 6FDA-durene membrane was plasticized by CO2 at 300 psi. The imide bonds reacted with
EDA, resulting in imide ring cleavage. EDA monomers then connected two polymer chains through
their amide bonds. The insertion of crosslinking agents into polymer chains significantly decreased the
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d-space, bringing about the structure-tightening effect. Figure 11 shows possible reaction mechanisms
during 1,2-ethylene diamine (EDA)-induced cross-linking and thermal annealing.
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The subsequent thermal annealing triggers the imidization reaction of crosslinking networks,
accompanied by EDA release at specific temperatures. Higher thermal annealing temperatures achieve
stronger plasticization resistance.

At the specific high temperature stage, coupling effects of EDA crosslinking and thermal annealing
accelerate the formation of charge transfer complexes (CTCs). As a consequence, polymer chain
mobility decreases, the membrane matrix becomes denser, and the membranes’ color changes from
transparent to yellow. Shao et al. ultimately found two approaches to enhance the anti-plasticization
properties: (1) A shorter EDA crosslinking time followed by a higher annealing temperature, or (2) a
longer EDA crosslinking time followed by a lower annealing temperature.

It is a remarkable fact that a single treatment, polyamine crosslinking or heating, cannot strongly
suppress the plasticization. Plasticization resistance will be enhanced only if the polymers are
crosslinked by polyamine molecules first, followed by thermal treatment. This is proven by several
experimental phenomena. The original 6FDA-durene was still transparent after heating at 250 ◦C
in vacuum, which indicates that 250 ◦C thermal annealing on the original 6FDA-durene could not
induce CTC formation. Compared to the original, easier membrane plasticization was achieved
after 1-min EDA cross-linking. In summary, only the coupling effects of EDA cross-linking and
thermal annealing may facilitate the formation of CTCs in bulk 6FDA-durene, to achieve the desired
anti-plasticization effect.

6FDA-durene membranes can also be crosslinked with 1,3-cyclohexanebis (methylamine) (CHBA);
the modified membranes showed no obvious plasticization up to 48.99 atm (720 psi) [65]. The reaction
mechanism during the chemical crosslinking and thermal annealing is similar to membranes modified
by EDA. Although the thermal treatment regenerates imide groups from amide groups in the
crosslinked networks, polyimide membranes micro-structures exhibit irreversible changes. Unlike
EDA-modified membranes, crosslinking in the CHBA/methanol solution facilitates the diffusion of
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crosslinking agents through the membranes to react with the bulky body, because methanol swells
the membranes. Thermal annealing almost homogeneously changes the chemical composition and
structure of the crosslinked polyimide matrix. Therefore, in this case, membranes are not only
modified on the surface, but also in the body. Diamine monomers open the main chains in the
membranes’ matrix, increasing polymer chain flexibility. This relative flexibility tends to achieve
configurational rearrangement and forms CTCs, especially at higher temperatures (200 ◦C in this case).
Figure 12 shows charge transfer complex model of 6FDA-durene polyimides. Thermal annealing
induces the regeneration of chemical composition from amide groups to imide groups. However,
the formation of CTCs restricts the mobility of polymer chains. These two factors contribute to
enhancing anti-plasticization characteristics.Processes 2018, 6, x FOR PEER REVIEW  16 of 32 
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The commercially available polyimide, Matrimid, can be crosslinked with p-xylenediamine to
restrict plasticization [67]. The permeability of 30-day crosslinked membranes remains constant in the
whole range of CO2 feed pressure (from 3.55 to 32.4 atm). The crosslink reaction can be detected by
measuring the gel content. Compared with fluoropolyimides such as 6FDA-durene, Matrimid has less
free volume and swelling degree in methanol [83]. Therefore, it takes the Matrimid membrane matrix
longer to swell in methanol. Furthermore, membrane swelling in methanol is the rate-determining
step, thus the crosslinking rate of Matrimid is much lower than those of fluoropolyimides.

Amine-Tetramer, Dendrimer Crosslinking

Diamines and tetramines—dendrimers containing four free amine groups—can be used as
crosslinkers such as polyamidoamine (PAMAM) and diaminobutane (DAB). Their chemical structures
are shown in Figure 13.
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Figure 13. Chemical structures of (a) diaminobutane (DAB), and (b) polyamidoamine (PAMAM).

Xiao et al. combined PAMAM crosslinking with thermal treatment methods, but did not observe
the plasticization phenomenon up to 30 atm [66]. The start temperature of PAMAM decomposition was
previous to the thermal degradation of PAMAM-modified polyimide membranes. In addition, thermal
stability decrease of the PAMAM-modified polyimide from 593 to 579 ◦C was unexpected. The X-ray
photoelectron spectroscopy (XPS) data proved that thermal treatment of PAMAM-modified polyimide
films at 250 ◦C brought about imidization of poly(amic amide), and the thermal decomposition of
the PAMAM dendrimer. 1H nuclear magnetic resonance (NMR) indicated that PAMAM dendrimers
are cleaved into small molecules at 250 ◦C. When heating membrane materials, PAMAM presence
in polyimide degrades polyimide chains to low molecular weight fragments with lower thermal
stability. Heat treatment increases inter-segmental mobility, thus increasing the likelihood of PAMAM
dendrimer free primary amine groups meeting the imide groups in the polyimide backbone. However,
high temperature treatments induce significant dendrimer decomposition at the amide linkage,
leading to crosslinked structure breakdown. They also result in the degradation of polyimide,
which may produce a heterodispersed population of compounds with lower molecular weights.
A high temperature treatment induces a higher degree of crosslinking, which tightens the polymer
chains and limits intersegmental chain mobility. Therefore, thermal treatments at 120 ◦C offer better
plasticization resistance than simple immersion modifications. Interestingly, modified films treated
at 250 ◦C exhibited stronger plasticization compared with the original polyimide films. The most
likely explanation is that the 250 ◦C treatment rebuilds the imide ring in the main polymer backbone,
and enhances chain rigidity. At the same time, CTCs formation between neighboring polyimide chains
helps decrease CO2 sorption, reduce chain mobility, and stabilizes the structure.

Although many polyamine-crosslinked polyimide membranes have been successfully synthesized,
the plasticization response has not been reported, indicating a need for further research in this
area. Interestingly, investigating the effect of crosslinking reagents on different polyimides has been
made [84].

Immersing the membrane in a dendrimer-methanol solution can induce polymer chains crosslink.
Chung et al. used PAMAM to crosslink 6FDA-durene membranes [85]. Compared with diamines, with
two functional end groups, the bulk teramines exert a space-filling effect on the polymer chains to
reduce d-spacing, which leads to free volume decrease. Furthermore, due to the steric hindrance of the
large dendrimer molecules, it takes more time for them to diffuse into the polymer matrix. This may
result in asymmetric crosslinking throughout the bulky membrane matrix. In addition, the large
molecular size makes the decreasing rate of the diffusion coefficients of PAMAM crosslinked polymers
significantly slower than using other crosslinking agents containing amino groups. The initial increase
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in gas solubility with immersion time may be attributed to two factors: one is that PAMAM contains
all kinds of amine groups such as –NH2, –NH–, or –N<. These amines groups have strong interactions
with CO2, resulting in the increase of CO2 solubility of polyimides; the other possible reason is that
the big molecular size of dendrimers may slightly increase the interstitial space, which may result in
greater adsorption. However, the plasticization response was not reported in this work.

The effect of modification time and the generations of the PAMAM dendrimer on the properties of
modified polyimide films has been reported [86]. When it is only dried at room temperature, some free
primary amine groups for the loaded PAMAM dendrimers remain on the surface of polyimide films.

DAB dendrimers, a crosslinking agent for polyimides, can perform crosslinking reactions at room
temperature and improve gas separation performance of polyimide membranes, especially for H2/N2,
He/N2, H2/CO2 [87].

Polyamine Crosslinking

Compared with monomer polyamines, there have been fewer investigations on crosslinking
polyimide membranes by polymeric polyamine. For instance, poly(propylene glycol) block
poly(ethylene glycol) block poly(propylene glycol) diamine (PPG/PEG/PPGDA) was successfully
employed to chemically crosslink Matrimid 5218 at room temperature [88].

Brief Summary

Based on the above discussion, some insights can be given into polyamine crosslinking. Only the
integration of thermal annealing with polyamine crosslinking can significantly improve plasticization
resistance. As polyamine crosslinking reduces the interchain spacing, the polymer chains become
closer to each other. Thermal annealing enhances chain mobility, so more CTCs will be formed between
the polymer chains. In conclusion, the essence of this method is to facilitate the CTCs’ formation.

Finding a suitable polyamine and probing proper reaction protocols will be the future trend
in polyamine crosslinking aimed improving plasticization resistance. Therefore, the molecular size,
number of free primary amine groups, molecular rigidity and polarization, etc. must be taken
into consideration.

To illustrate, consider the molecular size first: If the polyamine molecule is too small, it will
decrease the d-space of the polymer chains, generating the decline of permeability; conversely, it takes
a large polyamine molecule more time to achieve the desired crosslinking effect because its larger
molecular size makes it harder to penetrate into the polyimide matrix. Therefore, a polyamine with a
moderate molecular size is assumed to space apart the chains while stabilizing the membranes.
They should be able to penetrate deeper into the polymer matrix and thus construct a thicker
crosslinking layer on the surface of polyimide films.

3.2.2. Diol Crosslinking of Carboxylated and Sulfonated Polyimide Membranes

If the polyimides have carboxylate or sulfonate groups, they can be crosslinked by diols or
polyols through esterification. Unlike amine crosslinking, some diols or polyols can suppress the
plasticization, while maintaining good permeability and selectivity of the original polymers. Common
diol crosslinkers are shown in Figure 14.

Similar to crosslinking by polyamines, crosslinking by diols is sometimes followed by thermal
treatment. Furthermore, hydrogen bond formation cannot be negligible due to the presence of carboxyl
groups along the polymer backbones. The contribution made by hydrogen bonding to plasticization
suppression will be discussed in Section 3.3.
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Diol Crosslinking through Carboxylic Acid Groups

Staudt-Bickel C et al. introduced –COOH groups to the polyimide backbones and crosslinked
the polymer with ethylene glycol [19]. The highlight of this crosslinked polymer with exquisite
structure was the little plasticization up to 35 atm pure CO2 pressure accompanied by increased
CO2/CH4 selectivity. The strong crosslinked 6FDA-DABA exhibited much better CO2/CH4 separation
properties with an ideal selectivity of 87 and a CO2 permeability of 10.4 Barrer at 3.74 atm and 308 K.
6FDA-6FpDA/DABA crosslinked with ethylene glycol (EG) can stabilize the membrane much more
effectively, leading to plasticization pressure increase [41].

The cyclohexane-1,4-diyldimethanol (CHDM) monoester can also be used in esterification
crosslinking. The plasticization pressure correlated with a sorbed CO2 partial molar volume of
29 ± 2 cm3/mol in the polymer [68]. However, the exact plasticization pressure was not reported.

To find the initial principle of choosing a diol crosslinker, the effects of length and flexibility
of various diol crosslinking agents has been investigated [69]. In view of high permeability
with reasonable CO2/CH4 selectivity, 6FDA-DAM:DABA 2:1 was used as a model polymer.
The esterification reaction was shown to be effective in stabilizing membranes against CO2

plasticization up to 40 atm feed pressure. Compared with untreated 6FDA-DAM:DABA membranes,
the incorporation of DABA increased selectivity. 6FDA-DAM:DABA crosslinked with buthylene glycol
(BG) obtained the highest selectivity of 34 among the crosslinked samples.

6FDA-DAM:DABA and 6FDA-6FpDA:DABA copolymers have been synthesized for crosslinking
with BG and CHDM [89]. CO2 permeabilities increased by factors of 4.1 and 2.4, respectively, at 20 atm
feed pressure, without loss in selectivity. Furthermore, selectivity increased with higher crosslinking
density for feed pressure below 20 atm. The 6FDA-DAM:DABA 2:1 membranes crosslinked with
CHDM showed a CO2/CH4 selectivity of 32-33, while the membranes crosslinked with BG exhibited
similar selectivity performance with a CO2/CH4 selectivity of 33.

Diol Crosslinking through Sulfonic Acid Groups

Sulfonic acid groups along the polymer chains can react with diol molecules to form ester bonds
linking the two polymer chains. The reaction mechanism of the sulfonic acid group resembles the
mechanism of the carboxylic acid group discussed above. Although this crosslinking method has been
successfully applied in various separation processes [90,91], no report has been found in the field of
polyimide membranes in gas separation applications.

3.2.3. Semi-Interpenetrating Network

The construction of crosslink networks can be obtained from multiple types of polymer chains,
and by crosslinking polymer chains with another polymer network. Some reactive monomers
containing functional groups can chemically crosslink or physically interlock the linear polyimide
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chains, while solely reacting with its species to form a polymer network. The introduction of
these reactive monomers can tune the size and quantity of the cavities. Furthermore, the free
volume distribution of the pseudo-interpenetrating networks (pseudo-IPNs) may be beneficial for the
separation of small molecules by polymeric membranes, due to both the mean cavity size and the
quantity of free volume influencing polymeric membranes permeability.

In situ polymerization of azido monomers tends to form oligomer networks. Simultaneously,
functional groups within the network react with specific sites on polymer chains to form
semi-interpenetrating networks, resulting in a membrane with no signs of plasticization up to
30 atm [72]. The chemical structure of the azide used in this paper is shown in Figure 15. Azide
introduces the azido group, a linear 1,3-dipolar structure, into the membrane matrix. Upon heating
or under ultraviolet radiation, azido groups are able to create nitrene—a highly reactive, short-lived
intermediate. Nitrenes insert into C–H bonds and add to unsaturated C–C bonds such as alkenes,
alkynes, and arenes due to their electrophilicity. These data indicate that every kind of polyimide
has the potential to react with azide. In general, the reactive priority of the C–H insertion follows
this sequence: tertiary > secondary > primary C–H bonds. Functional groups cable of reacting with
nitrene are: (1) Phenyl groups of azide or host polyimide; (2) –CH3 substituent groups of azide or
host polyimide; (3) the –CH2– group in the cyclohexanone structure of azide; and (4) α,β-unsaturated
ketone of azide. First, C–H bonds of phenyl groups are not easily attacked by nitrene radicals, owing
to the benzene ring stability, which comprises the highly conjugated π electrons. Although the
unfavorable addition of nitrene to C=C bonds has been reported, the absence of the characteristic
peak of tertiary amine indicates that the cycloaddition of nitrenes to the phenyl ring and the C=C
bonds has not occurred. Second, due to steric hindrance, there is no reaction with alkenes. Azide can,
therefore, react with its own species to form polymer networks, and with the functional groups of the
host polyimide to form an interconnected pseudo-IPN. Therefore, for those polyimide membranes
containing no functional groups to react with nitrenes, such as 6FDA-NDA, the combination of
polyimide and poly(azide) only results in a pseudo-IPN without any interconnection (NDA is short
for “1,5-naphthalenediamine”).
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As the insoluble gel in the film reflects the formation of crosslinked networks, it can be
inferred that nitrene radicals react with the methyl C–H bonds of 6FDA-TMPDA to form chemical
crosslinks (TMPDA is short for “2,3,5,6-tetramethyl-1,4-phenylenediamine”). The formation of denser
interconnected pseudo-IPNs restricts chain movement and enhances the anti-plasticization property of
the material.

Another crosslinker, phenolphthalein dicyanate (DCFT), has been shown to improve plasticization
resistance. Chemical structures of DCFT and DCFT-resin are shown in Figure 16. DCFT-modified
membranes did not show any signs of plasticization in CO2 feed pressures ranging from 1 to 30 atm [71].
Dicyanate cyclotrimerized into a uniform three-dimensional network of oxygen-linked triazine rings
(cyanurate ester resin). The absence of by-products was indicated by the 1H NMR, elemental analysis,
and mass spectrometry data. It is worth noting that copper naphthenate and nonylphenol serving as a
catalyst must be added to mitigate curing temperatures from 280 ◦C to 180 ◦C. The results of Fourier
transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) showed that after
heat treatment at 180 ◦C for 60 min, dicyanate seemed to be entirely converted into the corresponding
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cyanurate ester resin. DCFT introduces cyanurate ester resin into the Matrimid matrix, which causes
a compacting effect. Hence, all semi-IPNs showed a higher density compared to Matrimid films,
indicating the densification of semi-IPNs. Consequently, this densification effect successfully restricts
plasticization by hindering polymer chain mobility.
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Except for highly reactive monomers, oligomer-containing functional groups can also be used
to form semi-IPNs together with host polyimides. It is well-known that the use of longer oligomer
chains results in improved toughness. Bos et al. used Thermid FA-700 as a crosslinker to resist
plasticization effectively [36]. Figure 17 illustrates chemical structure of Thermid FA-700. Modified
films showed a constant permeability at elevated pressure in the pressure range (up to 50 bar, i.e.,
49.35 atm) of the CO2 permeability test. It has been already proven that the acetylenic end group
can be crosslinked by heating at 250–275 ◦C without the evolution of volatile products, while the
oligomer polymerizes [92]. Two kinds of crosslinking reactions are likely to happen: (1) the benzenoid
cyclization (crosslinking) reaction, i.e., trimerization reaction of the acetylene groups; and (2) the
naphthalene formation (polymerization) reaction. These reactions form semi-IPNs. Compared with
the Matrimid/Thermid film without heat treatment, thermal annealing triggers a crosslinking reaction
between the oligomer and Matrimid, which leads to the obvious suppression of plasticization.
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3.2.4. Ionic Bonding

Apart from inserting covalent bonds into polymer chains, an alternative strategy entails
connecting polymer chains with ionic bonds. A prerequisite for the formation of ionic bonds is
the presence of an electron donor or acceptor along the polymer backbone, which can be carried out by
the substitution reaction.

It has been reported that the introduction of bromine into polymer constitutional
units by bromination of 6FDA-durene, allows crosslinking of the original membrane to
N,N′-dimethylpiperazine [73]. This electrostatic chemical bond effectively restricts polymer chain
mobility and somewhat stabilizes the CO2/N2 selectivity. As a result, membranes did not show an
upturn of permeability in the isotherm within the experimental scale of 25 atm of CO2. It is remarkable
that the pendant piperazinium-mediated crosslinked polyimide membranes displayed a high CO2
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permeability of 475.5 Barrer, together with high CO2/CH4 and CO2/N2 permselectivities of 34.5 and
18, respectively.

3.3. Physical Crosslinking

The introduction of polar functional groups, such as hydroxyl and carboxyl groups, that can form
hydrogen bonds, leads to CTCs and pseudo-crosslink networks formation. To present a larger picture
of the physical crosslinking method, mixed matrix membranes are also discussed in this section.

3.3.1. Hydroxyl Group

Alaslai et al. prepared three polyimides with different numbers of hydroxyl groups (shown
in Figure 18), and demonstrated that polyimides with strong polar –OH groups could mitigate
plasticization when tested under high-pressure binary CO2/CH4 mixed-gas conditions due to strong
chain interactions by inter-chain hydrogen bonding and CTC formation [93]. Compared with
6FDA-mPDA, hydroxyl-containing polyimide membranes maintained very high CO2/CH4 selectivity
(~75 at CO2 partial pressure of 10 atm) due to high CO2 plasticization resistance when tested under
high-pressure mixed-gas conditions.
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3.3.2. Carboxyl Group

It is well-known that the majority of carboxylic acids often exist as dimeric pairs in non-polar
media. Structure of associated carboxylic acids is depicted in Figure 19. These strong polar-associating
functional groups, without the formation of any covalent bonds, participate in a reversible process and
are subject to media polarity and system temperature.
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Staudt-Bickel et al. found that polymer chains of polyimides were crosslinked by hydrogen
bonding between the free carboxylic acid groups, which resulted in a strong reduction in
permeability [19]. The effect of such “virtual” hydrogen bonded crosslinks on plasticization has
not been reported. Additionally, an increased CO2/CH4 selectivity corresponds to an increased degree
of crosslinking, attributed to reduced swelling and polymer chain mobility. Even with a 10% degree
of crosslinking, a 20% increased selectivity can be seen in comparison to the reference polyimide.
However, hydrogen bonding accounting for the formation of CTCs in the blends does well to inhibit
plasticization. This will be elaborated in Section 3.5.

3.3.3. Mixed Matrix Membranes (MMMs)

Polymer membranes suffer not only from plasticization, but also permeability–selectivity
trade-off limitations. These undesired phenomena can be eliminated by preparing mixed matrix
membranes [94]. MMMs reported in the literature can be classified as: solid/polymer; liquid/polymer,
and solid/liquid–polymer MMMs [95]. For solid/polymer MMMs, the integration of organic and/or
inorganic fillers such as carbon nanotubes, carbon molecular sieves [96,97], activated carbon [98–100],
zeolites [101,102], silica [103–105], and metal organic frameworks (MOFs) [106–108] can improve
plasticization resistance.

Zeolitic imidazolate frameworks (ZIFs) are a sub-class of metal organic frameworks (MOFs).
ZIFs show superior thermal and chemical stability, and are inherently more compatible with polymer
matrix [109]. Some studies have found that the introduction of ZIF-8 (Zn (2-methylimidazole)2) can
improve the anti-plasticization performance of pure polymer membranes [74,75].

6FDA-durene/DABA co-polyimides were selected as polymer matrix due to their impressive
performance during CO2/CH4 and C3H6/C3H8 separation [74]. MMMs synthesized from
cross-linkable co-polyimides (6FDA-Durene/DABA (9/1) and 6FDA-Durene/DABA (7/3)), showed
significant enhancements in plasticization suppression characteristics up to a CO2 pressure of 30 atm
after annealing at 400 ◦C due to the cross-linking reaction of the carboxyl in the DABA moiety.
After being thermally annealed at 400 ◦C, the MMM made of 6FDA-Durene/DABA (9/1) with 20 wt%
ZIF-8, showed a CO2/CH4 selectivity of 19.61 and an impressive CO2 permeability 728 Barrer in the
mixed gas tests.

Instead of a sharp ZIF-8 crystal, blending 10 wt% blunt ZIF-8 in the waste polystyrene (w-PS)
container-derived membrane matrix showed good aging resistance and improved anti-plasticization
gas separation performance [75]. CO2 permeability of pure PS membranes increased as CO2 pressure
increased to 3 bar (i.e., 2.96 atm). In contrast, MMMs displayed slightly increased permeability at
increased operating pressure.

Except for ZIF-8, zeolite T was used as a filler embedded in the membrane matrix. A quantity of
1 wt% loaded zeolite T/6FDA-durene MMM showed improvement at a CO2 plasticization pressure to
20 bar (i.e., 19.74 atm) when compared to the pristine 6FDA-durene membrane, which was plasticized
at a CO2 pressure of 5 bar [76]. CO2 permeability and CO2/CH4 ideal selectivity of the MMM also
increased to 843.6 Barrer and 19.1, respectively.

Investigations show that the addition of three distinctively different MOFs (MIL-53(Al) (breathing
MOF), ZIF-8 (flexible MOF), and Cu3BTC2 (rigid MOF)) dispersed in a Matrimid polyimide can
somewhat alleviate plasticization [77]. At pressures higher than the plasticization pressure of neat
Matrimid (10–12 bar), the permeabilities of all MOF–MMMs slightly increased when compared with
the native polymer. Additionally, the plasticization pressure increased with the MOF loading.
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Incorporating Ni2(dobdc) (dobdc4− = dioxidobenzenedicarboxylate) metal organic framework
nanocrystals into various polyimides (Matrimid, 6FDA-DAT:DAM (1:1), and 6FDA-DAM) improves
the performance of their anti-plasticization properties [78]. Compared with the pristine polyimides,
plasticized at around 10–15 bar, Ni2(dobdc)/polyimide composites showed no sign of plasticization
at a CO2 partial pressure <30 bar. The separation performance of composite membranes was closer
to the Robeson upper bound of the CO2/CH4 gas pair when compared with the pristine polymer,
especially at high CO2 pressure, thus indicating better anti-plasticization properties. These, along
with the solution processability of the mixed-matrix format, make Ni2(dobdc)/polyimides intriguing
materials for commercial membrane applications.

3.4. Ultraviolet (UV) Radiation Crosslinking

UV radiation is a post-treatment, which is used after membrane fabrication [110,111]. When the
main chain of polyimide contains a specific structure like benzophenone, it can be crosslinked by UV
radiation. Take 3,3′,4,4′-benzophenonetetracarboxylicdianhydride (BTDA) for example, the carbonyl
bridge of the dianhydride is a photoactive group and serves as a UV crosslinking site. Figure 20
shows chemical structure of BTDA. The reaction mechanism of UV crosslinking of BTDA is shown in
Figure 21. Radiation time, intensity, and the distance between the membrane and light source will all
affect the degree of crosslinking. Thus, the degree of crosslinking of these UV-crosslinked membrane
materials strongly depends on the experimental conditions.
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Hays et al. prepared a series of semi-flexible aromatic polyimides by polycondensation of
dianhydrides with phenylene diamines having alkyl substituents on all ortho positions to the amine
functions incorporating at least in part 3,3′,4,4′-benzophenone tetracarboxylic dianhydride [112].
The photochemical crosslinked polyimides membranes reveal high permeation to gases while still being
able to effectively separate several combinations of gases. For instance, the oxygen permeability of this
kind of polyimide does not decline too much, while the selectivity of O2/N2 significantly increased.

In contrast to the findings of Hays et al., Kita et al. observed that the permeability coefficients
decreased with increasing UV irradiation time as a result of crosslinking [113]. This decrease can be
explained by the change in diffusivity, while solubility is not greatly affected. In addition, the largest
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change in selectivity was obtained for the H2/CH4 gas pair, which had a large difference in the
molecular sizes of the constituents. It is worth noticing that the selectivity for the H2/CH4 separation
increased by a factor of 50 after 30 min of UV irradiation with a decrease in the H2 permeability by a
factor of 5.

Liu et al. investigated a series of UV irradiation modified copolyimides prepared from 2,4,6-
trimethyl-1,3-phenylenediamines (3MPDA), BTDA, and pyromellitic dianhydride (PMDA) [114].
Photochemically crosslinking modification resulted in the increasing of gas selectivity of most gas
pairs and declination of gas permeability. However, for the H2/N2 gas pair, the crosslinked copolymer
exhibited a higher H2 permeability and H2/N2 selectivity.

Liu et al. also synthesized another polyimide prepared from BTDA and 2,3,5,6-tetramethyl-1,4-
diphenylenediamine (4MPDA), and compared two crosslinking modification methods: putting the
polyimide in an ambient environment for four months, and under UV irradiation for two or eight
hours [115]. The results found that the crosslinking reaction by UV irradiation only occurred in the
surface layer, but crosslinking at an ambient environment for a long time took place in the whole film.
This led to a much higher crosslinking density on the membrane surface and higher gas selectivity.
Therefore, the resulting crosslinked polymer had an asymmetric structure.

Although plenty of meaningful and interesting work has been done in the UV radiation
crosslinking of polyimide, few researchers have focused on the anti-plasticization performance after
UV radiation crosslinking. Therefore, the effect of UV crosslinking on plasticization resistance needs
further investigation.

3.5. Blending

Given the obvious drawbacks of low permeability and plasticization resistance, it is natural
to conceive the idea of blending polyimides with other polymers exhibiting high permeability and
anti-plasticization to overcome the corresponding disadvantages.

Through blending, materials may show new characteristics different from the pristine materials.
Blending easily plasticized membrane materials with anti-plasticized membrane materials may
improve plasticization resistance. Furthermore, blending one relatively cheaper polymer component
with another more expensive component can cut down on the capital cost. Based on the above
advantages, blending can be used to tailor the performance of the original single polyimide membranes.

However, not all polymers can be blended homogeneously on a molecular level. The miscibility is
the most challenging problem when blending different polymers. Some coexistence modes of different
polymers are well-established. For instance, one polymer may act as a dispersed or co-continuous
phase in another bulky polymer matrix. Another possibility is that a single polymer may exist as an
individual block mass due to the heterogeneous dispersion.

In order to prepare a blend material with superior properties, many well-designed experiments
have been conducted. Polyimides, such as Matrimid, Torlon, Ultem, etc. have the ability to be blended
homogeneously with a small loading of other polymers. The chemical structure of polyimides showing
miscibility are depicted in Figure 22. Homogeneous blend membranes are often transparent, exhibit
a single glass transition temperature, and present a clear and single phase in the polarized light
microscopy (PLM) image.

To begin with, Matrimid, a commercially available polyimide, is often used in blends with
other polymers to modify its low permeability. Matrimid/PSF (20/80 wt%) shows plasticization
pressures up to above 30 atm [79]. The blends have been characterized by optical, morphological,
and thermodynamic measurements to test the compatibility of two candidate polymer materials.
No phase separation was observed with optical microscopy. DSC scans of PSF/PI blends with different
compositions indicated one single glass transition temperature. It is already known that frequency
shifts of miscible blends often indicate specific interactions between the characteristic groups of pure
polymers. FTIR spectra shifts and intensity changes suggest PSF and PI interactions, and mixing
at the molecular level. These results show that PSF and PI blending is complete and homogeneous.



Processes 2019, 7, 51 25 of 31

Furthermore, the phase state of PSF/PI blends has been studied further by differential scanning
calorimetry, rheology, and x-ray scattering [116].
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Bos et al. blended PSF and P84 (copolyimide of 3,3′,4,4′-benzophenone tetracarboxylic
dianhydride and 80% methylphenylene-diamine + 20% methylene diamine) with Matrimid,
respectively [80]. The proven homogenous blends, Matrimid/PSF (50/50 wt%) and Matrimid/P84
(60/40 wt%) were cast to form transparent membranes. Matrimid showed relatively high permeability
when compared with P84, and P84 did not display an apparent signal of plasticization up to 30 atm,
much higher than the critical plasticization pressure for Matrimid. Therefore, the latter blend showed
a plasticization pressure of 14.80 atm (15 bar). The incomplete suppression of CO2-plasticization at
room temperature was attributed to the concentration of P84 in the blend. Moreover, the CO2/CH4

mixed-gas experiment of the two blends revealed a strong resistance to plasticization. The two blends
showed no signs of CO2-induced plasticization with the increasing partial CO2 pressure in the mix gas
separation test. CH4 permeability showed a slight increase, indicating a small tendency to plasticize.

Matrimid can also be blended with carboxylated polymers of intrinsic microporosity (cPIM-1) at
the molecular level [81]. The addition of cPIM-1 in Matrimid significantly enhanced the plasticization
pressure for all blended membranes. A small loading of 5–10 wt% of cPIM-1 in Matrimid improved
the plasticization pressure from less than 10 atm to 15 atm, while a higher loading of cPIM-1 shifted
the plasticization pressure to 20 atm. The interstitial space measured by X-ray diffraction (XRD)
indicated an interaction among the polymer chains between cPIM-1 and Matrimid with a reduction in
interstitial space, and an enhancement in chain packing. The presence of hydrogen bonding promoted
compatibility between these two polymers. The newly formed hydrogen bonds between cPIM-1 and
Matrimid, integrated with the rigid polymer backbone of cPIM-1 to suppress the plasticization.

Except for Matrimid, Torlon, a rigid polyimide with superior gas-pair selectivity and
intrinsic superior anti-plasticization property, can be blended with PIM-1 showing outstanding gas
permeability [82]. The Torlon/cPIM-1 blends displayed plasticization pressures up to 30 atm, when
compared with the pristine cPIM-1 membrane, it exhibited a plasticization pressure at around 20 atm.
Hydrogen bonding between Torlon and cPIM-1 promotes polymer chain packing and reduces the
fractional free volume (FFV), which accounts for this enhancement of anti-plasticization performance.
The introduction of Torlon formed partial miscible blends with cPIM-1, and reduced the inter-segment
mobility in the polymer matrix. It is noteworthy that cPIM-1/Torlon blend membranes, with a small
amount of cPIM-1 or Torlon (5–10 wt%), can hold a homogeneous morphology. The principle of
polymer blend miscibility can be testified by PLM, FTIR, DSC, TGA analyses and UV absorbance tests.
A homogenous blend may present a clear and single phase in PLM images. C=O band shifts of cPIM-1
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from 1700 cm−1 to a lower band, with an increase in Torlon loading, indicates hydrogen bonding
interactions between cPIM-1 and Torlon. Moreover, the CTCs formation between cPIM-1/Torlon is
demonstrated by the fact that the wavelength of the UV absorbance band of cPIM-1/Torlon blends
exceeds the predicted data. The strong hydrogen bonding couples with CTC interactions to promote
better compatibility between the two polymers.

Although Ultem/PIM-1 polymer blends have been reported, the plasticization resistance has not
been investigated yet [117].

4. Conclusions and Prospects

In the present literature, various ways have been thoroughly discussed to restrain the typical
CO2-induced plasticization of polyimide membranes, which contribute to providing a big picture
of the research findings in this field. To improve the currently existing methods and develop novel
methods, the mechanisms and processes of plasticization were explored.

Taken together, there are rarely any common methods that can be applied to the majority of
polyimide membranes to suppress plasticization. The most effective ways vary from membrane
to membrane. Therefore, researchers should conceive of specific methods according to the specific
chemical molecular structure.

Many novel and effective crosslinking methods for polyimide membranes, such as hyperbranched
polyimides have yielded good performance in gas separation. Nevertheless, the plasticization response
has not been reported. Therefore, this unexploited area may be one of the directions that will contribute
to synthesizing the next potential polyimide membranes with good plasticization resistance.
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