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Abstract: The Lithium-ion battery (Li-ion) has become the dominant energy storage solution in many
applications, such as hybrid electric and electric vehicles, due to its higher energy density and longer
life cycle. For these applications, the battery should perform reliably and pose no safety threats.
However, the performance of Li-ion batteries can be affected by abnormal thermal behaviors, defined
as faults. It is essential to develop a reliable thermal management system to accurately predict and
monitor thermal behavior of a Li-ion battery. Using the first-principle models of batteries, this work
presents a stochastic fault detection and diagnosis (FDD) algorithm to identify two particular faults in
Li-ion battery cells, using easily measured quantities such as temperatures. In addition, models used
for FDD are typically derived from the underlying physical phenomena. To make a model tractable
and useful, it is common to make simplifications during the development of the model, which may
consequently introduce a mismatch between models and battery cells. Further, FDD algorithms can
be affected by uncertainty, which may originate from either intrinsic time varying phenomena or
model calibration with noisy data. A two-step FDD algorithm is developed in this work to correct
a model of Li-ion battery cells and to identify faulty operations in a normal operating condition.
An iterative optimization problem is proposed to correct the model by incorporating the errors
between the measured quantities and model predictions, which is followed by an optimization-based
FDD to provide a probabilistic description of the occurrence of possible faults, while taking the
uncertainty into account. The two-step stochastic FDD algorithm is shown to be efficient in terms of
the fault detection rate for both individual and simultaneous faults in Li-ion batteries, as compared
to Monte Carlo (MC) simulations.

Keywords: fault detection and classification; uncertainty analysis; lithium-ion battery; optimization;
thermal management; polynomial chaos expansion

1. Introduction

Lithium-ion (Li-ion) batteries are widely used in many applications, such as cell phones, electric
and hybrid electric vehicles, since they exhibit a higher energy density and have a relatively longer life
compared to other batteries [1]. In these systems, Li-ion batteries must possess a high reliability and
pose no safety threats [2]. However, the thermal behavior can greatly affect the safety, durability, and
performance of Li-ion batteries [3]. For example, fire and explosions caused by thermal runaway were
reported [4]. Thus, reliable battery management systems are essential to mitigate negative effects (e.g.,
thermal runaway) and avoid catastrophic failures [5]. As a key component of the battery management
system, fault detection and diagnosis play an important role in the management of Li-ion batteries [6].

Fault detection and diagnosis (FDD) methods generally can be classified into two major groups,
i.e., first-principle model-based methods and data driven (or empirical) methods [7]. For the former,
models describing the physical mechanisms of the fault dynamics are oftentimes used, while historical
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data are typically collected for data driven methods to derive empirical models. Each of these
approaches has its own advantage and drawback depending on the specific problems. It is recognized
that first-principle model-based methods exhibit a better extrapolation ability, whereas data-driven
methods are easier to design [8]. This work focuses on the use of the first-principle models for FDD,
since these models provide a fundamental understanding of the thermal physics of batteries [9].

Several first-principle thermal models have been previously developed for Li-ion batteries.
For example, a three-dimensional thermal finite element model was developed to investigate the
cell behavior under abnormal events such as overheating and external short circuits [10]. This model
requires high computational capabilities, and its application is limited to stationary storage [11].
Compared to the three-dimensional models, the one-dimensional model of Li-ion batteries, developed
using the average lumped temperature of the cell, is viable for real-time applications and can enable
online battery management [12]. However, such a model may fail to provide insights into the thermal
(fault) dynamics due to its simplicity [13]. As a trade-off, a two-dimensional thermal model was
developed, which can predict the core and the surface temperature of Li-ion battery cells [3,13]. Since
the two-dimensional model can provide a better understanding of the thermal dynamics of battery
cells, while maintaining the computational complexity, it is used in this work for the design of a
stochastic FDD scheme.

Measurements of temperatures such as surface and core temperatures are often used for FDD
in Li-ion batteries, but there is no direct measurement of the core temperature. To take the core
temperature into account, estimation techniques are often required. In the literature, several estimation
techniques have been developed. For example, an adaptive observer based on the lumped thermal
model [14] and state observer using partial differential algebraic equations [15] were proposed to
estimate the temperature. Compared to these estimation techniques, the real-time monitoring and
diagnosis of faults in batteries are less explored. Although there have been several proposed works
related to diagnostic algorithms for internal faults in Li-ion batteries [3,16,17], it is important to note that
previously reported FDD work mostly investigated sensor or actuator fault detection problems [18–20].

In this work, we propose to estimate the core temperature and use the estimation results to
identify and classify two sets of faults. That is, faults that can introduce dynamic changes in core
temperatures and faults that can affect the surface temperatures. The FDD scheme in this work can
potentially provide more information about the thermal dynamics of batteries and enable an internal
thermal fault detection to improve the performance of the Li-ion battery.

For FDD, the available algorithms compare the observed behavior to the corresponding model
results, estimated from first-principle models [21]. When a fault is detectable, the FDD scheme will
generate fault signatures, which in turn can be referred to an FDD scheme to identify the root cause of
faults using a threshold [22]. However, the main restrictive factor for the first-principle model-based
FDD is the model uncertainty [23]. The accuracy of the fault detection algorithm can be affected by
any uncertainty in the model parameters. Such an uncertainty may result from intrinsic time varying
phenomena or originate from the model calibration with noisy measurements [24]. The uncertainty
can be quantitatively approximated by a calibration with experimental data, which include principles
such as least squares errors or the Delphi method [25,26].

The procedures that firstly quantify the uncertainty and then propagate the uncertainty onto the
FDD scheme are typically omitted in previously reported works. This subsequently may lead to a
loss of information about the effect of uncertainty on FDD performance. Recently, several techniques,
such as the adaptive observer [27,28] and the sliding mode observer [29], were developed for FDD
in the presence of uncertainty. However, most of these methods cannot provide information, such as
the probability that a fault has occurred. In addition, since the faults in the batteries may happen in a
stochastic fashion, the use of fixed thresholds to identify the root cause of faults may not be effective.

There are differences between the actual thermal dynamics of Li-ion batteries and fundamental
models derived from physical phenomena. For example, to make models tractable and useful, it is
common to make simplifications during the model development, which will introduce a mismatch



Processes 2019, 7, 38 3 of 19

between the model and the Li-ion battery system of interest. Thus, the first principle model-based
FDD scheme should be designed to compensate the mismatch. Specifically, a set of fixed model
parameters may not be accurate enough for estimating the core temperature in the presence of a model
mismatch. Consequently, any inaccuracy in the temperature estimation may potentially lead to a low
fault detection rate. To ensure the accuracy of FDD, it is essential to simultaneously calibrate the model
parameters and adjust the FDD scheme. However, this is generally challenging due to the presence of
uncertainty such as the measurement noise and an unknown model mismatch.

In this work, we propose to address these aforementioned limitations by developing an FDD
scheme for Li-ion batteries described by a two-dimensional first-principle thermal dynamic model,
for which both model parameters and faults are of a stochastic nature. Specifically, the faults considered
in this work, such as the thermal runaway, are stochastic perturbations superimposed on step changes
in the specific thermal dynamic parameter and electric current. The objective is to identify the
changes in the mean values of the thermal dynamic parameter and current in the presence of random
perturbations, the measurement noise, and a model mismatch. As compared to other existing thermal
diagnostic techniques, the main feature of the FDD scheme is the efficient quantification of the effect
of stochastic changes in model parameters on fault detection, and the rapid propagation of the
stochasticity onto the estimation of temperatures that are required for FDD.

Note that one possible way to propagate uncertainty in model parameters onto temperature
estimates is the use of Monte Carlo (MC) simulations [30]. However, methods such as MC may be
computationally demanding, since they often require a larger number of simulations in order to
obtain accurate results. It is worth mentioning that although the calibration of an FDD scheme can be
performed offline, the online re-calibration of the model in the presence of a model mismatch with MC
as shown later in current work is computationally prohibitive. Recently, the uncertainty propagation
with generalized Polynomial Chaos (gPC) expansion has been studied in different modelling [31],
optimization [32], and fault detection problems [24]. As compared to MC, the advantage of gPC is that
it can propagate a complex probability distribution of uncertainty in model parameters onto model
predictions rapidly and can analytically approximate the statistical moments of model predictions in
a computationally efficient manner [31]. The improvement in computational time may facilitate its
application in the real-time model adjustment for improved FDD.

The FDD algorithm in this work is specifically targeted to identify and diagnose stochastic thermal
faults consisting of uncertainty around a set of mean values of thermal properties in the presence of a
model mismatch. In summary, the contributions in this work include: (i) The use of an intrusive gPC
model for stochastic FDD of Li-ion batteries by approximating the uncertainty in thermal dynamics
with gPCs and by propagating the uncertainty directly onto temperatures that can be used for FDD;
(ii) the identification and classification of a fault based on the probability information of temperatures
other than a single point estimate or threshold; (iii) the formulation of an optimization to account for a
model mismatch and adjust the thermal dynamic models by incorporating the discrepancy between
model predictions and measurements.

This paper is organized as follows. Section 2 presents the theoretical background and the principal
methodologies in this work, including a two-dimensional thermal dynamic model, the introduction of
generalized polynomial chaos (gPC) expansion, and the formulation of the stochastic fault detection
and diagnosis (FDD) problem. The methodology for FDD and the formulation of an optimization
for model correction to account for the model mismatch is presented in Section 3. The analysis and
discussion of the results are given in Section 4, followed by conclusions in Section 5.

2. Theoretical Backgrounds

2.1. Thermal Model of Lithium-ion Battery

The two-dimensional deterministic thermal dynamic model is used to describe a cylindrical
Li-ion battery cell in this work [3,13]. A schematic diagram of the Li-ion battery cell is shown in
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Figure 1. This model can provide information about the heat source of the battery and estimate the
core temperature based on measurements of the surface temperature. The surface temperature Ts and
the core temperature Tc can be defined as:

Cc
.

Tc = I2Re +
Ts − Tc

Rc
(1)

Cs
.

Ts =
Tf − Ts

Ru
− Ts − Tc

Rc
(2)

Re = β0 + β1SOC + β2Tc (3)

where I is the current, Tf represents the surrounding air temperature, Re is the internal (or electrical)
resistance, Rc is the thermal resistance between the surface and core of the battery, Ru denotes the
convection resistance between the surface and the surroundings of the battery, Cc and Cs represent the
heat capacity of the internal battery material and the surface battery material, respectively. The internal
resistance Re is given in Equation (3) which consists of state of charge (SOC), core temperature Tc, and
parameters β0, β1, β2 that can be pre-estimated by an offline estimation scheme [3].
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For the Li-ion battery cell model given in Equations (1) and (2), model parameters including Re

are generally assigned with constant values. A set of parameters used in the two-dimensional thermal
dynamic model is given in Table 1 [33].

Table 1. Parameter declaration for the thermal model of Li-ion battery cell.

Model Parameters Cc Cs Re Rc Ru

Units JK−1 JK−1 mΩ KW−1 KW−1

Value 268 18.8 10 2 1.5

It is important to note that the model of the battery and the model parameters may involve
uncertainty. For example, the thermal dynamics of a Li-ion battery cell can change with respect to
time, which may be caused by factors such as the surrounding temperature and the state of charge.
In addition, the estimates of model parameters can be affected by noisy data used for model calibration.
These possible sources of uncertainty can be briefly categorized into three groups as follows.

1. Observational uncertainty: This includes measurement errors in experimental data, such as the
measurements of voltage, current, and surface temperatures.

2. Parametric uncertainty: This refers to uncertainty in parameters, which may originate from the
observational uncertainty or result from lack of information. It may be advantageous to represent
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a model parameter, e.g., Re in Equation (1), as a random variable with a distribution other than a
fixed value.

3. Structural uncertainty: This describes the differences between a model and the actual Li-ion
battery system. For example, models in Equations (1) and (2) may not be an exact representation
of the thermal dynamics of a Li-ion battery cell.

In this current work, we focus on the development of FDD algorithms in the presence of these
uncertainties. Specifically, the conduction resistance Rc in Equations (1) and (2) is considered as an
uncertain parameter and changes in Rc are defined as stochastic faults. The conduction resistance
Rc is often used to incorporate conduction and thermal resistance across materials with compact
and inhomogeneous properties. It is difficult to accurately estimate the exact parameter value of Rc,
since the rolled electrodes consist of the cathode, anode, separator, and current collectors, which may
complicate the parameter estimation and reduce the estimation accuracy [14]. Any variations in Rc,
may significantly affect the performance of the battery. In addition, it is assumed that the current I
in Equation (1) is the second uncertainty in this work, since the internal state of the battery can be
affected by the current [34]. For example, as previously reported [14] current variations may lead to
the fluctuation in temperatures of the battery. Furthermore, the electric current of the battery can be
time-varying in practice and can be corrupted by measurement errors. Thus, the exact value of current
can be an unknown prior.

Since the convection resistance Ru is related to the surrounding coolant flowrate [35], which
is oftentimes tightly controlled to maintain a consistent battery temperature, Ru is assumed to be
a constant rather than a parametric uncertainty. For the internal resistance Re in Equation (1), it
can be affected by various conditions such as the state of charge of battery, temperature, and drive
cycle [14,36,37] leading to the changes in model predictions such as temperature. However, this
thermal parameter in Li-ion battery has been investigated by many researchers and is well formulated
with the state of charge and temperatures as shown in Equation (3) [3,14,38]. For example, it can
be estimated offline with experimental data or determined online with SOC estimation based on an
equivalent circuit model (ECM) [38]. In this work, it is assumed that Re is a constant rather than a
time-varying parameter and it is not considered as a parametric uncertainty for simplicity. However,
the proposed uncertainty propagation and diagnostic scheme can be extended to Ru and Re according
to their intrinsic properties when there is evidence to support a significant variation in Ru and Re.

In this work, sudden changes of temperatures in the Li-ion battery caused by the current I and
resistance Rc will be diagnosed and classified by the proposed method. Additionally, to introduce
structural uncertainty, it is assumed that the exact statistical moments of uncertainties, such as the
actual mean value of Rc is unknown to the modelers, which will be corrected by incorporating the
differences between model predictions and the measurement of temperatures. Further, it should be
noted that only the surface temperature of the battery can be directly measured, thus the estimations
of the core temperatures will be used in the model correction.

2.2. Generalized Polynomial Choas Expansion

The generalized polynomial chaos (gPC) expansion approximates a random variable with an
arbitrary probability density function (PDF) of another random variable (e.g., ξ) with a known prior
distribution. For brevity, suppose that the battery thermal models in Equations (1) and (2) can be
described by a set of ordinary differential equations (ODEs) as:

.
x = f (t, x, u, p) (4)

where the vector x = {xj} (j = 1, 2, . . . , n) represents the core and the surface temperatures, i.e., Tc

and Ts, with initial values x0 at t = 0, u is deterministic parameters, i.e., fixed constant values, while
p is a vector of uncertainties, i.e., I and Rc in this work, which will be approximated with PDFs. To
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evaluate the effect of uncertainty on temperatures, a key step is to approximate each parameter in
p = {pi} (i = 1,2, . . . , np) as a function of a set of the independent random variable ξ = {ξi} as:

pi = pi(ξi) (5)

where ξi denotes the ith independent random variable following a standard PDF [31]. Based on the
definition of gPC expansion, each parametric uncertainty {pi} and the model predictions x can be
defined using the orthogonal polynomial basis functions {φk (ξ)} as:

pi(ξi)=
∞

∑
k=0

p̂i,kφk(ξi) (6)

xj(t, ξ) =
∞

∑
k′=0

x̂j,k′(t)ϕk′(ξ) (7)

where
{

p̂i,k
}

denote the gPC coefficients of the ith parametric uncertainty,
{

x̂j,k′
}

are the gPC
coefficients of the jth model predictions at time instant t, and {ϕk′ (ξ)} are the orthogonal polynomial
basis functions of random variables ξ [31]. When the PDFs of p are a given prior, a set of coefficients{

p̂i,k
}

in Equation (6) can be determined such that pi(ξi) follows a prior known distribution. Otherwise,
optimization techniques can be used to estimate

{
p̂i,k
}

. As compared to p, the gPC coefficients of x are

unknown and have to be calculated. To calculate
{

x̂j,k′
}

, Equations (6) and (7) are firstly substituted
into Equation (4), which is followed by applying a Galerkin projection and by projecting Equation (4)
onto each of the polynomial chaos basis function {ϕk′ (ξ)} as:

〈 .
xj(t, ξ), ϕk′(ξ)〉 = 〈 f (t, xj(t, ξ), u, p(ξ)), ϕk′(ξ)〉 (8)

For practical application, truncation, i.e., a finite number of terms, is often used other than infinite
terms in Equations (6) and (7). For example, the total number of approximation terms (i.e., Q) that can
be used for

{
xj
}

in Equation (7) can be calculated as:

Q = ((np + q)! /(np!q!))− 1 (9)

where q is the number of terms that is necessary to approximate an arbitrary uncertainty with a prior
known PDF in Equation (6), and np is the total number of parametric uncertainties in p. As seen in
Equation (9), the number of terms required for the gPC approximation of x = {xj} depends on the order
of polynomial q and/or the number of unknown parametric uncertainty np.

The inner product between any two vectors in Equation (8) can be calculated as [31]:

〈ψ(ξ), ψ′(ξ)〉 =
∫

ψ(ξ)ψ′(ξ)W(ξ)dξ (10)

where the integral is calculated over the entire domain defined by random variables ξ in the
Wiener-Askey framework, W(ξ) is the PDF of ξ that is defined as a weighting function in gPC theory.
For example, Hermite polynomial basis functions can be used for normal distributions [31]. Using
gPC coefficients of model predictions x in Equation (7), the statistical moments of x at a given time t
can be quickly estimated as follows:

E(xj(t)) = E

[
Q

∑
k′=0

x̂j,k′(t)ϕk′

]
= x̂j,0(t)E(ϕ0) +

Q

∑
k′=1

E[ϕi] = x̂j,0(t) (11)
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Var(xj(t)) = E
[
(xj(t)− E

[
xj(t)

]
)

2
]
= E

( Q
∑

k′=0
x̂j,k′(t)ϕk′ − x̂j,k′=0(t)

)2


= E

( Q
∑

k′=1
x̂j,k′(t)ϕk′

)2
 =

Q
∑

k′=1
x̂j,k′(t)

2E(ϕk′
2)

(12)

In addition, the PDF of model predictions x can be estimated by sampling from the PDF of ξ and
by substituting samples into the gPC expressions of x in Equation (7). The calculation of statistical
moments with the analytical formulae in Equations (11) and (12) and the rapidly approximation of
the PDF of x are the main rationale of using the gPC in this current work, since it can reduce the
computational burden involved in the model correction in the presence of structural and parametric
uncertainty. Note that the FDD procedure in this work consists of the inverse of the procedures
summarized above, i.e., the identification of the PDFs (e.g., mean values) of parametric uncertainty
using the measurements and model predictions of x. The details concerning the FDD will be discussed
in Section 3.

2.3. Formulation of FDD Problem

The faults considered in this work consist of stochastic perturbations superimposed on a particular
set of mean values of these two aforementioned uncertainties, i.e., current I and conduction resistance
Rc. For example, Figure 2 shows a possible fault profile (Figure 2a) and the resulting noise-free
temperature responses (Figure 2b). For clarity, two mean values of each faults in Figure 2 are presented.
As can be seen, any changes in the mean values of faults can induce variations in temperatures.
The objective is to use the measurements of the temperature to identify the step changes between
different mean values of the current (I) and the thermal resistance Rc.

A mathematical description of stochastic faults is defined as:

pi = pi + ∆pi(i = 1, . . . , np) (13)

where pi ε p (i = 1,2, . . . , np), {pi} denotes a set of mean values, and {∆pi} represents the variation
around each mean value of the ith uncertainty. For example, the solid bold lines (blue and red) in
Figure 2a are the mean values of current (I) and thermal resistance Rc, while the purple and green lines
are the perturbations around each of the mean values. It is assumed in this work that the statistical
moment of {∆pi} is time-invariant for simplicity and can be estimated with offline model calibration
algorithms. In addition, the total number of possible mean values of pi can be experimentally inferred
from the constancy of measured quantities such as the surface temperature as shown in Figure 2b, but
the exact mean values can be unknown to the modelers.
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As seen in Figure 2b, the core temperature is higher, when the mean values of I and Rc are larger.
Since any significant changes in the core temperatures are harmful and may cause catastrophic failures
in Li-ion batteries [4], the smaller mean values of I and Rc are used to represent the normal operating
mode of Li-ion battery in this work, while the larger mean value in either I and Rc is used to represent
the faulty operating modes. Thus, the objective is to identify the mean value (or mean value changes)
of I and Rc in the presence of uncertainty.

To summarize, two types of faults are considered. (i) Fault 1: Current fault (I), representing the
switch between two mean values of I, which can affect the core temperature dynamics and further
induce thermal runaway faults. (ii) Fault 2: Thermal resistance fault (Rc), representing a significant
deviation in the mean value of thermal resistance Rc, which may result from battery aging and can
affect both the core and temperatures. Based on the definition of the faults, the setting of normal and
faulty operating modes in this work is given in Table 2, respectively.

Table 2. Faults definition and description.

Modes Description Type

Normal I = I1, Rc = R1
c No fault

Faulty 1 I = I2, Rc = R1
c Individual fault

Faulty 2 I = I1, Rc = R2
c Individual fault

Faulty 3 I = I2, Rc = R2
c Simultaneous faults

3. Methodology of Fault Detection and Diagnosis

The objective of the FDD algorithm is to identify a change in the mean values of I and Rc and
classify an operating condition as a normal or faulty mode described in Table 2, using measurements
of temperatures. A Joint Confidence Region (JCR) based FDD algorithm is first presented in Section 3.1,
which is followed by an optimization-based model correction method in Section 3.2 for improved FDD
in the presence of a model mismatch.

3.1. Fault Detection Algorithm Using JCR Profiles

In Section 2, the propagation of uncertainty onto model predictions was discussed, from which
the PDF profile of each model prediction can be approximated using the gPC models. The main idea
of the FDD algorithm in this work is to solve the inverse problem, i.e., to identify the mean values of
uncertainty with gPC models. The FDD method consists of three steps. (a) The stochasticity in faults
(i.e., I and Rc) is propagated onto model predictions, thus producing a family of gPC models of the
core and surface temperatures around each mean value of faults considered in this work. (b) Since
two uncertainties (faults) are studied, a set of joint confidence region (JCR) profiles of the core and
surface temperatures is used to infer the possible mean values or any changes in mean values of
faults. The generation of the JCR, which predicts the probability that a pair of measurements belongs
to a particular JCR, will be discussed later. (c) Because of the measurement noise and the overlaps
among JCRs, the JCR-based FDD may provide a lower fault detection rate. Thus, a gPC model-based
minimum distance optimization is developed to improve the FDD performance.

Step a
The formulation of the gPC models for the core and surface temperatures follows the procedures as

outlined in Section 2. It is assumed that the stochastic perturbations in faults I and Rc are independent
stochastic events, thus a two-dimensional random space is used, i.e., ξ = {ξ1, ξ2}. Consequently, the
predictions of temperatures obtained from Equation (7) are functions of ξ = {ξ1, ξ2}, i.e., any changes in
faults can affect both the core and surface temperatures.
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Step b
Since two faults are studied, JCR profiles of the core and surface temperatures are used to infer

mean value changes in faults I and Rc. Figure 3 shows a schematic of generated JCRs from gPC models.
The generation of JCRs proceeds as follows.
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(i) In the case of stochastic perturbations in both I and Rc, the maximum variations of core and
surface temperatures are first estimated. (ii) A two-dimensional discrete domain made of combinations
of core and surface temperature values can be generated based on the temperature estimations in
Step i. (iii) Random samples of ξ1 and ξ2 are substituted into the gPC models of the core and surface
temperatures as defined in Equation (7), which can provide the temperatures values. (iv) Each pair
of the core and surface temperatures is assigned to a particular grid generated in Step ii, and the
total number of temperature pairs can be calculated when all the samples from Step iii have been
assigned. (v) The probability at each discrete grid is calculated as the ratio between the number of
temperature pairs at a particular grid point and the total number of temperature pairs (i.e., the number
of combinations of ξ1 and ξ2 that are used in Step iii). (vi) A JCR can be generated by connecting
discrete grid points with the same probability (see Figure 3).

Step c
Following the procedures above, a family of JCR profiles can be generated for each pair of mean

values of I and Rc, as shown in Table 2, which can be used for FDD. However, as seen in Figure 4a,
the JCRs used to infer faults can be misleading, when a pair of measurements (red star) is found to
be in the overlap of JCRs. In addition, the measurements may lay outside of JCR profiles due to the
measurement noise, as shown in Figure 4b. Thus, a gPC model-based minimum distance criterion is
used to improve the FDD performance, which is explained below.
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(a) represents that a pair of measurements can be found in the overlap of the JCRs, and (b) represent
that a pair of measurements can be found outside the JCRs due to measurement noise. In addition, d1

and d2 in (b) represent the distance between the measurements and the centers of JCRs, which can be
used for FDD with a minimum distance criterion as defined in Equations (14) and (15).
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As seen in Equation (7), the gPC models of the core and surface temperatures are functions
of random variables ξ = {ξ1, ξ2}, which can provide the statistical information of temperatures
resulting from stochasticity in faults I and Rc. The combination of gPC models of the core and surface
temperatures can provide the mathematical description of JCRs. When a pair of temperatures is
available, e.g., red star in Figure 4, it is possible to calculate the distance between a pair of temperatures
and the center of a JCR. For a prescribed confidence region (or specific probability), the shortest
distance between the measurements and a specific JCR can then be used to infer the mean values of
faults. For example, as seen in Figure 4b, the distance d2 is smaller than d1, thus indicating that the
mean values of faults, used to generate JCR-2, are the most probable operating mode. To analytically
decide the Euclidean distance between a pair of measurements and a JCR, an optimization problem is
developed as:

min
λ

Ji = (Tc,i − Tc,p)
2 + (Ts,i − Ts,p)

2 (14)

Operatingmode : MFCR = arg min{Ji} (15)

where i is the total number of combination of mean values of faults I and Rc as shown in Table 2, Tc,i,
and Ts,i are the gPC models for a particular set of mean value I and Rc, which are functions of ξ given
in Equation (7), Tc,p, and Ts,p. are the core and surface temperatures that are used for FDD. Note that
MFCR in Equation (15) is the identified operating mode defined in Table 2 based on the minimum
distance criterion. It should be noted that there is no direct measurement of the core temperatures of
the battery, thus models, i.e., Equations (1) and (2), are used to estimate the core temperature with the
measurement of the surface temperature. The decision variable λ is a vector of random samples of
ξ = {ξ1, ξ2} from the sample domain defined by the three-sigma rules [39]. This optimization problem
in Equation (14) will be performed for each pair of core and surface temperature measurements and
combination of mean values of faults I and Rc that are defined in Table 2. Then, the minimum distance
as defined in Equation (15) can be used to identify an operating mode as defined in Table 2.

3.2. Optimization-Based Model Correction

The FDD algorithm in Section 3.1 assumes that the exact statistical moments of I and Rc are given
priors, which can be propagated onto the temperatures to formulate the JCR profiles of temperatures.
However, it cannot account for the discrepancy between the model and the actual thermal dynamics of
the Li-ion battery. For example, a model calibration with noisy data can introduce model uncertainty.
Further, model assumptions and simplifications are often made to make a model tractable, which may
result in structural uncertainty. To account for uncertainty (and/or mismatch) between the model and
the actual battery cells, we propose to correct the model by incorporating the error between model
predictions and available measurements. The correction criterion is formulated as follows:

.
x̃ = f (t, x̃, u, p) + µ(x̂− x̃) (16)

where µ =
{

µj
}

(j = 1, 2, . . . , n) is a vector of correction gains, x̃ is model predictions, and x̂ is the
measurements of temperatures. To implement Equation (16), it is assumed that the measurements
of the surface temperature are available, and the core temperature can be estimated with the model
that is being corrected. It is also assumed that the exact statistical information, such as mean value of
the uncertainty, is not available for the user, in order to represent a model involving model mismatch.
Such a difference will be compensated using correction gains µ in Equation (16).

To calculate the correction gains, a set of measurements inside a sliding time window will be
used in this work. A schematic of the sliding time moving window is shown in Figure 5, where L
represents the size of the moving window and M is the moving rate, i.e., L determines a total number
of required temperatures and M decides the overlap between the windows. A smaller window size
can be less accurate and may be time consuming, but it can be sensitive as it would better capture the
thermal dynamics of battery. A larger window size can reduce the computational burden, but it may
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lead to a coarse estimation. The moving rate decides the number of measurements changed at a time.
For example, when 1 is used for M, which means that the one measurement is changed at a time, i.e.,
the first measurement in L will be removed and one new measurement will be appended to L. When
M is larger, it may produce poor model correction result, while it will increase the computational load
when M is smaller. The choice of L and M is problem specific and requires a trade-off, which can be
determined with insights of the dynamic natures of batteries.
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For a sliding time moving window with temperature measurements, the correction gains µ can be
optimized with an optimization as:

min
λ=µ

J =
L

∑
i=1

(Tc,i − Tc,p)
2 +

L

∑
i=1

(Ts,i − Ts,p)
2 (17)

where Tc,i, and Ts,i are gPC model predictions of core and surface temperatures obtained from
Equation (16), Tc,p and Ts,p denotes the temperatures inside moving windows that are used for the
model correction. Note that core temperatures are estimated from the deterministic models that are
being corrected based on the measurements of the surface temperatures. The decision variable λ in
Equation (17) is the correction gain that can be recursively updated with moving time windows. It will
be shown in the results section that the model correction can be executed at each time interval in a
real-time fashion, and the fault detection results can be greatly improved with the recursively-updated
gPC model.

3.3. Summary of FDD Algorithm

An overview of the proposed model correction and FDD is shown in Figure 6. In summary,
the algorithm proceeds as follows.
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Step i—Collect measurements of surface temperatures as a training set when the battery is
operated at normal and faulty operating modes, described in Table 2. Using the optimization defined
as Equation (17), the models of Li-ion battery cells can be corrected around each pair of the mean
values of I and Rc. Note that the measurements of the temperatures for faults can be obtained from
either a historical database or designed experiments.

Step ii—Using the corrected models, the JCR profiles of the core and surface temperatures for
each operating mode can be generated following the procedures described in Section 3.1.

Step iii—When a sample of surface temperature is available, the core temperature will be firstly
estimated, and the minimum distance can be calculated with Equations (14) and (15), which can be
used to infer a particular set of mean values of I and Rc.

To evaluate the performance of the proposed FDD approach, the fault classification rate (rFCR)
defined as below is used:

rFCR =
nid

ntotal
(18)

where ntotal represents the total number of testing samples used for algorithm verification, and nid is
the number of samples that have been correctly identified and classified.

4. Results and Discussion

4.1. Uncertainty Propagation and Model Predictions

The FDD algorithm is applied to the Li-ion battery cells as explained in Section 2.1. For clarity,
two mean values of fault I and Rc are considered, respectively. For the current fault, I, these mean
values are I1 = 16.2 A and I2 = 13.8 A, respectively. It is assumed that the stochastic perturbations in I
around each of these mean values follow a normal distribution with a mean of zero and a standard
deviation of 0.45 A. For the conduction resistance Rc, two mean values are R1

c =1.68 KW−1 and
R2

c = 2.28 KW−1, respectively. In addition, the random variations around each mean value are normally
distributed, which has a mean value of zero and a standard deviation of 0.066 KW−1, i.e., a 5% variation
with respect to the average of two mean values. Since the perturbations around the mean values
follow a normal distribution, Hermite polynomial basis functions are used for gPC models in this
work. It is important to note that for arbitrary distributions, the polynomial basis functions from the
Askey-Wiener scheme other than Hermite polynomial basis functions can be used to improve the
convergence of the gPC approximation in Equation (6) [31].

Following the uncertainty propagation procedures described in Section 2.2, Figure 7 shows the
mean of temperatures and the corresponding variance around the mean values at each time interval,
when the battery is operated at the normal mode. Since two sources of uncertainty are studied
(i.e., np = 2 in Equation (9)), and two terms can be used to approximate a normally distributed I or
Rc (i.e., p = 1), six terms are required to approximate each temperature (i.e., Q = 5 in Equation (9)).
The gPC coefficients of the temperatures can be solved by substituting the gPC models of uncertainties
and temperatures into the Li-ion battery model (Equations (1) and (2)), which can then be solved by a
Galerkin projection as explained in Section 2.2. This will produce a set of coupled equations to describe
the stochastic thermal dynamics of Li-ion battery cells. The resulting gPC models of the core and the
surface temperatures are given by Equations (A1)–(A12) in Appendix A for brevity.

As seen in Figure 7, Tc0 and Ts0 represent the mean values of the rcore and surface temperatures,
and the bar-plots represent the variances around the mean values which can be calculated from the
higher order gPC coefficients, using Equation (12) in Section 2.2. Additionally, it was found that the
core temperature can be significantly affected by variations in I and Rc, as compared to the surface
temperature, i.e., a larger variance as seen in Figure 7.
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Figure 7. Uncertainty propagation in the lumped thermal models of the Li-ion battery cell at the normal
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4.2. FDD Using JCR Profiles and Computational Efficiency

Based on the gPC model developed with each pair of the mean values of I and Rc, a family of
JCRs can be generated following the procedures as explained in Section 3. Figure 8 shows the JCRs for
a set of specific confidence regions, where 1000 pairs of temperature samples are used. Based on the
JCRs profile, the mean values of I and Rc can be inferred by solving the optimization problem defined
in Equations (14) and (15) for a pair of temperatures. Taking a pair of temperatures as given in Figure 8
(the star) as an example, it can be concluded that the battery system is operated around the second set
of mean values of I and Rc, since the distance between the given samples of temperatures and JCR-2 is
minimal. It should be noted that the JCR profiles can not only distinguish a specific faulty operating
mode from the normal operation, but also provide the probability information of occurred faults.

In addition, comparison studies were conducted to compare the gPC-based FDD with Monte
Carlo (MC) simulations-based method. For MC, a similar optimization problem as done for the gPC is
defined as:

min
λ′

J =
N

∑
j=1

(T j
c − Tc,p)

2
+

N

∑
j=1

(T j
s − Tc,p)

2
(19)

where λ′ is the decision variables, i.e., the mean and the standard deviation of I and Rc that have to be
determined with respect to a given pair of measurements of temperature, i.e., Tc,p, and Ts,p. Also, N
is the total number of samples used in the MC simulations in each iteration of the optimization, T j

c

and T j
s are a particular set of core and surface temperatures simulated with respect to the decision

variables. When the optimization of Equation (19) is finished, the optimization results λ′ are compared
with mean values defined in Table 2 based on a minimum distance criterion, which can identify a
corresponding operating mode.
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Figure 8. JCRs generated with a set of specific mean values of I and Rc, which are summarized in
Table A1 in Appendix B. (i) JCR 1: 16.2 and 1.68 for I and Rc; (ii) JCR 2: 16.2 and 2.28 for I and Rc; (iii)
JCR 3: 13.8 and 1.68 for I and Rc; (iv) JCR 4: 13.8 and 2.28 for I and Rc.
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For the gPC-based FDD, it was found that the optimization problem described in Equations (14)
and (15) can be finished within an average of 5 seconds. However, for the MC-based method, the
calculation of the mean values of I and Rc on average requires approximately 321 seconds, when
100 pairs of samples of I and Rc were used to simulate T j

c and T j
s in each optimization iteration. This

clearly shows the computational efficacy of gPC, compared with that of MC. In addition, it was found
that MC with 100 samples cannot provide as accurate results as gPC. For example, it was found
that the fault classification rate rFCR of gPC and MC is ~0.94 and ~0.75, respectively. To improve the
FDD performance, a larger number of samples are required in each iteration of the optimization with
MC. However, this may significantly increase the computational burden. Especially, for the real-time
model correction that will be discussed in next section, it can be computationally prohibitive with MC.
A summary of the comparison between gPC and MC is given in Appendix C.

4.3. FDD Results Using JCRs in Combination with Model Correction

In previous case studies, it is assumed that the models of a battery are accurate, and JCR profiles
are used for FDD. In this section, the JCR profiles-based FDD algorithm is integrated with a model
correction procedure to deal with the FDD problem in the presence of a model mismatch. For clarity, it
is assumed that the exact mean values of I and Rc for each operating modes (JCRs) are unknown to the
modeler, thus a set of correction gains will be used to compensate the effect of a model mismatch on
FDD. Since the exact mean values of faults are unknown, the mean values in the gPC models of the
core and surface temperature are corrected using model predictions and measurements collected at
each time interval inside the time moving windows, which can be described as:

dTc0

dt
=

1
Cc

(
I0

2Re + I1
2Re +

1
Rc0

((Ts0 − Tc0)A + (Ts2 − Tc2)B + (Ts4 − Tc4)C)
)
+ µ1(Tc0 − Tc )̂ (20)

dTs0

dt
=

1
Cs

(
1

Ru
(Tf − Ts0)−

1
Rc0

((Ts0 − Tc0)A + (Ts2 − Tc2)B + (Ts4 − Tc4)C)
)
+ µ2(Ts0 − Ts )̂ (21)

where Tc0 and Ts0 are the first coefficients (i.e., mean values) in gPC models of the core and surface
temperatures, I0 and Rc0 are the gPC coefficients in Equation (6) used to approximate the mean values
of I and Rc, Tc

ˆ and Ts
ˆ are the measurements of temperatures. Note that µ1 and µ2 are correction gains

which will be recursively optimized with the optimization defined in Equation (17), Ts2, Tc2, Ts4, and
Tc4 are higher order gPC coefficients of the core and surface temperatures, which can be determined
with gPC models as given in Appendix A. In addition, A, B, and C are constants calculated using gPC
models with the Galerkin projection. For illustration, Figure 9 shows the model correction results of µ1

and µ2, when the system is operated at different operating modes as defined in Tables 2 and A1 in
Appendix B. To introduce the model mismatch, a ±10% change was randomly added to these mean
values given in Table A1.

For different JCR profiles, the first column in Figure 9 represents the correction gains of the core
temperature calculated at each time instant, whereas the second column is the correction gain of the
surface temperature. As can be seen in Figure 9, the profiles of correction gains µ1 and µ2 fluctuated
within a certain range when the optimization of Equation (17) was executed, and eventually reached a
plateau. For example, the correction gain of the core temperature, i.e., µ1, varied significantly when
the optimization was initially executed, e.g., 0 to ~80 min. In contrast, the changes in correction
gains appear to be smaller after approximately 80 min of simulations. It is important to note that the
perturbations in correction gains may either result from measurement noises or stochasticity in the
current I and conduction resistance Rc. In addition, it was found that the correction gain µ2 of the
surface temperature stabilizes faster than the correction gain of core temperature µ1. This is due to
the fact that random variations in I and Rc can significantly affect core temperatures as previously
discussed in Section 4.1 (see Figure 7). Note that the size of moving time window (L) is set to 80 for
simulations as shown in Figure 9, i.e., 80 measurements were used to optimize the correction gains at
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each time instant. The moving rate M is set to 1 in this case study. In addition, random noise was added
to the surface temperatures, which was further used to estimate core temperatures for optimization as
defined in Equation (17).
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Using these correction gains and the gPC coefficients, the distributions of the core and surface
temperatures as each time interval can be rapidly estimated. For example, Figure 10 shows the
simulation results of temperatures for the normal operation. Based on the corrected gPC models and
the distributions of temperatures, a set of JCR profiles can be formulated and used for FDD following
the steps as explained in Section 3.1.
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To evaluate the efficiency of the correction and its effect on FDD, two case scenarios were
investigated. For the first one, JCR profiles generated with the inaccurate mean values of I and
Rc were used, whereas the correction algorithm was combined with the JCR-based FDD in the second
case scenario. Table 3 shows the results of FDD for both case studies.

As seen in Table 3, the fault classification rate rFCR can be improved approximately by 25% on
average with the correction algorithm defined in Equation (17). In addition, study was conducted to
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investigate the effect of measurement noise on the accuracy of FDD, and Table 4 shows the results of
rFCR with respect to different levels of measurement noise. It can be seen that the measurement noise
can significantly affect the accuracy of FDD. For instance, the fault classification rate rFCR is about
73% with a 5% measurement noise in the surface temperatures, which has been decreased about 22%,
as compared with the case where the measurement noise is 1%.

Table 3. Faults classification rate with different joint confidence region (JCR) profiles.

rFCR (%) JCR 1 JCR 2 JCR 3 JCR 4

without correction 59.1 62.3 59.9 69.7
with correction 89.6 89.7 82.7 88.4

Table 4. Faults classification rate of the model corrected by optimization-based model correction.

1% 2% 3% 4% 5%

rFCR (%) 95 89.6 84.5 78.2 72.7

Using the gPC models, it was found that the optimization of Equation (17) for one function
evaluation can be completed in ~1 second on average and the optimum can be achieved in about
30 iterations, which results in an overall simulation time of about ~30 seconds. On the other hand, it was
found that if Monte Carlo simulations were used for updating the correction gains with 100 samples,
~5 min were required for one evaluation of the optimization in Equation (17). Thus, 30 iterations
would take ~2.5 h. This is significantly higher than the gPC-based FDD method, which may be
computationally prohibitive for a real-time application of model correction with MC.

5. Conclusions

Lithium-ion (Li-ion) batteries are widely used due to their higher energy density and longer life
as compared to other batteries. However, the thermal behavior can greatly affect the safety, durability,
and performance of Li-ion batteries. Fault detection and diagnosis (FDD), as a key component of the
battery management system, play an important role in the management of Li-ion batteries. This paper
presents a stochastic FDD algorithm to identify thermal dynamic faults such as the thermal runaway
fault in a Li-ion battery using generalized polynomial chaos (gPC) expansion models. The proposed
algorithm consists of three consecutive procedures: (i) Uncertainty propagation with gPC models to
evaluate the effect of uncertainty on measured quantities, which can be used for FDD; (ii) accurate
fault diagnosis with JCR profiles, which can provide the probabilistic information of being in a faulty
operating mode; (iii) recursive optimization to adjust the FDD algorithm to account for a mismatch
between models and thermal dynamics of Li-ion battery cells. It was found that the gPC-based FDD
method can outperform sampling-based techniques such as Monte Carlo (MC) simulations in terms
of computational efficiency and FDD accuracy. This ensures its on-line applications in Li-ion battery
systems such as electric and hybrid electric vehicles. However, the application of the proposed FDD
algorithm in complex systems is not pursued for brevity and left for future study. In addition, it is
assumed that the uncertainty in this work follows the standard distribution in the Askey–Wiener
scheme for algorithm clarity. For other distributions, the arbitrary gPC algorithm as explained in our
previous work can be used to improve the computational efficiency [40].
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Appendix A. Results of the gPC Expansion for the Lumped Thermal Model of Li-Ion Battery

dTc0
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where A, B, C, D, E, F, G, and H are all constants calculated with the Galerkin Projection.

Appendix B. Definition and Description of Faults and Their Mean Values

Table A1. Faults Definition and Description.

JCRs (Mode) Mean Values Type

JCR 1 (Faulty 1) I = 16.2, Rc = 1.68 Individual fault
JCR 2 (Faulty 3) I = 16.2, Rc = 2.28 Simultaneous faults
JCR 3 (Normal) I = 13.8, Rc = 1.68 No fault
JCR 4 (Faulty 2) I = 13.8, Rc = 2.28 Individual fault

Appendix C. Summary of Comparison between gPC and MC

Table A2. Comparison results between gPC and MC.

Method Classification Rate Computational Time

gPC 0.94 5 s
MC (100 samples) 0.75 324 s *

* Per optimization iteration of Equation (17).
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