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Abstract: Liquid–liquid two-phase flow in microchannels has attracted much attention, due to the
superiority of mass transfer enhancement. One of the biggest unresolved challenges is the low mixing
efficiency at the microscale. Suitable mixing efficiency is important to promote the mass transfer of
two-phase flow in microchannels. In this paper, the mixing efficiency in three junction configurations,
including a cross-shaped junction, a cross-shaped T-junction, and a T-junction, is investigated by the
volume of fluid (VOF) method coupled with user-defined scalar (UDS) model. All three junction
configurations are designed with the same hydraulic diameter of 100 µm. Mixing components are
distributed in the front and back parts of the droplet. The mixing efficiency in the droplet forming
stage and the droplet moving stage are compared quantitatively. Results show that different junction
configurations create very different mixing efficiencies, and the cross-shaped T-junction performs
best, with relatively lower disperse phase fractions. However, with an increase of the disperse phase
fraction, the cross-shaped junction is superior.

Keywords: VOF method; mixing efficiency; junction configuration; disperse phase fraction

1. Introduction

Microfluidic systems are widely used in chemical synthesis, drug delivery, and solvent extraction,
due to their superiority in heat and mass transfer enhancement [1–3]. Mixing efficiency is an important
parameter for evaluating the microfluidic system. However, at the microscale, the fluid flow is laminar
and is confined by a narrow space. Thus, mixing in microfluidic systems is diffusion dominated,
so that it is very difficult to achieve a satisfactory mixing efficiency. An increasingly adopted approach
for solving this problem is to adopt the droplet-based method. When the continuous phase and the
disperse phase are injected into the microchannel, the interaction of two phases cuts the disperse
phase into small droplets, and the mixing process is confined inside the droplet. The reduced
diffusion distance and enhanced inner circulation inside droplets can highly promote the mixing
performance [4,5].

Research has been carried out to investigate the mixing performance inside droplets using
experimental and numerical methods. The first attempt to clarify the mixing performance in droplets
was made by Burns [6]. The author conducted experiments in an acid–base reaction. The pH indicator
was added in the aqueous phase, and the mixing performance was decided by measuring the color
variation length of the aqueous phase along the microchannel. Later, Tice et al. [7] conducted an
experimental study on the droplet formation and mixing process in a straight microchannel. Water and
PFD (perfluorodecaline) were injected as the disperse phase and the continuous phase, respectively.
To visualize the mixing process, the Fe(SCN)x

(3−x)+ complexes were added in the disperse phase to
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investigate the mixing performance with different droplet lengths. Results showed that the maximum
mixing efficiency was achieved only at a suitable droplet length, and the disperse phase fraction played
a crucial role for determining the droplet length. Kashid et al. [8] and Kinoshita et al. [9] carried out
experiments to visualize the droplet flow in microchannels using the particle image velocimetry (PIV)
method. The author pointed out that the inner circulation inside droplets, which was generated by the
shear stress between the wall and the droplets, promoted the surface renewal and reduced the thickness
of the boundary layer at the phase interface. Thus, the mixing performance was greatly enhanced.
The stronger the inner circulation was, the higher mixing efficiency was. Harshe et al. [10] also studied
the mixing process in droplets experimentally. Two streams of the disperse phase with different
concentrations of Lucifer yellow fluorescent were injected into the microchannel to produce droplets.
Due to the different concentrations of fluorescent, the concentration gradient existed in droplets at
the beginning. With droplets moving through the microchannel, the fluorescent redistributed due to
the asymmetrical inner circulation caused by the serpentine microchannel. The mixing time on the
droplet size and the droplet moving velocity was analyzed by calculating the uniformity of fluorescent
in droplets. Moreover, Bai et al. [11] investigated the mixing performance in ionic liquid droplets.
The mixing performance was visualized using micro laser-induced fluorescence (micro-LIF) techniques.
To enhance the mixing inside the droplet, a modified microchannel with T-junction and deformed
main channel were proposed.

Except for experiments, numerical methods are also important ways to analyze the mixing
performance under various conditions. The main simulation methods for analyzing the mixing
performance are the volume of fluid (VOF) method coupled with the user-defined scalar (UDS) model,
the level set coupled with the species transport model, and the lattice Boltzmann method (LBM)
coupled with the passive tracer model. Scalars/species/tracers are usually added for visualizing
the mixing process in droplets and calculating the mixing efficiency quantitatively. Tung et al. [12]
investigated the mixing performance and hydrodynamics inside droplets by 2D simulation and
experiments. The planar serpentine microchannel was introduced for promoting the mixing efficiency,
and the effect of droplet size on mixing performance was studied. Results identified that the improved
mixing efficiency was achieved when the droplet size was comparable with the channel width,
which were also validated by Wang et al. [13]. The author studied the hydrodynamics and mixing
process in droplets in a serpentine microchannel using VOF coupled with the user-defined scalar
model, where the disperse phases were injected into the microchannel oppositely. Scalars were added
in one stream of the disperse phase at the beginning, so that at the moment the droplet was formed,
the scalars only occupied half of the droplet. With droplets moving along the microchannel, the scalars
relocated and distributed uniformly. The mixing degree in droplets was calculated based on the
concentrations of scalars in droplets, and comparisons of mixing degree in different droplets were
made. Results showed that the droplet length had a significant effect on the mixing efficiency. The time
required for completing the mixing process in a larger droplet was longer than that of the smaller
one. The best mixing performance was acquired when the droplet length was similar to the channel
width. Madadelahi et al. [14] also investigated the mixing performance inside droplets with a novel
VOF method, which had the ability to conduct the chemical reactions inside droplets. Results showed
that whether the reactions occurred or not, the smaller droplet was able to achieve a better mixing
performance. In addition, results also indicated the mixing efficiency was greatly enhanced after the
droplet flow through the curve bend. This can be attributed to the secondary flow which was generated
due to the dean flow effect, since the secondary flows can induce a great increment of mixing efficiency.

Özkan et al. [15] gave a comprehensive study on the effect of microchannel geometry on mixing
performance inside droplets using the level set coupled with species transport model. Sinusoidal
microchannels were designed with different cross-section area and curvature radius. Multiple
spherical nanoparticles were introduced in droplets. By tracking the motion of particles inside
droplets, the mixing performance in different microchannels was easily captured. Results showed
that the mixing in a sinusoidal microchannel had a better mixing performance than that in a straight



Processes 2019, 7, 33 3 of 14

microchannel. Furthermore, the sinusoidal microchannel with smaller cross-section area and the
smaller curvature radius performed better for achieving fast mixing. The same method was also
used by Yang et al. [16]. The author studied the mixing performance inside droplets in the T-junction
microchannel and sinusoidal microchannel with the level set method. Results showed that the mixing
efficiency was significantly influenced by the twirling effect in the T-junction microchannel. However,
in the sinusoidal microchannel, the mixing efficiency was highly enhanced, due to dean vortices and
droplet deformation. Based on the results, an optimized microchannel structure was proposed by
combining a T-junction inlet with a sinusoidal microchannel.

The lattice Boltzmann method (LBM) coupled with passive tracer model is another effective
simulation method for investigating mixing performance in droplets [17–20]. Zhao et al. [17,18]
identified the mixing efficiency in microchannels with different inlet junctions and main channel
structures. Mixing efficiency in droplet forming stage and droplet moving stage was analyzed
separately. In addition, the effect of droplet size on mixing efficiency was analyzed. The droplet
length ranged from equal to half of the channel width, to twice the channel width. Results showed that
when the droplet length increased from 0.95 w to 1.08 w (w represents the channel width), the mixing
efficiency increased dramatically. Similarly, Fu et al. [19] investigated the effect of microchannel
structure on mixing process, and a baffled channel was used to disturb the inner circulation in droplets
to enhance the mixing performance in droplets.

At present, the mixing performance inside droplets is widely studied by many researchers. Most
of them focus on the mixing efficiency when droplets move along the microchannel. However, there is
little research focusing on the mixing efficiency during the droplet forming stage. The mixing efficiency
in this stage also accounts for a large proportion on the overall mixing efficiency. The main aim of
this paper is to clarify the mixing efficiency in the droplet forming stage and the droplet moving
stage, respectively. Meanwhile, the effects of junction configuration and the disperse phase fraction on
mixing efficiency in the two stages are analyzed accordingly.

2. Computational Model

2.1. Governing Equations

In this paper, the simulation is conducted using the VOF method in ANSYS Fluent 17.2.
The VOF method is capable of transient tracking on the liquid–liquid/gas interface and it is accurate
for conducting the liquid–liquid two-phase flow in microchannel [13,14,21]. In the VOF model,
each additional fluid phase in the model is identified by the volume fraction of the specific fluid αq

in the computational cell. In every control volume, the volume fraction of all phases sum to unity.
Here, αq = 1 represents that the computational cell is full of q phase, while αq = 0 represents that the
computational cell is empty of the q phase. Similarly, 0 < αq < 1 represents the situation whereby the
computational cell contains both the q phase and the other fluids.

Interface tracking between the phases is solved by the solution of a continuity equation as shown
in Equation (1):

∇ν = 0, (1)

A single momentum equation is solved throughout the domain, as shown in Equation (2).

∂

∂t
(ρν) +∇·(ρνν) = −∇ρ + [µ(∇ν +∇νT)] + F (2)

In a two-phase system, water (continuous phase)/oil (disperse phase) system in this paper,
the density and viscosity in each computational cell is calculated by Equations (3) and (4):

ρ = αcρc + αdρd, (3)

µ = αcµc + αdµd. (4)
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The surface tension force F is solved by Equation (5):

F = σ
ρk n
|n|

(1/2)(ρc + ρd)
, (5)

k = ∇ n
|n| , (6)

where ρ and µ are the average density and average viscosity, respectively. ρ and µ keep constant; p and
v represent the pressure and velocity, respectively; σ is the surface tension; and k is the local surface
curvature and is defined in terms of the divergence of the normal n/|n|. Subscripts c and d represent
the continuous phase and the disperse phase, respectively.

In addition, for visualizing and quantifying during the mixing process, the UDS is defined and
added in the disperse phase, as shown in Equation (7):

∂ρdφ

∂t
+∇·(ρdνφ− Γ·∇φ) = 0, (7)

where φ represents the scalar, and Γ represents the diffusion coefficient. In order to reduce the effect
of molecular diffusion on the mixing efficiency and highlight the effect of convection on the mixing
efficiency, the diffusion coefficient is set as 1 × 10−20 m2/s.

2.2. Geometrical Model and Boundary Conditions

Three junction configurations, including the cross-shaped junction, the cross-shaped T-junction,
and the T-junction, are designed as shown in Figure 1. wc, wd, and h represent the continuous phase
channel width, the disperse phase channel width, and channel depth, respectively. They share the
same size as 100 µm.
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Figure 1. Schematic diagram of the microchannel. wc = wd = h = 100 µm. (a) Cross-shaped junction;
(b) Cross-shaped T-junction; (c) T-junction.

Both the two-phase inlets are set as the velocity inlet and the phase in each inlet is marked in
Figure 1. Physical properties of the continuous phase and the disperse phase are shown in Table 1.
The mixing component is distributed in the front and back parts of the disperse phase initially, which is
marked with the red color in Figure 1. The outlet is set as the outflow and the wall is set as a no-slip
boundary condition. To eliminate the effect of the wall wettability, the contact angle is set as 180◦.
The PISO (pressure-implicit with splitting of operators) is used for the pressure–velocity coupling.
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The PRESTO! (pressure staggering option) is used for pressure interpolation. The second-order upwind
differencing is applied for solving transport equations.

Table 1. Physical properties of the continuous phase and the disperse phase.

Parameter µd (Pa·s) ρd (kg/m3) µc (Pa·s) ρc (kg/m3) σ (mN/m)

Value 6.71 × 10−3 1020 1.95 × 10−3 1000 33.5

2.3. Methods for the Mixing Efficiency Analysis

In the simulation, the mixing efficiency in a specific droplet is calculated by Equation (8):

ME =

1−

√
1
N ∑N

i=1(ci − c)

c

× 100% (8)

where ci is the arbitrary node concentration of the scalar, c is the ideal concentration (in this paper,
c = 0.5), and N is the number of the nodes in the droplet. ME is the abbreviation of the mixing efficiency,
which is based on the standard deviation to the ideal condition.

3. Validation of Numerical Method

Validation of the numerical method is an important step before conducting the whole simulation.
The experimental results of Cao et al. [22] are selected for validation of the VOF method. The hydraulic
diameter and the phase properties which are used for simulation are all kept consistent with
the experiment.

Figure 2 shows the droplet formation process of simulation results and experimental results which
are presented in Ref. [22]. It can be seen that the general trend of the droplet formation process is
highly consistent, and the overall droplet formation time spent in the simulation is much higher than
that in the experiment. These tiny differences are caused by the time recorded by the camera and the
calculations in the simulation, which both contribute to deviations.
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4. Results and Discussion

4.1. Mesh Independence Check

A suitable mesh size can not only capture the interface precisely, but also can save the computation
time and the storage space. Table 2 shows the variation of dimensionless droplet length and mixing
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efficiency in different mesh sizes. It can be seen that when the mesh size decreases from 8 µm to
4.25 µm, the dimensionless droplet length varies at a very small range, within the maximum relative
error less than 5%, which is calculated by Equation (9).

RE =
Vi −V5

V5
× 100%, (9)

where RE is the abbreviation of relative error; Vi represents the dimensionless droplet length (or the
mixing efficiency) in different mesh size, i = 4.25, 4.5, 5, 5.5, 6, 7, 8; and V5 represents the value
measured in mesh size of 5 µm.

Table 2. Dependency of the dimensionless droplet length and the mixing efficiency to the mesh size.

Mesh Size (µm) Dimensionless
Droplet Length

Relative Error
(%)

Mixing
Efficiency (%) Relative Error (%)

8 2.26 0.44 66.3 72.21
7 2.24 0.44 58.8 52.73
6 2.30 2.22 51.3 33.25

5.5 2.28 1.33 45.0 16.88
5 2.25 0 38.5 0

4.5 2.23 0.89 37.0 3.89
4.25 2.24 0.44 36.6 4.94

However, the mixing efficiency is affected by the mesh size greatly. With the mesh refinement,
the mixing efficiency dropped from 66.3% to 36.6%. When the mesh size is less than 5.5 µm, the mixing
efficiency becomes gradually independent of the mesh numbers, hence, a suitable mesh size 5 µm
is selected.

4.2. Droplet Formation Process

The continuous phase and disperse phase encountered at the junction of the microchannel and
interacted with each other. The competition between the viscosity force, the surface tension force,
and the pressure gradient makes droplets, which separate from the disperse phase to move along
the microchannel. Droplet features have an important influence on the mixing efficiency, which are
affected by many factors, such as fluids physical properties, fluids velocities, and channel dimensions.
In the numerical simulation, the droplet moves along the microchannel with a total velocity of 50
mm/s. The capillary numbers of the disperse phase and the continuous phase are 2 × 10−3 < Cad
< 8 × 10−3 and 5.8 × 10−4 < Cac < 2.3 × 10−3, respectively. Both of them are far below 0.1 (a critical
number for producing droplet flow pattern in two-phase liquid–liquid flow [23]). Thus, stable droplet
production can be obtained in the numerical simulation.

Figure 3 presents the droplet formation process in three junction configurations. It can be seen
that the droplet formation frequency in the cross-shaped junction is much lower than that in the
cross-shaped T-junction and the T-junction. That is because in the cross-shaped junction, the disperse
phase is divided into two streams. That means with same disperse phase fraction, the disperse phase
velocity of each stream accounts for only half of the total disperse phase velocity, so that the lower
velocity makes a longer droplet formation time.
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In addition, the droplet feature can be easily changed by adjusting the disperse phase fraction,
which is defined as the ratio of disperse phase velocity to the total droplet moving velocity, as shown
in Equation (10).

εd =
ud

utotal
, (10)

where εd, ud, and utotal represent the disperse phase fraction, the disperse phase velocity, and the total
droplet moving velocity, respectively. The total droplet moving velocity remains constant at 50 mm/s.
The disperse phase fraction ranges from 0.2 to 0.7. Accordingly, the disperse phase velocity and the
continuous phase velocity are obtained in different disperse phase fractions.

Figure 4 presents the variation of the droplet feature with different disperse phase fractions in the
cross-shaped junction. It can be seen that with the increase of the disperse phase fraction, the droplet
formation frequency increases first, but then decreases.
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Here, a quantitative analysis is carried out. The droplet length and the droplet formation frequency
are calculated in different junction configurations and different disperse phase fractions. Figures 5
and 6 show the trend of the dimensionless droplet length and the dimensionless droplet formation
frequency under different conditions. The dimensionless droplet length L is defined as the ratio of
the droplet length to the microchannel width, and the dimensionless droplet formation frequency f is
defined based on the characteristic time t0 [24], as shown in Equation (13).

L =
L

wc
, (11)

t0 =
µcwc

σ
, (12)

f = f t0. (13)
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It can be seen that the droplet features in the cross-shaped T-junction and the T-junction are similar
to each other. The maximum difference on the droplet length is less than 10%, and the maximum
difference on the droplet formation frequency is less than 7%. The maximum droplet formation
frequency is achieved when the disperse phase fraction is 0.4. However, in the cross-shaped junction,
the maximum droplet frequency is achieved when the disperse phase fraction is 0.5. In addition,
results show that the droplet length increases with the increase of the disperse phase fraction, while the
droplet formation frequency changes parabolically with the increase of the disperse phase fraction.
The same results are also investigated by Tice et al. [7], but the difference is that the droplet formation
frequency is represented by the distance from the droplet center to the adjacent droplet center. In the
small disperse phase fraction, once the droplet is formed, the disperse phase retracts a small distance
away from the disperse phase inlet, while the retracting distance increases with the decrease of the
disperse phase fraction, which is shown in Figure 7. That means that the smaller the disperse phase
fraction, the longer time spent in the retracting distance. Thus, it can lead to a longer droplet formation
time and a smaller droplet length. The variation of droplet formation frequency in different disperse
phase fractions is caused mainly by the variation of the disperse phase velocity. According to findings
of Glawdel et al. [25], the time spent in the retracting stage represented 2%–10% of the total formation
time. The retracting stage is affected by microchannel geometry, disperse phase velocity, and disperse
phase viscosity, and an increase of the disperse phase velocity or the disperse phase viscosity may lead
to the decrease of retracting distance. Furthermore, the correlation for calculating the dimensionless
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volume produced in the retracting stage was presented by Glawdel et al. [26]. The correlation highlights
the effect of channel dimension on the retracting stage. In this paper, the disperse phase viscosity and
the channel dimension are both kept constant, so that the disperse phase velocity is the only parameter
responsible for the retracting stage. The decrease of the disperse phase fraction leads to the decrease
of the disperse phase velocity, and the retracting distance increases with the decrease of the disperse
phase fraction.
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4.3. Mixing Efficiency in the Droplet Forming Stage

Figure 8 shows the mixing process during the droplet forming stage in three junction
configurations. The mixing process in the cross-shaped junction is different from the process in the
cross-shaped T-junction and the T-junction. In the cross-shaped junction, the disperse phase is injected
in the microchannel symmetrically. With the interaction of the disperse phase and the continuous
phase, the circulation zones are gradually formed at the tip of each disperse phase stream. When the
two streams encounter, circulation zones separate symmetrically in the forming droplet. The scalar
is distributed symmetrically in the forming droplet and the scalar concentration decreases from the
droplet axis to the wall. However, in the cross-shaped T-junction and the T-junction, the disperse phase
is injected in the microchannel in one direction. With the interaction of the disperse phase and the
continuous phase, the circulation zone is formed at the tip of the forming droplet firstly. During the
droplet forming stage, the circulation zone moves from the tip of the droplet to the upper part of the
droplet. In the droplet forming stage, only one main circulation zone exists, and the other circulation
zones occur until the droplet forming stage is finished. The scalar concentration in the lower part of
the droplet is higher than that in the upper part.

For quantitative analysis, the mixing efficiency during the droplet formation process is calculated
by Equation (8). Figure 9 shows the mixing efficiency when droplets are formed in different junction
configurations and different disperse phase fractions. Generally, the mixing efficiency decreases with
the increase of the disperse phase fraction. This is because the mixing efficiency is closely associated
with the droplet length. Shorter droplets have a higher mixing efficiency due to the strong twirling
effect [7]. The best mixing performance is achieved when the droplet length is approximately equal to
the microchannel width [12,13,18].

The mixing efficiency in cross-shaped junctions is the worst among the three junction configurations
when the disperse phase fraction is less than 0.35. With an increase of the disperse phase fraction,
the cross-shaped junction is superior. When the disperse phase fraction is higher than 0.5, the cross-shaped
junction has the best mixing efficiency among all three junction configurations.
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Figure 8. Scalar distribution in the droplet forming stage. utotal = 50 mm/s, εd = 0.5. (a) Cross-shaped
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4.4. Mixing Efficiency in the Droplet Moving Stage

Figure 10 gives a visual presentation of the scalar distribution in the droplet moving stage. It can
be found that with droplets moving along the microchannel, the scalar distribution gradually becomes
more uniform. The cross-shaped junction performs better than the other two junctions in the droplet
moving stage.
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Figure 10. Scalar distribution in droplet moving stage. utotal = 50 mm/s, εd = 0.5. (a) Cross-shaped
junction; (b) Cross-shaped T-junction; (c) T-junction.

For quantitative analysis, the mixing efficiency in three junction configurations is shown in
Figure 11, calculated by Equation (8). The moment of the droplet formed is considered as the beginning,
setting the time sets as 0, and then the mixing efficiency is calculated after the droplet moves for 0.01,
0.02, 0.03, 0.04, 0.05, and 0.06 s. This shows that the cross-shaped junction has the best performance
among all three junction configurations, and the mixing efficiency approaches 95% after 0.06 s of the
droplet moving. However, the T-junction presents the worst mixing efficiency and is only 70% after
the droplet moves for 0.06 s.
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In addition, when the droplet moves in the first 0.01s, the mixing efficiency in the cross-shaped
junction and the cross-shaped T-junction is nearly the same, which can be explained by the different
scalar distributions of the three junction configurations. It can be seen from the droplet forming stage
that the junction configurations determine the scalar distribution in droplets. At the moment of droplet
formation, two main circulation zones exist in the droplet, and then separate symmetrically along the
droplet axis. However, the scalar distribution is symmetrical only in the cross-shaped junction. In the
cross-shaped T-junction and the T-junction, the scalar concentration in lower part of the droplet is
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much larger than that in the upper part of the droplet. When the droplet moves along the microchannel,
the scalar is redistributed due to the inner circulation, and it takes place separately in two circulation
zones. Therefore, in the cross-shaped T-junction and the T-junction, the scalar concentration in lower
part of the droplet is always larger than that in the upper part of the droplet, which can be adverse for
achieving uniform mixing in a short time.

5. Conclusions

In this paper, the mixing efficiency in three junction configurations, including the cross-shaped
junction, the cross-shaped T-junction, and the T-junction, is investigated. The mixing efficiency are
studied separately for the droplet forming stage and the droplet moving stage. The UDS is defined
and added in the disperse phase as an indicator for quantifying the mixing efficiency. The remarkable
conclusions are made as follows.

At a constant disperse phase fraction, the cross-shaped junction produces longer droplets
comparing with the cross-shaped T-junction and the T-junction. The droplet length and the droplet
formation frequency in the cross-shaped T-junction and the T-junction have small differences.
The maximum difference in droplet length is less than 10%, and the maximum difference in droplet
formation frequency is less than 7%. Increase of the disperse phase fraction leads to an increase of the
droplet length. However, the droplet formation frequency changes parabolically with an increase of
the disperse phase fraction. In the cross-shaped junction, the maximum droplet frequency is achieved
when the disperse phase fraction is 0.5, and the maximum droplet formation frequency is achieved
when the disperse phase fraction is 0.4 in the cross-shaped T-junction and the T-junction.

In the droplet forming stage, the mixing efficiency in the cross-shaped T-junction is always
higher than in T-junction. The mixing efficiency in the cross-shaped junction is worst at low disperse
phase fraction, but with an increase of the disperse phase fraction, the superiority of the cross-shaped
junction is gradually presented. When the disperse phase fraction is larger than 0.5, the mixing
efficiency in the cross-shaped junction is the best among all three junction configurations. Junction
configurations determine the scalar redistribution in droplets. At the moment of droplet formation,
the scalar distribution is symmetrical in the cross-shaped junction. In the cross-shaped T-junction and
the T-junction, the scalar concentration in the lower part of the droplet is much larger than that in the
upper part of the droplet. Therefore, in the droplet moving stage, the cross-shaped junction has the
best mixing efficiency performance. Considering the overall mixing performance, when the mixing
component is distributed in the front and the back part of the disperse phase initially, the cross-shaped
junction is selected as an optimum junction configuration.
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