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Abstract: Over the past three decades, mixed-matrix membranes (MMMs), comprising an inorganic
filler phase embedded in a polymer matrix, have emerged as a promising alternative to overcome
limitations of conventional polymer and inorganic membranes. However, while much effort has
been devoted to MMMs in practice, their modeling is largely based on early theories for transport
in composites. These theories consider uniform transport properties and driving force, and thus
models for the permeability in MMMs often perform unsatisfactorily when compared to experimental
permeation data. In this work, we review existing theories for permeation in MMMs and discuss their
fundamental assumptions and limitations with the aim of providing future directions permitting
new models to consider realistic MMM operating conditions. Furthermore, we compare predictions
of popular permeation models against available experimental and simulation-based permeation
data, and discuss the suitability of these models for predicting MMM permeability under typical
operating conditions.

Keywords: mixed-matrix membrane (MMM); permeation modeling; effective medium approach;
simulation of MMM; particle-polymer interface

1. Introduction

In the last few decades, membrane technologies have attracted increasing attention to be used
in a variety of industrial applications, which include gas separation [1–3], water desalination [4–6],
food processing [7], pervaporation [8,9], membrane contactors [10,11], and membrane reactors [12,13].
In many of these applications, membrane technologies are preferred over conventional separation
techniques (e.g., distillation, absorption, and adsorption) due to their superior features such as [14–17]:
(i) stable production with high separation efficiency [18]; (ii) low energy consumption with no phase
change requirements [15,19]; (iii) simple operation with convenient modular scale-up [20–22]; and (iv)
small environmental footprint [18,23]. Nevertheless, implementation of membrane technologies in
practical applications has been limited by challenges with the engineering of robust materials able
to be effective under a variety of operating conditions and environments [21,24], with only polymer
membranes currently available in large-scale applications; yet failing to overcome Robeson’s [25,26]
trade-off curves between the selectivity and permeability [25–28].

Different alternatives have been explored to enhance polymer membranes to perform
beyond Robeson’s upper bound, including surface modification [29], facilitated transport [30,31],
polymer blends [32], and mixed-matrix membranes (MMMs) [33]. Amongst these alternatives,
devoted attention to the synthesis of MMMs has been intensified over the last three-decades [21,34,35],
with a myriad of studies focusing on novel materials to increase efficiency of CO2 capture [18,35,36],
natural gas purification [37–39], water purification [40,41], and olefin/paraffin separation [42–44].

Processes 2018, 6, 172; doi:10.3390/pr6090172 www.mdpi.com/journal/processes



Processes 2018, 6, 172 2 of 27

Thus, much effort has been devoted to the optimization of MMMs synthesis [34,42,45–48];
with a number of works even reporting fabrication of defect-free MMMs [37,49–51].

Ideally, a mixed-matrix membrane (MMM) consists of a selective inorganic filler phase embedded
to continuous polymer matrix [21,35]. In this way, an MMM combines high intrinsic permeability and
separation efficiency of advanced molecular sieving materials (e.g., zeolites, carbons, metal-organic
frameworks) or nanoscale materials (e.g., carbon nanosheets or nanotubes) with robust processing
capabilities and mechanical properties of glassy polymers [23,52]. Consequently, MMMs are expected
to have higher efficiency than those based on their polymer counterpart, thus exceeding the trade-off
between the permeability and selectivity [15,21,53].

MMMs are commonly prepared either with symmetric or asymmetric structure [17,34,54].
Symmetric MMMs consist of a uniform dense composite film of thickness 20µm ≤ ` ≤ 100µm [41,46]
while asymmetric MMMs comprise a thin selective composite skin layer of thickness 2µm ≤ ` ≤ 5µm
coated on a highly porous non-selective core layer of thickness 50µm ≤ ` ≤ 300µm [3,55–57]. In this
way, thicknesses of MMMs are large enough to disregard effects of interfacial entrance and exit
barriers on the transport; these barriers which have been shown to significantly decrease the permeant
diffusivity in nanoporous materials only when the overall system thickness is ` ≤ 0.1 µm [58–60].
Such barriers may nevertheless be important at the interfaces of nano-sized fillers and zeolites in
nanocomposites, where potential of mean force calculations demonstrate their significance [61].
However, filler size in MMMs is of the order of 0.1–1 µm or larger [34,41], and such barriers are
insignificant relative to the internal resistance in the filler particles.

Current models for permeation in MMMs are adaptations of early theories for the transport in
heterogeneous media, either following the effective medium approach (EMA) [62–65] or resistance
model approach (RMA) [66–69]. In such approaches, the effective permeability is usually based on
the permeabilities and volume fractions of the MMM constituent phases [21,34,70–72], with these
phase-specific properties largely assumed constant. Thus, applicability of early RMA/EMA
models [62–64,66] and later adaptations [65,68,73,74] is often limited to narrow MMM operating
conditions (Henry’s law region) and ideal polymer-particle morphologies. Furthermore, although
experimental studies on MMMs have shown that deviations from Henry’s law are common under usual
operating pressures (1–4 bar) [15,36,46,75], isotherm nonlinearity is incorporated into the permeation
models through the Darken or free volume theories while assuming a uniform field based on the mean
permeant concentration [71,76–79], an assumption that needs to be relaxed for further progress.

Over the last decade, increased efforts have been devoted to advance permeation models
to integrate effects of filler morphology (e.g., particle size, shape, and agglomeration) [65,80,81]
and defects at the particle-polymer interface in the form of a rigidified polymeric [76–79,82–84],
and void [69,77,79,85] or pore-blocked [84] regions. However, while considering such non-idealities,
these models share the uniform field assumption inherent to the EMA and RMA [69,76,77,86,87].
Thus, effects of the filler morphology together with isotherm nonlinearity are often embedded
in a single empirical morphology-related parameter, such as in the Pal [65], Lewis-Nielsen [73],
and Higuchi [88] models. Thus, extending the predictive capability of existing models through
more rigorous approaches able to be valid over a variety of conditions and systems remains
a possibility [15,21,36].

In this work, we review existing approaches for engineering models of permeation through
MMMs. To do so, we first introduce the concepts of permeability and selectivity in the context of MMMs
and discuss how their mathematical formulation is integrated to existing models for the transport in
composite media. Here, we also classify permeation models by approach (i.e., RMA and EMA) and
discuss their range of applicability based on their fundamental assumptions. Finally, we compare
RMA/EMA models to simulation-based and experimental permeation data for various gases (e.g., CO2,
CH4, H2, O2, N2) in several MMM systems, and provide future directions on how to progress existing
models to undertake realistic MMM operating conditions.
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2. Gas Transport through Mixed-Matrix Membranes

Gas separation through membranes can take place by different mechanisms [89,90]. Three main
diffusion mechanisms have been well-accepted to describe gas transport through membranes [91,92]:
(i) Knudsen diffusion; (ii) molecular sieving (molecular diffusion); and (iii) solution-diffusion
(sorption-diffusion), with detailed discussion of these transport mechanisms available elsewhere [91].
In general, the diffusion mechanism is assumed to change from solution-diffusion to Knudsen
diffusion with increase of the pore size in the membrane material [18,36]. Based on this consideration,
transport through inorganic porous membranes has been largely associated with the Knudsen
diffusion [35,91], that in membranes based on nanomaterials such carbon molecular sieves (CMSs) [46],
zeolitic imidazolate frameworks (ZIFs) [93,94] and metal organic frameworks (MOFs) [95], has been
associated with the molecular diffusion, and that through glassy polymers has been associated
with the solution-diffusion [30,89–91,96–98]. While MMMs combine transport principles of both
polymer and inorganic membranes, diffusion through them is understood via the solution-diffusion
mechanism [21,34]. This mechanism assumes that permeant molecules dissolve (adsorb) on one
side of the membrane, diffuse across the membrane and then are released (desorbed) at the other
side [14,19,90,99], as depicted in Figure 1 for the CO2/CH4 separation.
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2.1. Permeability and Selectivity in MMMs

In the solution-diffusion mechanism, the permeant transport is driven by the chemical potential
gradient (∇µ) across the membrane, in which µ is only dependent on the concentration gradient (∇c)
while the fugacity ( f ) is assumed uniform across the membrane (cf. Figure 1) [100]. Under these
considerations, the permeant flux (J) can be defined as:

J = DS(−∆ f )/` = P(−∆ f )/`, ∆ f = f2 − f1 (1)

with detailed derivation of Equation (1) found elsewhere [100,101]. Here, D and S are the
concentration-averaged diffusivity and solubility, respectively; and ∆ f = f2 − f1 is the fugacity
difference between the retentate ( f1) and permeate ( f2) sides of the membrane (cf. Figure 1),
respectively [102]. Further, Equation (1) is usually rearranged as [46]:

P = J`/(−∆ f ), ∆ f = f2 − f1 (2)
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as the permeant flux (J), membrane thickness (`), and fugacity difference (∆ f ) can be measured in
practice [42,99,103,104]. In Equation (2), the permeability (P) is calculated in Barrer, with [90,105]:

1 Barrer = 1× 10−10 cm3(STP) cm
cm2 s cmHg

= 3.348× 10−16 mol m
m2 s Pa

. (3)

For gas mixtures, the permselectivity is used to characterize the MMM separation efficiency,
with the permselectivity of species A relative to species B (α∗AB) defined as [91,102,103,106]:

α∗AB = PA/PB = (DASA)/(DBSB) (4)

where α∗AB is also known as the ideal selectivity. In Equation (4), the permeability of the slower
permeant is usually placed in the denominator, and thus α∗AB > 1 [99].

2.2. Diffusion and Sorption in MMMs

Based on the permeant flux definition in Equation (1), the permeability can be defined as the
product of a kinetic (D) and a thermodynamic (S) contribution, with [91,99]:

P = DS (5)

where, assuming the retentate side fugacity to be negligibly small (cf. Figure 1), the mean diffusivity
(D) and solubility (S) can be expressed as [107–109]:

D = (1/c1)
∫ c1

c2≈0
D(c)dc (6)

S = (1/ f1)
∫ c1

c2≈0
dc = c1/ f1. (7)

respectively. In Equations (6) and (7), c is the permeant adsorbed concentration and D is the Fickian
diffusivity, well-accepted to follow the Darken relation as D = Do(d ln f /d ln c) [110,111]. Here, Do is
the permeant mobility, assumed concentration-independent [112,113].

At low pressures, Henry’s law is often adequate to express the gas concentration,
with c = KH f [89,109]. Thus, by following Equations (6) and (7), both diffusivity and solubility are
concentration- independent, with the permeability in the MMM constituent phases given by [109,110]:

Pf = Do f KH f (8)

Pc = DocKHc (9)

with subscripts f and c denoting the filler and continuous phases, respectively.
At moderate/high pressures, the solubility in the filler phase is commonly assumed to follow the

Langmuir isotherm, leading to:
S f = K f cs

f /(1 + K f f1) (10)

which often describes well the sorption equilibrium in various porous fillers [42,48,75,114–116].
Here, K f is the affinity constant and cs

f the capacity in the filler phase. Then, by following Equation (5)

while assuming the diffusivity to be concentration-independent, with D = D (D 6= Do) based on
Equation (6) [117], the permeability in the filler phase is given by [99]:

Pf = D f K f cs
f /(1 + K f f1) (11)
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where D f is the permeant diffusivity in the filler. Similarly, a combination of Henry’s law and the
Langmuir model is often used to describe the mean polymer solubility, following [75,106]:

Sc = Kh + Kccs
c/(1 + Kc f1) (12)

with Kh being the Henry’s law constant, Kc the affinity constant and cs
c the capacity in the matrix.

Thus, by following Equation (5), the permeability in the polymer is given by [117,118]:

Pc = DhKh + DcKccs
c/(1 + Kc f1) (13)

where Dh and Dc are the diffusivities in the Henry’s law and Langmuir sites, respectively. Equation (13)
is known as the dual-mode/partial immobilization model, as the penetrant is assumed fully
mobile in the Henry environment and partially mobile in the Langmuir environment [118–121].
In the next section, the permeant permeabilities in the filler (Pf ) and continuous (Pc) phases are
largely assumed concentration-independent following Equations (8) and (9) [86,122,123] or based on
concentration-averaged solubility and diffusivity via Equations (11) and (13) [15,36,99].

3. Models for Gas Permeation in Mixed-Matrix Membranes

While a universal description of the gas transport through MMM is a complex problem [21,71,87,112],
the modeling of permeation through MMMs is largely based on early theories for thermal/electrical
conduction of heterogeneous media [62,65,124–126]. These theories were extended to MMMs on the
basis of the analogy between the thermal/electrical conductivity and the permeability of composite
materials [66,81] in the presence of linear flux laws. Based on this analogy, two main approaches have
been extensively used to predict the permeability in MMMs: the resistance model approach (RMA) and
the effective medium approach (EMA), described in Sections 3.1 and 3.2, respectively. Besides these
early approaches, simulation-based rigorous modeling of MMMs has attracted increased attention in
recent years, and thus this latter approach is described in Section 3.3. In what follows, subscripts c, f , i,
and eff refer to the continuous phase (polymer matrix), filler phase (selective phase), polymer-filler
interface and MMM as a whole, respectively.

3.1. Resistance Model Approach

The resistance model approach (RMA) relies on analogy between the current flow through
a series-parallel array of resistors (Ohm’s law) and the permeation rate through a composite membrane
(Fick’s law) [66,67,125,127]. Under this consideration, the MMM permeability is inversely proportional
to the overall transport resistance, with the fundamental equation of the RMA being [87,128–132]:

F = (−∆ f )/Re f f , ∆ f = f2 − f1 (14)

where Re f f is the overall transport (permeation) resistance and F = Across J is the permeant flow rate,
with Across the cross-sectional area in the flow direction. Consequently, the permeant flux (J) through
the membrane can also be expressed as:

J = (−∆ f )/(AcrossRe f f ), ∆ f = f2 − f1. (15)

On comparing flux definitions in Equations (1) and (15), the resistance (Re f f ) can be equated
as [66,68]:

Re f f = `/(Pe f f Across). (16)

In this way, if an expression for the equivalent resistance (Re f f ) is known, the MMM permeability
(Pe f f ) can be calculated via Equation (16) [125,132].

A number of permeation models have been proposed for MMMs [68,69,72,76,82,87,133], based on
Equations (15) and (16), as listed in Table 1, with the most popular models considering platelet or cubic
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filler particles [72,130,133] and few newly developed models considering tubular particles [69,76,82].
The simplest RMA models idealize the MMM as a two-phase laminated composite comprising multiple
sheets of polymer and selective material alternated in series or in parallel to the flow direction [70,134],
as depicted in Figure 2a,b, respectively. Figure 2 also depicts electrical circuit analogues used to
calculate the overall transport resistance of both composites.

Table 1. Models based on the resistance model approach.

Model Key Equations

Series [47] Pe f f =
Pc Pf

Pcφ f +Pf (1−φ f )
(17)

Parallel [47] Pe f f = Pf φ f + Pc(1− φ f ) (18)

Te Hennepe [130] Pe f f = Pc

[
(1− φ

1
3
f ) +

3
2 φ

1
3
f Pc

Pc(1−φ f )+
3
2 Pf φ f

]−1

(19)

Cussler [72] Pe f f = Pc

[
(1− φ f ) +

(
Pf

φ f Pc
+

4(1−φ f )

λ2
f φ2

f

)−1
]−1

(20)

Ebneyamini [68] Pe f f = τ

[
(1− φ2/3)Pc +

Pc Pf φ2/3

φ1/3Pc+(1−φ1/3)Pf

]
(21)

KJN [69] POriented
e f f = Pc

[(
1− cos θ

cos θ+λ f sin θ φ f

)
+ Pc

Pf

(
1

cos θ+λ f sin θ

)
φ f

]−1
(22)

PRandom
e f f = π

2 Pc

[∫ π
2

0
Pc

POriented
e f f (θ)

dθ

]−1
(23)
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Following the electrical circuit analog in Figure 2 and the above definition for the permeation
resistance in Equation (16), the permeability for the multilayer composite in series yields Equation (17)
in Table 1, while that of a multilayer composite in parallel yields Equation (18) [47,70]. The series model
in Equation (18) is assumed to provide the lower bound for the permeability of a given penetrant in
an ideal MMM [135]. Alternatively, the parallel model in Equation (18) is assumed to provide to the
upper bound for the effective permeability of a given penetrant in an ideal MMM [47,70].

In addition to the two-resistance based models in Equations (17) and (18), more complex models,
including three-resistances or more, have been proposed following the RMA [68,69,72,82,87,130].
In these models, the additional diffusion resistances are intended to account for tortuosity effects
in the permeant diffusion path when there are large differences in permeabilities amongst the filler
and polymer phases [68,87] or defects in MMM structure [69,82,87]. Amongst existing RMA models,
those of Te Hennepe [130] in Equation (19) and Cussler [72] in Equation (20), based on three-resistance
circuit analogs, have widely been applied to zeolite-polymer MMMs [114,128,136].

Te Hennepe et al. [130] considered the one-dimensional transport in zeolite-rubber MMMs.
They idealized the MMM as a lamella containing composite layers [131], in which each composite
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layer comprised two regions. The first region consisted of polymer and the second one of polymer and
zeolite particles (mixed-region). In this model, the polymer region was assumed in series with parallel
resistances of the second mixed-region [130,131], which led to Equation (19) in Table 1. Alternatively,
Cussler [72] considered two-dimensional transport in the MMM. He assumed the resistance of the
polymer region in series with that of a second mixed-region, similar to Te Hennepe et al. [130].
However, transport in the mixed-region was assumed to occur in the permeation direction through filler
phase and perpendicular to the permeation direction through polymer phase [15,36]. This assumption
led to Equation (20) in Table 1, in which λ f = w f /` f is the aspect ratio of the filler phase with w f and
` f being the flake width and thickness [21,136].

Recently, Ebneyamini et al. [68] proposed a semi-empirical four-resistance model for ideal
MMMs comprising cubical particles. To do so, an empirical correction factor (τ) was introduced
to a one-dimensional four-resistance model. The final model is given by Equation (21) in Table 1,
and referred here as the Ebneyamini model. In this model, τ was estimated via simulation of the
3D particle-polymer system and adjusted to follow Langmuir-type equations. Thus, τ is assumed
to accommodate tortuosity effects arising from large differences amongst the MMM constituent
phase permeabilities.

Modeling MMMs with tubular filler has received less attention than those having cubic or platelet
fillers, with only few studies [69,87] developing RMA models for nanotube-MMMs. The first of these
RMA models was proposed by Kang et al. [69], who accommodated the orientation of tubular fillers
in the calculation of the overall transport resistance. The final model was named by authors as the
Kang-Jones-Nair (KJN) model, and for uniformly oriented fillers is given by Equation (22) in Table 1.
For randomly oriented fillers, the KJN model is rewritten as Equation (23) in Table 1, with POriented

e f f (θ)

in Equation (23) following Equation (22). Here, θ ∈ [0, π/2] is the orientation of the tubular filler,
measured with respect the permeation direction, and λ f = d f /` f is the aspect ratio of the tubular filler
with d f and ` f being the diameter and length of the cylindrical particle, respectively. The predictions of
the KJN model are always lower than those based on the series model, with the KJN model simplifying
to the series model when θ = 0. Figure 3 depicts a comparison of the permeability (Pe f f ) profiles
based on models of Table 1 with α f c = Pf /Pc = 10 in all models and λ f = 0.25 in the Cussler and KJN
models. Figure 3 also depicts the MMM structure assumed by each model.
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3.2. Effective Medium Approach

The crux of the effective medium approach (EMA) lies in the substitution of a given composite
system by an equivalent effective homogeneous one having the properties of the composite [137–139].
The resulting effective composite properties are generally functions of the volume fraction and
permeabilities of the composite constituent phases, similar to RMA-based models (cf. Section 3.1).
However, EMA differs from RMA in the way the filler phase is considered within the composite.
While most RMA models assume regular distributions (e.g., simple cubic or body centered cubic
lattices) of platelet and/or cubic particles [47,68,131,140], EMA models consider random distributions
of spherical inclusions [64,65,141–143]. For ease of analysis, we here classify EMA models in two main
groups. The first group corresponds to EMA models following Maxwell’s theory and second to those
following Bruggeman’s theory, with models associated with each theory described in Sections 3.2.1
and 3.2.2, respectively.

3.2.1. Maxwell Theory

Maxwell [62] calculated the electrical conductivity of infinitely diluted cluster of particles
embedded in an infinite matrix [138]. To do so, he assumed that the far field potential of this cluster
was equivalent to that of a homogeneous sphere having the original composite volume [65,135,137],
as depicted in Figure 4. Based on this assumption, Maxwell defined the composite conductivity
as that of the homogeneous sphere [21,141,144,145], which led to Equation (24) in Table 2,
with β f c = (α f c − 1)/(α f c + 2) and α f c = Pf /Pc. Further, because the Maxwell model disregards
particle interaction, it is only applicable to dilute suspensions (φ f ≤ 0.2).
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The Maxwell model was later extended to spheroids by Wagner and Sillars [126]. To do so,
the conduction problem was reformulated with oriented spheroidal inclusion, with these spheroids
oriented along the axis of the potential difference [81,126]. This consideration led to Equation (25)
in Table 2, referred as the Maxwell-Wagner-Sillars model [81]. Here, λ f ∈ [0, 1] is the particle shape
factor, and for prolate spheroids λ f ∈ [0, 1/3] while for oblate spheroids λ f ∈ [1/3, 1]. In the limits,
when λ f = 0, λ f = 1/3, and λ f = 1, Equation (25) reduces to the parallel model, series model
(cf. Table 1) and Maxwell model, respectively. The Maxwell-Wagner-Sillars model is only applicable to
diluted ellipsoid dispersions (φ f ≤ 0.2), similar to the Maxwell model [3,21,41,146].

Several attempts have been made to extend Maxwell’s equation to concentrated composites
(φ f > 0.2) [64,65,73,141,142], of which, the one with the most significant results is that of
Jeffrey [142,147]. He showed that relative conductivity (Pr)of a dispersion can be expressed in series of
φ f following the form Pr = Pe f f /Pc = 1 + K1φ f + K2φ2

f + · · · [141,148], in which each K-term in the
series (K1, K2, . . . , Kn) accommodates the interaction of successively larger sets of particles [141,149].
Further, Jeffrey [142,147] demonstrated that only the first-order term of the Maxwell model is exact,
where Equation (24) yields Pr = Pe f f /Pc = 1 + 3β f cφ f + O(φ2

f ) with K1 = 3β f c when φ→ 0 .
This limiting equation was later used by Bruggeman [139] and Pal [65], as described in Section 3.2.2.
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Although Jeffrey [142,147] hypothesized that K2 in the series was dependent on β f c and φ f ,
his final equation corresponds to the low-density limit of interacting spheres [141]. Thus, Jeffrey’s
model provides very similar predictions to the Maxwell model [150]. Later, Chiew and Glandt [141]
estimated K2 in the series using pair-correlation functions of hard-sphere fluid simulations, which led
to Equation (26) in Table 2. In this work, the resulting values of K2 were tabulated as function of
α f c and φ f [141,149]. Later, Gonzo et al. [145] fitted Chiew and Glandt’s results for K2, which led to
Equation (27) in Table 2. Further, the Chiew-Glandt model corresponds to the exact solution to the
series truncated after K2-term [141,149], with the model applicable to moderate/high filler loadings
(φ f ≤ 0.645) [141,145,151].

Table 2. Models based on Maxwell’s theory.

Model Key Equations

Maxwell [62] Pe f f = Pc

[
1+2β f cφ f
1−β f cφ f

]
= Pc

[
Pf +2Pc−2φ f (Pc−Pf )

Pf +2Pc+φ f (Pc−Pf )

]
(24)

Maxwell-Wagner-Sillars
model [81] Pe f f = Pc

λ f Pf +(1−λ f )Pc−(1−λ f )φ f (Pc−Pf )

λ f Pf +(1−λ f )Pc+λ f φ f (Pc−Pf )
(25)

Chiew-Glandt [141]

Pe f f = Pc

[
1+2β f cφ f +(K2−3β2

f c)φ
2
f

1−β f cφ f

]
(26)

K2 = a + bφ
3
2
f

(27)

a = −0.002254− 0.123112β f c + 2.93656β2
f c + 1.6904β3

f c (28)
b = 0.0039298− 0.803494β f c− 2.16207β2

f c + 6.48296β3
f c + 5.27196β4

f c (29)

MB-B model [152]
1

Ri−1
d

dR

[
Ri−1Pm(R) dCm

dR

]
= 0 (30)

φ f (R) = 3
2r3

o

∫ ro
0

∫ π
0 φ f (R′(R, r, θ))r2 sin θdθdr (31)

Lewis-Nielsen [73]
Pr =

1+2β f cφ f
1−βφ f cψm

(32)

ψm = 1 +
[
(1− φm)/φ2

m
]
φ f (33)

Higuchi [88] Pe f f = Pc

[
1 + 3φ f β f c

1−φ f β f c−KH(1−φ f )β2
f c

]
(34)

Felske model [77]

Pe f f = Pc

[
2(1−φ f i)+(1+2φt)(η/γ)

(2+φ f i)+(1−φt)(η/γ)

]
(35)

η = (2 + δ3)α f c − 2(1− δ3)αic (36)
γ = (1 + δ3)− (1− δ3)α f i (37)

φ f i =
φN

f

φN
f +[(1−φN

f )/δ3]
(38)

Pseudo-two-phase
Maxwell [85]

Pe f f = Pc

[
P f

e f f +2Pc−2φ f i(Pc−P f
e f f )

P f
e f f +2Pc+φ f i(Pc−P f

e f f )

]
(39)

P f
e f f = Pi

[
Pf +2Pi−2φs(Pi−Pf )

Pf +2Pi+φs(Pi−Pf )

]
(40)

φs = 1/(1 + `i/ro)
3 (41)

Recently, Monsalve-Bravo and Bhatia [151–153] used the Chiew-Glandt model in conjunction
with the one-dimensional transport equation for the permeant to describe the permeability for various
gases in flat and hollow fiber MMMs. The semi-analytical model is given by Equation (30) in Table 2,
referred to as the MB-B model. Here, i = 1 for a flat MMM and i = 2 for a hollow fiber MMM while
Cm is the position-dependent pseudo-bulk concentration in the MMM, with boundary conditions
Cm = Cm1 = f1/RgTg at R = R1 and Cm = Cm2 = f2/RgTg at R = R1. In Equation (30), Pm(R) is
the effective local MMM permeability, estimated using the Chiew-Glandt model in Equation (26),
in which the constituent phase permeabilities (Pf and Pc) are concentration-dependent via the Darken
model [154,155]. Further, the locally averaged filler volume fraction (φ f ) in Equation (31) averages
the filler volume fraction (φ f ) over the particle volume at a given membrane location, with ro being
the filler particle radius and R′(R, r, θ) the location in the particle relative to the position R in the
MMM. Thus, the MB-B model incorporates effects of particle size [151], membrane geometry [152] and
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isotherm nonlinearity [153] in the calculation of the MMM permeability. The MB-B model reduces to
the Chiew-Glandt model when ro/`→ 0 .

As an alternative to the exact second order solution of Chiew and Glandt [141],
several empirical modifications of the Maxwell model [80,156,157] have been proposed for concentrated
composites. These models empirically embed packing-related effects [158] and variation in filler
properties, such as particle agglomeration, size, and shape [71,80,86], within a single parameter in
the model [80,86,153], with the Lewis-Nielsen model in Equation (32) being one of most popular of
these models. In this model, packing-related effects are accommodated via the maximum filler volume
fraction (φm) [124,159], with the Lewis-Nielsen model simplifying to that of Maxwell when φm → 1 .
Alternatively, Higuchi [88] introduced empirical parameter, KH , to the Maxwell model to account for
particle-particle interactions and asphericity effects arising from particle shape variation, with the
Higuchi model given by Equation (34) [70,85] and 0 ≤ KH ≤ 0.78 for spherical particles [160].
Thus, Equation (34) reduces to the Maxwell model when KH = 0 [74]. Figure 5 compares the
permeability (Pe f f ) profiles based on ideal models in Table 2, with α f c = Pf /Pc = 10 and specific
model parameters values listed in the legend.
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Based on Maxwell’s theory, several models have been proposed to account for non-ideal
polymer-particle morphologies [77,78,84,86,160], either by: (i) solving the transport problem in
an MMM comprising spherical core-shell inclusions [77,86] or (ii) assuming the particle-interface
system as a pseudo-phase dispersed in the polymer matrix [71,85]. In the first group of non-ideal
models are found that of Felske [77], and later Pal’s adaptation [86]. In the second group are
found the pseudo-two-phase Maxwell model [85], and its adaptations [84,161]. The Felske model
in Equation (35) [77] is the exact first order solution to the transport problem through a dispersed
composite comprising non-interacting core-shell particles [160]. In this model, φ f i = φ f + φi is
the volume fraction of the total dispersed phase following Equation (38), with δ = (`i + ro)/ro

and φN
f the nominal filler volume fraction [70,86,160]. Further, α f c = Pf /Pc, αic = Pi/Pc,

and α f i = Pf /Pi in Equations (36) and (37). The Felske model is only applicable to dilute suspensions
(φ f i ≤ 0.2) [71,160,162].

In the pseudo-two-phase Maxwell model in Equation (39) [85], it is assumed that the three-phase
composite can be idealized as pseudo two-phase composite [163,164], with the polymer matrix
being one phase and the combined filler-interface system being the other phase (i.e., pseudo
dispersed filler phase) [21,71]. In Equation (39), φ f i is the volume fraction of total dispersed
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phase, given by Equation (38) [70]. Further, P f
e f f is the permeability of the combined filler-interface

system, given by Equation (40). Here, φs is the volume fraction of the filler in the filler-interface
composite, and following Equation (41) [70,85,163]. Further, Pi is assumed well described by Knudsen
diffusion mechanism when interfacial voidage is considered [70,163]. Alternatively, when polymer
rigidification is considered at the filler surface Pi = Pc/σ, with σ ∈ [3, 4] being the chain immobilization
factor; an empirical parameter used to differentiate the rigid polymer permeability from that in the
bulk polymer [21,163,164]. Later, Li et al. [84] modified the pseudo-two-phase Maxwell model to
accommodate both partial pore blockage and polymer rigidification. In this later work, the Maxwell
model is accordingly applied three times to include both effects.

3.2.2. Bruggeman’s Theory

The Bruggeman’s theory proceeds from the premise that the field of neighboring particles can
be taken into account by randomly adding the dispersed phase incrementally while considering
the surrounding medium as the existing composite with effective transport properties at each
stage [64,65,139]. This concept of incremental homogenization is illustrated in Figure 6, in which
P1

e f f , P2
e f f and Pe f f are the MMM permeabilities at different stages of the homogenization process.
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Bruggeman [64] based his expression for the dielectric permeability of dispersed composites on
the assumption that the Maxwell model described well the composite permeability in the diluted
limit [65,139], as depicted in Figure 6. To do so, He considered that the differential increment in
the dielectric permeability (dP) resulting from addition of new particles was well described by
Pr = Pe f f /Pc = 1+ 3β f cφ f , that upon substitution of Pc → P , Pm → P + dP , and φ f → dφ f /(1− φ f )

leads to Equation (42) in Table 3 after integration [138,165]. The Bruggeman model is assumed to be
applicable to moderate filler loadings (0 ≤ φ f ≤ 0.35) [135,139,146].

Table 3. Models based on Bruggeman’s theory.

Model Key Equations

Bruggeman [64]
[

Pe f f
Pc

] 1
3
[

α f c−1
α f c−(Pe f f /Pc)

]
=
[
1− φ f

]−1
(42)

Pal [65]
[

Pe f f
Pc

] 1
3
[

α f−1
α f−(Pe f f /Pc)

]
=
[
1− φ f

φm

]−φm (43)

Pseudo-two phase
Bruggeman model [78]

[
Pe f f
Pc

] 1
3
[

(P f
e f f /Pc)−1

(P f
e f f /Pc)−(Pe f f /Pc)

]
=
[
1− φ f i

]−1
(44)[

P f
e f f /Pi

] 2
3
= 1− φs, Pf � Pi (45)[

P f
e f f
Pi

] 1
3
[

(Pf /Pi)−1

(Pf /Pi)−(P f
e f f /Pi)

]
= [1− φs]

−1, Pf ≥ Pi (46)

Pseudo-two phase Pal
model [71]

[
Pe f f
Pc

] 1
3
[

(P f
e f f /Pc)−1

(P f
e f f /Pc)−(Pe f f /Pc)

]
=
[
1− φ f i

φm

]−φm
(47)[

P f
e f f
Pi

] 1
3
[

(Pf /Pi)−1

(Pf /Pi)−(P f
e f f /Pi)

]
=
[
1− φs

φm

]−φm (48)



Processes 2018, 6, 172 12 of 27

Similar to Bruggeman [64], Pal [65] assumed that the increment dP resulting from the
addition of new particles was well-described by Pr = Pe f f /Pc = 1 + 3β f cφ f , with Pc → P
and Pm → P + dP ; however, φ f → dφ f /(1− φ f /φm) was used instead of φ f → dφ f /(1− φ f ) ,
which leads to Equation (43) in Table 3 after integration [86,145]. In this model, φm has the same
connotation as in the Lewis-Nielsen model (cf. Section 3.2.1) [80,86,151,153]. The Pal model reduces
to Bruggeman’s result when φm = 1. Further, the Pal model always predicts higher values for the
permeability (Pe f f ) than that of Bruggeman for a given system.

Analogous to the pseudo-two-phase Maxwell [85], both Bruggeman and Pal models have been
extended to describe non-ideal MMMs. The former of these adaptations is known as the pseudo-two
phase Bruggeman model in Equation (44) [78], with the model describing the effect on the MMM
permeability of a voided or rigidified interfacial region at the filler particle surface [79]. In this
model, φ f i is given by Equation (38) [70] and φs given by Equation (41) [70,85,163]. Further, P f

e f f is
given by Equation (45) for voided interphase(Pf << Pi) [81] and by Equation (46) for rigidified
interface [166]. Similarly, the pseudo-two phase Pal model in Equation (48) [71] accounts for the
effect of polymer rigidification on the MMM permeability [79,85,160,164]. In this way, φ f i and φs are

given by Equations (38) and (41), respectively [70]. Here, P f
e f f and Pi have the same connotation as in

the pseudo-two-phase Maxwell model (cf. Section 3.2.1) [79]. Recently, Idris et al. [79] modified the
pseudo-two-phase Bruggeman model to account for both effects of polymer rigidification and presence
of voids at the particle surface. In this later work, the Bruggeman model is accordingly applied three
times to include both effects.

Finally, Bruggeman also developed a symmetric theory for the transport in composites [126,137].
However, models such as those of Landauer [63] and Böttcher [167], associated with this symmetric
theory, are not discussed here. This is because the symmetric Bruggeman’s theory considers the
composite to be a random assembly of spherical particles of different materials [138,168], in which all
components in the composite are continuous in the medium [141]. This condition is not met in MMMs,
where one phase is preferentially assumed dispersed in the other.

3.3. Simulation-Based Rigorous Modeling Approach

The simulation-based rigorous modeling approach (SMA) is based on numerical solution of
coupled partial differential equations (PDEs) describing the transport through the MMM via the
finite-element method (FEM) [20,151,169], or any other suitable method (e.g., finite volume method
or boundary element method), to discretize the 3D computational system [123]. Thus, the SMA is
based on the assumption that the steady-state transport through the MMM is well-described by the
continuity equation [151,170], as:

∇ · J = 0 (49)

where J is the permeant steady-state flux, with the Fick’s law describing the flux in both dispersed (J f )

and continuous (Jc) phases, as [153]:

J f = D f (C f )(−∇C f ) (50)

Jc = Dc(Cc)(−∇Cc). (51)

respectively. In Equations (50) and (51), ∇C and D are the concentration gradient and diffusivity in
a given phase, respectively. In this way, Equations (49)–(51) are solved in the 3D MMM [151], in which
the resulting steady-state flux is used to calculate the MMM permeability via Equation (2) [152].

The SMA offers several benefits in comparison to earlier RMA and EMA approaches,
amongst which the main advantage is that this approach can easily incorporate the permeability
dependence on the concentration field [153] and finite-system size effects [151], largely disregarded in
the former approaches. In this way, the SMA can accommodate effects on the permeability of intrinsic
system properties such filler particle size [151] and shape [171,172], isotherm nonlinearity [153],
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and membrane geometry [152,169]. These effects are empirically treated in most RMA/EMA
models [20], such in the Ebneyamini [68], Higuchi [88], and Pal [65] models.

The effect of filler size on the MMM permeability has been the focus of several studies [20,151,169],
with Singh et al. [20] being the first to investigate such an effect for spherical particles and MMMs
operating in the Henry’s law region. In this work, the relative permeability (Pe f f /Pc) was found
independent of the particle size in the range of sizes investigated. However, later studies [151,169]
suggested that the MMM permeability decreased with increase of particle size, and associated this
depletion in the permeability with decrease of the specific polymer-filler interfacial area with increase
of particle size at fixed volume fraction [151,173]. In these latter studies, the discrepancy amongst
studies on the effect of particle size on the MMM permeability was associated with poor mesh
quality in the FEM implementation in the former study [169], where the permeability was also found
sensitive to changes of the product ratio K f D f /KcDc; inconsistent with definition in Equation (5)
(cf. Section 2.2) [174]. Further, for MMMs operating at low pressure, other investigations have been
focused on tubular [172] and layered fillers [171], with these investigations indicating sensitivity of the
MMM permeability to filler shape, orientation, and packing.

Recently, the effect of isotherm nonlinearity was evaluated in MMMs with spherical fillers [153].
In this study, the MMM permeability was found more sensitive to isotherm nonlinearity in the filler
phase than in the continuous phase. Similar to earlier studies in the Henry’s law region [151,169],
increase of filler particle size was found to decrease the MMM permeability. Further, comparison of
the simulation predictions to EMA models suggested that the Chiew-Glandt model in Equation (26)
describes well the effective permeability of ideal MMMs when the relative particle size is negligible
(ro/`→ 0) , as in such case the effects of isotherm nonlinearity and finite-system size effects are
negligible in the system. Figure 7 depicts a comparison of several EMA models to simulation
results [151] for small filler particle size, and showing the Chiew-Glandt model to match well the
simulation results, with the smallest percentage deviation (4.7%).Processes 2018, 6, x FOR PEER REVIEW  14 of 28 
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Following the SMA, the effect of the membrane geometry has been evaluated [153,169].
Yang et al. [169] were the first to evaluate such an effect, by comparing the permeability of full-scale
hollow fiber and flat-dense MMMs. By considering randomly distributed spherical inclusion
and constant filler and polymer diffusivities, they found the hollow-fiber MMMs to have higher
permeabilities than flat-dense MMMs. The increased efficiency of hollow fiber MMMs was associated
with decrease in the length of the permeant diffusion pathways in the hollow fiber relative to those
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in a flat MMM. However, a more recent study found opposite behavior [152], by comparing MMMs
having the same filler particle size, thickness, and volume, with the permeability in the hollow fiber
found lower than in the flat MMM. Further, this tendency was associated with asymmetric filler phase
distribution at the MMM ends, and arising from curvature change in the hollow fiber. The discrepancy
amongst the different studies was associated with inaccuracies in the FEM implementation, which also
led to the incorrect finding that the effective permeability was sensitive to variation of the ratio K f /Kc

and Do f /Doc at constant K f Do f /KcDoc [149].

4. Predicting the Effective Permeability in Mixed-Matrix Membranes

Although there are a myriad of models for permeation in MMMs [62,68,80,85,147,151,175],
with the popular ones described in Section 3, only a few of these match experimental permeation
data [120,145,153,176]. While ideal models are often used as reference in practice [45,93,99], they are
commonly shown to poorly describe experimental MMM permeabilities [71,128,166]. Alternatively,
models incorporating interfacial non-idealities have been largely shown to match experimental
data [70,71,78,79,161]. However, properties of the interfacial layer are always empirically fitted in
these models [160,166,177]. When compared to experimental data, RMA and EMA models are used to
either estimate the permeability in: (i) the MMM or (ii) any of its constituent phases by fitting MMM
permeability data. In the first case, filler and continuous phase permeabilities are experimentally
measured, and EMA/RMA are used to estimate the permeability in the MMM [99,107,110].
In the second case, the MMM and continuous phase permeabilities are experimentally measured,
and EMA/RMA models are used to estimate the filler phase permeability [42,81], by fitting MMM
permeation data. Here, we discuss the use of EMA/RMA models to predict filler permeabilities in
Section 4.1 and MMM permeabilities in Section 4.2.

4.1. Estimation of the Filler Phase Permeability through EMA and RMA Models

Amongst the studies estimating the filler permeability through EMA/RMA models [42,81,128],
that of Bouma et al. [81] estimated the relative permeability of O2 in the filler phase (α f c = Pf /Pc) in
an MMM comprising co-polyvinylidene fluoride-hexafluoropropene (co-PVDF) as continuous phase
and a nematic liquid crystalline mixture (E7) as dispersed phase. In this work, Bouma et al. [81]
found the Maxwell model to lead to α f c = Pf /Pc = 15.0 ± 8.1 while that of Bruggeman to
α f c = Pf /Pc = 9.2± 3.8. Based on the relative error from each model fit, they concluded that the
Bruggeman model better fitted the MMM permeabilities at higher filler concentrations.

Later, Gonzo et al. [145] found that the Chiew-Glandt model better fitted Bouma’s experimental
permeation data [81] as well as in other gases (e.g., CO2, He, H2, O2, N2) for various MMMs upon
comparison of the Maxwell, Bruggeman, Chiew-Glandt, Higuchi and Landauer models (cf. Section 3.2).
Furthermore, they found the Chiew-Glandt model to describe well the MMM permeability at both low
and moderate filler volume fractions (0 ≤ φ f ≤ 0.4) [145]. Gonzo et al. [145] associated the overall
success of the Chiew-Glandt model with the way particle-particle interactions are accommodated in
this model [141,149], as the asymmetric integration technique used by Bruggeman [64] considers that
newly added spheres are too dilute to interact among themselves, and interact only with the previously
homogenized system [135,139,158]. This assumption may be inaccurate at high filler loadings.

In a similar fashion to Bouma et al. [81], Erdem-şenatalar et al. [128] estimated the filler phase
permeability (Pf ) by fitting experimental permeation data of various gases (e.g., CO2, O2, N2, CH4,
n− C4H10, and i− C4H10) in Zeolite/Polymer MMMs (e.g., Zeolite 4A, 5A, 13X, and Silicalite-1) to
the Series, Parallel, Te Hennepe, Maxwell, and Landauer models. They found large differences in
Pf estimations amongst models for all gases and associated poor Pf predictions with the limited
capability of RMA/EMA models to account for interfacial defects. However, here we associate these
differences in Pf with the use of RMA/EMA models beyond their range of applicability, as most of
these models are only suitable at low filler loadings.
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Figure 8 depicts a comparison of the experimental effective permeability and that predicted
by RMA/EMA models for one of the experimental data sets used by Erdem-şenatalar et al. [128].
However, we here calculated Pf via nonlinear regression of each model with the experimental
permeation data in the range 0 ≤ φ f ≤ 0.2, as only at low volume fractions RMA/EMA models
provide comparable predictions of Pe f f for a given α f c = Pf /Pc (cf. Figures 3 and 5). In Figure 8,
Pf predictions and percentage deviations between RMA/EMA models and experimental permeabilities
are shown in the legend. Here, the experimental permeation data were originally reported by Duval
et al. [178] for CO2 in silicalite-1/EPDM MMMs, in which size of zeolite particles ranged between
1− 5µm, membrane thicknesses between 50− 200µm, and no morphological defects were reported in
the MMMs structure.
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Figure 8. Comparison of resistance model approach (RMA)/effective medium approach (EMA)
predictions for the filler phase permeability (Pf ), obtained by fitting Pe f f to experimental permeation
data of CO2 in Zeolite-13X/EPDM MMMs from [178], for filler fraction in the range 0 ≤ φ f ≤ 0.2.

In Figure 8, we used the Chiew-Glandt model in place of the Landauer model, as the
Landauer model has been shown not suitable for MMMs [81,141]. Here, the series model (Pf → ∞)

under-predicts the experimental permeabilities, with deviations of about 25%. This tendency is
expected, as the series model corresponds to the lower bound for the permeability in ideal MMMs
(cf. Section 3.1). Further, the filler phase permeability varies from 298 < Pf < 896 Barrer, with the
Chiew-Glandt model providing the best match to the experimental MMM permeabilities (deviation of
6.7%). This suggests that the Chiew-Glandt models describes well the MMM permeability when
membrane structure has no associated defects, and particle size is negligible in comparison to the
membrane thickness.

4.2. Prediction of the MMM Permeability through EMA and RMA Models

Among the studies comparing simulation-based [20,151,152,169,171,172] or experimental
permeabilities of MMMs to EMA/RMA models [45,120,145,153,166,179], that of Monsalve-Bravo and
Bhatia [151] compared simulation-based MMM permeabilities to various EMA models. In this work,
they showed the Chiew-Glandt model to describe well the simulation-based MMM permeabilities
when the ratio of the particle size (radius) to the membrane thickness is small (cf. Figure 7), and that
the MB-B model (cf. Section 3.2.1) matched well the simulation-based MMM permeabilities when
relative filler particles sizes were in the range0.004 ≤ ro/` ≤ 0.16.
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Figure 9 depicts a comparison of the simulations-based MMM permeabilities reported
in [151] and the MB-B, Pal, Bruggeman, Lewis-Nielsen, Chiew-Glandt, and Maxwell models,
with α f c = Pf /Pc = 100 in all models, ro/` = 0.040 in the MB-B model, and φm = 0.645 in the Pal and
Lewis-Nielsen models. Further, percentage deviations between EMA models and simulation results
are shown in the legend. In Figure 9, the MB-B model matches the simulation-based permeabilities,
with a percentage deviation of 2.0%. Further, Monsalve-Bravo and Bhatia [151] showed that increase of
filler particle size decreased the effective permeability of MMMs and associated this behavior with both
depletion of the filler volume fraction at the membrane ends (due to the finite character of the system)
and decrease of total available filler phase surface area, at a given volume fraction, with increase of the
particle size.
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Monsalve-Bravo and Bhatia [153] later extended their EMA model to accommodate isotherm
nonlinearity using a self-consistent approach to calculate the filler phase permeability. In this work,
they compared their model predictions to experimental permeation data of Vu et al. [46], who fabricated
CMS-based MMMs for separation of CO2/CH4 and O2/N2 using Matrimid 5218 and Ultem 1000 as
matrices. For the CMS/Ultem 1000 system, Monsalve-Bravo and Bhatia [153] showed that their
modified effective medium theory (EMT) better predicted the permeability of all gases (O2, N2, CO2,
and CH4) at different MMM feeding pressures and concluded that isotherm nonlinearity in the filler
phase has a strong effect on the MMM permeability, with this effect becoming less significant with
decrease of the particle size in the membrane system.

Figure 10 depicts a comparison of the experimental permeabilities reported in [46] for O2/N2 and
the MB-B, Pal, Bruggeman, Lewis-Nielsen, Chiew-Glandt, and Maxwell models, with ro/` = 0.040
in MB-B model and φm = 0.645 in the Pal and Lewis-Nielsen models. Here, percentage deviations
between the experimental permeabilities and EMA models are shown in the legend of each plot.
In both Figure 10a,b, the MB-B models is in good agreement with the experimental permeabilities,
having the smallest deviation amongst considered EMA models.
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While Monsalve-Bravo and Bhatia [153] studied the effect of isotherm nonlinearity for one of the
membrane systems (CMS/Ultem 1000) reported by Vu et al. [46], the experimental permeabilities of
O2, N2, CO2, and CH4 in the other system (CMS/Matrimid 5218) have been fitted to several non-ideal
models [71,120,166]. This is because Vu et al. [46] hypothesized that polymer rigidification at the
particle surface was the cause of the decreased permeabilities of all gases in the CMS/Matrimid
5218 MMMs. Among these works, Vu et al. [120] fitted the experimental permeability of CO2 and CH4

of [46] to the pseudo-two phase Maxwell model (cf. Section 3.2.1). They estimated the thickness of the
rigidified interfacial layer as `i = 0.075µm by assuming filler particle diameter equal to do = 1µm and
interfacial permeability to Pi = Pc/σ, with σ = 3. In this work, different values of σ ranging between 1
and 4 were also used to adjust the interfacial thickness at fixed particle size (do = 1µm), which led
to the conclusion that increase of σ yields a decrease in the interfacial thickness. A tendency later
corroborated by Moore et al. [164] for zeolite-based MMMs.

Figure 11a depicts a comparison of the experimental permeabilities for from [46] and that predicted
by Felske, pseudo-two-phase Maxwell and pseudo-two-phase Bruggeman models (cf. Section 3.2).
Similar to Vu et al. [120], we here assumed σ = 3 and do = 1µm to calculate `i in all models.
Further, `i predictions and percentage deviation of each model from the experimental permeation data
are shown in the legend of Figure 11a. Here, non-ideal models (overlapped) are in fair agreement with
the experimental permeabilities, having percentage deviations of about 20%.

Alternatively, Figure 11b depicts a comparison the predicted interfacial thickness with increase
of the chain immobilization factor (σ) while assuming the filler phase particle size do = 1µm.
Here, an increase in the chain immobilization factor (σ), decreases the thickness of the interfacial layer
(`i), similar to qualitative findings of Vu et al. [120] based on the pseudo-two phase Maxwell model.
Further, the Felske and pseudo-two phase Maxwell model provide similar predictions of `i while the
pseudo-two phase Bruggeman model predicts larger `i values. This behavior is expected because for
a given MMM system the original Bruggeman model predicts higher permeabilities than the Maxwell
model (cf. Figures 7 and 10), and thus this effect is transferred to the interfacial thickness at fixed Pf ,
Pi, and Pc.

In practice, the chain immobilization factor is commonly assumed in the range
3 ≤ σ ≤ 4 [120,161,163,164]. This assumption often leads to interfacial layer thicknesses between
the 0.05µm ≤ `i ≤ 0.1µm [120], as depicted in Figure 11b. However, Dutta and Bhatia [180],
via equilibrium molecular dynamics simulations, recently found that thickness of the rigidified layer
to be `i ≈ 0.001µm for polyimide near MFI (mordenite framework inverted) zeolite. While we
recognize that thickness of the interfacial layer may vary between MMM systems, Dutta and Bhatia’s
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findings [180] suggests that interfacial permeability(Pi) is much lower than that in the bulk polymer
(Pc), also evident in Figure 11b. Thus, further theoretical developments are needed to accurately
assess the permeant properties in the interface, as current models rely on empirically fitting these
interfacial properties.
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Finally, while RMA is much less popular for describing permeation in MMMs. With the
introduction of nano-flake [181–183] and nanotube [184–186] based MMMs, models such as
those of Cussler [51] and KJN [48] have become more popular as reference to compare with
experimental [76,114,187] or simulation-based permeation data [171,172]. Amongst these works,
Wang et al. [171,172] performed simulations of 3D MMMs comprising ideal platelet and tubular
particles, and compared simulation predictions to the Cussler and KJN models (cf. Section 3.1).
For platelet fillers, they found the Cussler model to be in good agreement with their simulations only
when isotropic diffusion was considered in the simulations [171]. For tubular particles, they found
the KJN model to under-predict the simulation-based permeabilities [172]. While these simulation
studies considered concentration-independent phase permeabilities (Pf and Pc), difference amongst
simulation results and RMA models suggest that particle shape has a strong effect on the MMM
permeability. Thus, new theoretical developments are required that overcome the limitation of current
EMA/RMA models on embedding filler-related effects within empirical fitting parameters, such as in
the Ebneyamini [68], Lewis-Nielsen [73], Higuchi [88], and Pal [65] models.

5. Conclusions

Existing models for transport through mixed-matrix membranes (MMMs) are adaptations
of well-established theories for the thermal/electric conductivity of heterogeneous media,
grounded either in the resistance model approach (RMA) or the effective medium approach
(EMA). In these approaches, the MMM permeability is based on both volume fractions and
permeabilities of the MMM constituent phases while assuming uniformity of the field across the
MMM, and negligible filler phase particle sizes compared to membrane thickness. These considerations
lead to concentration-independent permeabilities across the MMM, which mask effects of isotherm
nonlinearity and finite filler size in the effective permeability calculation. Furthermore, it has been
recently shown [153] that deviations to the Henry’s law, common under usual operating conditions of
MMMs, lead to nonlinear concentration profiles and non-uniform permeabilities across the MMM.
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Thus, EMA/RMA models need to progress beyond these limitations to appropriately characterize the
transport of species across the membrane.

Among existing permeation models, that of Maxwell and its adaptations (cf. Table 2),
corresponding to the low-density limit of non-interacting dispersed spheres, have remain popular
as reference in practical applications. However, this model has also been commonly shown to
under-predict experimental MMM permeation data [45,51,81,145]. For concentrated composites,
a number of analytical expressions have been proposed, including those corresponding to the
Chiew-Glandt, Lewis-Nielsen, Higuchi (cf. Table 2), Bruggeman, and Pal models (cf. Table 3).
Here, the Chiew-Glandt result is the exact second order solution of the transport problem through
a dispersion. This model has been shown to fit simulation-based and experimental permeation
data when filler particle size is negligible (cf. Figures 7 and 8). Besides, an extended version of
the Chiew-Glandt model (MB-B model in Table 2), accommodating both particle size and isotherm
nonlinearity, has been shown to describe well the permeability for various gases in CMS-Ultem
1000 MMMs (cf. Figure 10). Alternatively, the Lewis-Nielsen, Higuchi, Bruggeman, and Pal
models correspond to empirical modifications of the Maxwell or Bruggeman models to integrate
particle interaction or packing-related effects; however, assuming negligible particle size in the
MMM. Thus, while these models have been shown to match experimental permeation data [81],
their associated empirical parameters are always fitted against the experimental MMM permeabilities,
which mask effects of isotherm nonlinearity and finite filler size. Therefore, new theoretical models
need to advance beyond this limitation and distinguish between effects of different mechanism to be
able to achieve breakthroughs for the optimization of key separation processes.

Much effort has been devoted to mathematically represent effects of defective interfacial
polymer-particle morphologies, in the form of a rigidified polymer [77,86], interfacial voids [163]
or a blocked [161,179] layer around the filler particle surface, as well as particle shape (e.g., cubic,
spheroidal, tubular) [69,72]. Nevertheless, while incorporating such morphological effects, existing
models inherit the uniform field assumption of early RMA/EMA models, and thus disregard effects of
isotherm nonlinearity and finite system size. While this drawback is addressed via simulation-based
rigorous modeling of MMMs [152,171,172], EMA/RMA models need to progress beyond this limitation
to appropriately characterize the transport of species across the membrane and its dependence on
inherent matrix-filler properties. Furthermore, when non-ideal MMM morphologies are considered,
the fitting of thickness of the interfacial layer based on an assumed permeability in this layer using
MMM permeability data and EMA/RMA models is misleading (cf. Figure 11), and advances to
independently characterize the interfacial layer thickness and its permeability are required.

Finally, while modeling of MMM through the RMA have received considerably less attention
than EMA, with the introduction novel filler nanomaterials (e.g., carbon nanotubes and graphene
nanosheets), models such that Te Hennepe, Cussler, and KJN have gained some popularity to be
used as reference upon comparison with experimental and/or simulation-based permeation data.
These models have been shown to successfully represent simulated MMM with flake-like and tubular
particles operating at low pressures [171,172]. However, because they share the uniform concentration
field assumption with EMA models, their applicability is limited to the Henry’s law region. With the
upcoming advances on 3D printing for synthesis of membrane materials [6], these effects of filler
particle shape and packing distribution together with isotherm nonlinearity on the MMM permeability
will need to be appropriately incorporated in the new generation of models.
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