Modeling Permeation through Mixed-Matrix Membranes: A Review

Authors:

Gloria M. Monsalve-Bravo, Suresh K. Bhatia

Date Submitted: 2019-04-08

Keywords: particle-polymer interface, simulation of MMM, effective medium approach, permeation modeling, mixed-matrix membrane (MMM)
Abstract:

Over the past three decades, mixed-matrix membranes (MMMSs), comprising an inorganic filler phase embedded in a polymer matrix,
have emerged as a promising alternative to overcome limitations of conventional polymer and inorganic membranes. However, while
much effort has been devoted to MMMs in practice, their modeling is largely based on early theories for transport in composites. These
theories consider uniform transport properties and driving force, and thus models for the permeability in MMMs often perform
unsatisfactorily when compared to experimental permeation data. In this work, we review existing theories for permeation in MMMs
and discuss their fundamental assumptions and limitations with the aim of providing future directions permitting new models to
consider realistic MMM operating conditions. Furthermore, we compare predictions of popular permeation models against available
experimental and simulation-based permeation data, and discuss the suitability of these models for predicting MMM permeability under
typical operating conditions.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2019.0482
Citation (this specific file, latest version): LAPSE:2019.0482-1
Citation (this specific file, this version): LAPSE:2019.0482-1v1

DOI of Published Version: https://doi.org/10.3390/pr6090172

License: Creative Commons Attribution 4.0 International (CC BY 4.0)



processes ﬁw\p\py

Review
Modeling Permeation through Mixed-Matrix
Membranes: A Review

Gloria M. Monsalve-Bravo'” and Suresh K. Bhatia *

School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia;
g.monsalvebravo@ug.edu.au
* Correspondence: s.bhatia@uq.edu.au; Tel.: +61-(07)-3365-4263

check for
Received: 30 August 2018; Accepted: 14 September 2018; Published: 18 September 2018 updates

Abstract: Over the past three decades, mixed-matrix membranes (MMMs), comprising an inorganic
filler phase embedded in a polymer matrix, have emerged as a promising alternative to overcome
limitations of conventional polymer and inorganic membranes. However, while much effort has
been devoted to MMMs in practice, their modeling is largely based on early theories for transport
in composites. These theories consider uniform transport properties and driving force, and thus
models for the permeability in MMMs often perform unsatisfactorily when compared to experimental
permeation data. In this work, we review existing theories for permeation in MMMs and discuss their
fundamental assumptions and limitations with the aim of providing future directions permitting
new models to consider realistic MMM operating conditions. Furthermore, we compare predictions
of popular permeation models against available experimental and simulation-based permeation
data, and discuss the suitability of these models for predicting MMM permeability under typical
operating conditions.

Keywords: mixed-matrix membrane (MMM); permeation modeling; effective medium approach;
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1. Introduction

In the last few decades, membrane technologies have attracted increasing attention to be used
in a variety of industrial applications, which include gas separation [1-3], water desalination [4-6],
food processing [7], pervaporation [8,9], membrane contactors [10,11], and membrane reactors [12,13].
In many of these applications, membrane technologies are preferred over conventional separation
techniques (e.g., distillation, absorption, and adsorption) due to their superior features such as [14-17]:
(i) stable production with high separation efficiency [18]; (ii) low energy consumption with no phase
change requirements [15,19]; (iii) simple operation with convenient modular scale-up [20-22]; and (iv)
small environmental footprint [18,23]. Nevertheless, implementation of membrane technologies in
practical applications has been limited by challenges with the engineering of robust materials able
to be effective under a variety of operating conditions and environments [21,24], with only polymer
membranes currently available in large-scale applications; yet failing to overcome Robeson’s [25,26]
trade-off curves between the selectivity and permeability [25-28].

Different alternatives have been explored to enhance polymer membranes to perform
beyond Robeson’s upper bound, including surface modification [29], facilitated transport [30,31],
polymer blends [32], and mixed-matrix membranes (MMMs) [33]. Amongst these alternatives,
devoted attention to the synthesis of MMMs has been intensified over the last three-decades [21,34,35],
with a myriad of studies focusing on novel materials to increase efficiency of CO; capture [18,35,36],
natural gas purification [37-39], water purification [40,41], and olefin/paraffin separation [42-44].
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Thus, much effort has been devoted to the optimization of MMMs synthesis [34,42,45-48];
with a number of works even reporting fabrication of defect-free MMMs [37,49-51].

Ideally, a mixed-matrix membrane (MMM) consists of a selective inorganic filler phase embedded
to continuous polymer matrix [21,35]. In this way, an MMM combines high intrinsic permeability and
separation efficiency of advanced molecular sieving materials (e.g., zeolites, carbons, metal-organic
frameworks) or nanoscale materials (e.g., carbon nanosheets or nanotubes) with robust processing
capabilities and mechanical properties of glassy polymers [23,52]. Consequently, MMMs are expected
to have higher efficiency than those based on their polymer counterpart, thus exceeding the trade-off
between the permeability and selectivity [15,21,53].

MMMs are commonly prepared either with symmetric or asymmetric structure [17,34,54].
Symmetric MMMs consist of a uniform dense composite film of thickness 20 pum < ¢ < 100 pm [41,46]
while asymmetric MMMs comprise a thin selective composite skin layer of thickness 2 um < ¢ < 5um
coated on a highly porous non-selective core layer of thickness 50 ym < ¢ < 300 um [3,55-57]. In this
way, thicknesses of MMMs are large enough to disregard effects of interfacial entrance and exit
barriers on the transport; these barriers which have been shown to significantly decrease the permeant
diffusivity in nanoporous materials only when the overall system thickness is ¢ < 0.1 um [58-60].
Such barriers may nevertheless be important at the interfaces of nano-sized fillers and zeolites in
nanocomposites, where potential of mean force calculations demonstrate their significance [61].
However, filler size in MMMs is of the order of 0.1-1 um or larger [34,41], and such barriers are
insignificant relative to the internal resistance in the filler particles.

Current models for permeation in MMMs are adaptations of early theories for the transport in
heterogeneous media, either following the effective medium approach (EMA) [62-65] or resistance
model approach (RMA) [66-69]. In such approaches, the effective permeability is usually based on
the permeabilities and volume fractions of the MMM constituent phases [21,34,70-72], with these
phase-specific properties largely assumed constant. Thus, applicability of early RMA/EMA
models [62-64,66] and later adaptations [65,68,73,74] is often limited to narrow MMM operating
conditions (Henry’s law region) and ideal polymer-particle morphologies. Furthermore, although
experimental studies on MMMs have shown that deviations from Henry’s law are common under usual
operating pressures (1-4 bar) [15,36,46,75], isotherm nonlinearity is incorporated into the permeation
models through the Darken or free volume theories while assuming a uniform field based on the mean
permeant concentration [71,76-79], an assumption that needs to be relaxed for further progress.

Over the last decade, increased efforts have been devoted to advance permeation models
to integrate effects of filler morphology (e.g., particle size, shape, and agglomeration) [65,80,81]
and defects at the particle-polymer interface in the form of a rigidified polymeric [76-79,82-84],
and void [69,77,79,85] or pore-blocked [84] regions. However, while considering such non-idealities,
these models share the uniform field assumption inherent to the EMA and RMA [69,76,77,86,87].
Thus, effects of the filler morphology together with isotherm nonlinearity are often embedded
in a single empirical morphology-related parameter, such as in the Pal [65], Lewis-Nielsen [73],
and Higuchi [88] models. Thus, extending the predictive capability of existing models through
more rigorous approaches able to be valid over a variety of conditions and systems remains
a possibility [15,21,36].

In this work, we review existing approaches for engineering models of permeation through
MMMs. To do so, we first introduce the concepts of permeability and selectivity in the context of MMMSs
and discuss how their mathematical formulation is integrated to existing models for the transport in
composite media. Here, we also classify permeation models by approach (i.e., RMA and EMA) and
discuss their range of applicability based on their fundamental assumptions. Finally, we compare
RMA /EMA models to simulation-based and experimental permeation data for various gases (e.g., CO»,
CHy, Hy, Oy, Np) in several MMM systems, and provide future directions on how to progress existing
models to undertake realistic MMM operating conditions.
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2. Gas Transport through Mixed-Matrix Membranes

Gas separation through membranes can take place by different mechanisms [89,90]. Three main
diffusion mechanisms have been well-accepted to describe gas transport through membranes [91,92]:
(i) Knudsen diffusion; (ii) molecular sieving (molecular diffusion); and (iii) solution-diffusion
(sorption-diffusion), with detailed discussion of these transport mechanisms available elsewhere [91].
In general, the diffusion mechanism is assumed to change from solution-diffusion to Knudsen
diffusion with increase of the pore size in the membrane material [18,36]. Based on this consideration,
transport through inorganic porous membranes has been largely associated with the Knudsen
diffusion [35,91], that in membranes based on nanomaterials such carbon molecular sieves (CMSs) [46],
zeolitic imidazolate frameworks (ZIFs) [93,94] and metal organic frameworks (MOFs) [95], has been
associated with the molecular diffusion, and that through glassy polymers has been associated
with the solution-diffusion [30,89-91,96-98]. While MMMs combine transport principles of both
polymer and inorganic membranes, diffusion through them is understood via the solution-diffusion
mechanism [21,34]. This mechanism assumes that permeant molecules dissolve (adsorb) on one
side of the membrane, diffuse across the membrane and then are released (desorbed) at the other
side [14,19,90,99], as depicted in Figure 1 for the CO,/CH, separation.
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Figure 1. Schematic representation of gas permeation through the solution-diffusion mechanism.

2.1. Permeability and Selectivity in MMMs

In the solution-diffusion mechanism, the permeant transport is driven by the chemical potential
gradient (V) across the membrane, in which y is only dependent on the concentration gradient (Vc)
while the fugacity (f) is assumed uniform across the membrane (cf. Figure 1) [100]. Under these
considerations, the permeant flux (J) can be defined as:

J=DS(-Af)/¢ = P(~Af)/4, Bf = fo— fi 1)

with detailed derivation of Equation (1) found elsewhere [100,101]. Here, D and S are the
concentration-averaged diffusivity and solubility, respectively; and Af = f, — f; is the fugacity
difference between the retentate (f;) and permeate (f;) sides of the membrane (cf. Figure 1),
respectively [102]. Further, Equation (1) is usually rearranged as [46]:

P=Jt/(=Af), Af =fa—fi )
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as the permeant flux (J), membrane thickness (¢), and fugacity difference (Af) can be measured in
practice [42,99,103,104]. In Equation (2), the permeability (P) is calculated in Barrer, with [90,105]:

mol m

3
1Barrer = 1x 10~ 10 STP)em 5000 10716 .
cm? s cmHg m?2 s Pa

®)

For gas mixtures, the permselectivity is used to characterize the MMM separation efficiency,
with the permselectivity of species A relative to species B (a7 ;) defined as [91,102,103,106]:

wyp = Pa/Pp = (DaSa)/(DpSs) 4)

where a7 is also known as the ideal selectivity. In Equation (4), the permeability of the slower
permeant is usually placed in the denominator, and thus a% ; > 1 [99].

2.2. Diffusion and Sorption in MMMs

Based on the permeant flux definition in Equation (1), the permeability can be defined as the

product of a kinetic (D) and a thermodynamic (S) contribution, with [91,99]:

P =DS ®)

where, assuming the retentate side fugacity to be negligibly small (cf. Figure 1), the mean diffusivity
(D) and solubility (S) can be expressed as [107-109]:

D— (1/c1)/ccl~0D(c)dc ©)
S=/f) [ de=alf. )

respectively. In Equations (6) and (7), ¢ is the permeant adsorbed concentration and D is the Fickian
diffusivity, well-accepted to follow the Darken relation as D = D, (dIn f/dInc) [110,111]. Here, D, is
the permeant mobility, assumed concentration-independent [112,113].

At low pressures, Henry’s law is often adequate to express the gas concentration,
with ¢ = Ky f [89,109]. Thus, by following Equations (6) and (7), both diffusivity and solubility are
concentration- independent, with the permeability in the MMM constituent phases given by [109,110]:

Pr = DysKpy 8)
Pc = DocKHc (9)

with subscripts f and c denoting the filler and continuous phases, respectively.
At moderate/high pressures, the solubility in the filler phase is commonly assumed to follow the
Langmuir isotherm, leading to:

Sp=Kgcy/(1+Kgf1) (10)

which often describes well the sorption equilibrium in various porous fillers [42,48,75,114-116].
Here, K is the affinity constant and cj; the capacity in the filler phase. Then, by following Equation (5)

while assuming the diffusivity to be concentration-independent, with D = D (D # D,) based on
Equation (6) [117], the permeability in the filler phase is given by [99]:

Py = D¢Kgc/(1+ K¢ f1) (11)
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where Dy is the permeant diffusivity in the filler. Similarly, a combination of Henry’s law and the
Langmuir model is often used to describe the mean polymer solubility, following [75,106]:

Se =K, +Keci/(1+Kef1) (12)

with K}, being the Henry’s law constant, K, the affinity constant and ¢} the capacity in the matrix.
Thus, by following Equation (5), the permeability in the polymer is given by [117,118]:

P, = DjKj, + DKl / (14 K f1) (13)

where Dy, and D, are the diffusivities in the Henry’s law and Langmuir sites, respectively. Equation (13)
is known as the dual-mode/partial immobilization model, as the penetrant is assumed fully
mobile in the Henry environment and partially mobile in the Langmuir environment [118-121].
In the next section, the permeant permeabilities in the filler (Pr) and continuous (P;) phases are
largely assumed concentration-independent following Equations (8) and (9) [86,122,123] or based on
concentration-averaged solubility and diffusivity via Equations (11) and (13) [15,36,99].

3. Models for Gas Permeation in Mixed-Matrix Membranes

While a universal description of the gas transport through MMM is a complex problem [21,71,87,112],
the modeling of permeation through MMM s is largely based on early theories for thermal/electrical
conduction of heterogeneous media [62,65,124-126]. These theories were extended to MMMSs on the
basis of the analogy between the thermal/electrical conductivity and the permeability of composite
materials [66,81] in the presence of linear flux laws. Based on this analogy, two main approaches have
been extensively used to predict the permeability in MMMs: the resistance model approach (RMA) and
the effective medium approach (EMA), described in Sections 3.1 and 3.2, respectively. Besides these
early approaches, simulation-based rigorous modeling of MMMs has attracted increased attention in
recent years, and thus this latter approach is described in Section 3.3. In what follows, subscripts ¢, f, i,
and eff refer to the continuous phase (polymer matrix), filler phase (selective phase), polymer-filler
interface and MMM as a whole, respectively.

3.1. Resistance Model Approach

The resistance model approach (RMA) relies on analogy between the current flow through
a series-parallel array of resistors (Ohm’s law) and the permeation rate through a composite membrane
(Fick’s law) [66,67,125,127]. Under this consideration, the MMM permeability is inversely proportional
to the overall transport resistance, with the fundamental equation of the RMA being [87,128-132]:

F=(=Af)/Refs, Af =fo—f1 (14)

where R, ff is the overall transport (permeation) resistance and F = Acos;] is the permeant flow rate,
with Across the cross-sectional area in the flow direction. Consequently, the permeant flux (]) through
the membrane can also be expressed as:

]: (—Af)/(AcrossReff)z Af = f2 _fl‘ (15)

On comparing flux definitions in Equations (1) and (15), the resistance (R,fs) can be equated
as [66,68]:
Reff = e/(PeffAcross)~ (16)
In this way, if an expression for the equivalent resistance (R,fs) is known, the MMM permeability
(Peff) can be calculated via Equation (16) [125,132].

A number of permeation models have been proposed for MMMs [68,69,72,76,82,87,133], based on
Equations (15) and (16), as listed in Table 1, with the most popular models considering platelet or cubic



Processes 2018, 6, 172 6 of 27

filler particles [72,130,133] and few newly developed models considering tubular particles [69,76,82].
The simplest RMA models idealize the MMM as a two-phase laminated composite comprising multiple
sheets of polymer and selective material alternated in series or in parallel to the flow direction [70,134],
as depicted in Figure 2a,b, respectively. Figure 2 also depicts electrical circuit analogues used to
calculate the overall transport resistance of both composites.

Table 1. Models based on the resistance model approach.

Model Key Equations
, B P.P;
Series [47] peff = m (17)
Parallel [47] Pppr = Props + Pe(1 — ¢f) (18)
1 —1
Te Hennepe [130] —p|(1—¢ 207D (19)
P Porg = Fe| 1= 90)F g e amay
-0\
_ Py | 4(0—¢
Cussler [72] Peff =P, |:(1 — ¢f) =+ (lePc /\%4)% ) :| (20)
.. P.Prp?/?
Ebneyamlm [68] Peff =T |:(]. - ¢2/3)Pc + WM} (21)
-1
Ori d 0 P 1
KJN [69] Pefyfwnte =P [(1 ~ cos f)cf/s\f sin9¢f> + Py <cos 0+As sin9>¢f] 22)
-1
Random _ 7 __P
P = Z P { I Wd@} (23)
’ Reyp = R. + Ry
Permeate ’ Permeate
side ':' side
’ Filler 1 1
I" phase Ry 1 t R = i + R7f
/ ,’ /
ul "l
L4
Conti s 4 Continuous  Filler
=5 O; hl ;1;:)11% R. |:[ phase phase Re Ry
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Figure 2. Resistance model approach for a multilayer composite in: (a) series and (b) parallel.

Following the electrical circuit analog in Figure 2 and the above definition for the permeation
resistance in Equation (16), the permeability for the multilayer composite in series yields Equation (17)
in Table 1, while that of a multilayer composite in parallel yields Equation (18) [47,70]. The series model
in Equation (18) is assumed to provide the lower bound for the permeability of a given penetrant in
an ideal MMM [135]. Alternatively, the parallel model in Equation (18) is assumed to provide to the
upper bound for the effective permeability of a given penetrant in an ideal MMM [47,70].

In addition to the two-resistance based models in Equations (17) and (18), more complex models,
including three-resistances or more, have been proposed following the RMA [68,69,72,82,87,130].
In these models, the additional diffusion resistances are intended to account for tortuosity effects
in the permeant diffusion path when there are large differences in permeabilities amongst the filler
and polymer phases [68,87] or defects in MMM structure [69,82,87]. Amongst existing RMA models,
those of Te Hennepe [130] in Equation (19) and Cussler [72] in Equation (20), based on three-resistance
circuit analogs, have widely been applied to zeolite-polymer MMMs [114,128,136].

Te Hennepe et al. [130] considered the one-dimensional transport in zeolite-rubber MMMs.
They idealized the MMM as a lamella containing composite layers [131], in which each composite
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layer comprised two regions. The first region consisted of polymer and the second one of polymer and
zeolite particles (mixed-region). In this model, the polymer region was assumed in series with parallel
resistances of the second mixed-region [130,131], which led to Equation (19) in Table 1. Alternatively,
Cussler [72] considered two-dimensional transport in the MMM. He assumed the resistance of the
polymer region in series with that of a second mixed-region, similar to Te Hennepe et al. [130].
However, transport in the mixed-region was assumed to occur in the permeation direction through filler
phase and perpendicular to the permeation direction through polymer phase [15,36]. This assumption
led to Equation (20) in Table 1, in which A = wy/ 12 ¢ is the aspect ratio of the filler phase with wy and
(s being the flake width and thickness [21,136].

Recently, Ebneyamini et al. [68] proposed a semi-empirical four-resistance model for ideal
MMMs comprising cubical particles. To do so, an empirical correction factor (7) was introduced
to a one-dimensional four-resistance model. The final model is given by Equation (21) in Table 1,
and referred here as the Ebneyamini model. In this model, T was estimated via simulation of the
3D particle-polymer system and adjusted to follow Langmuir-type equations. Thus, T is assumed
to accommodate tortuosity effects arising from large differences amongst the MMM constituent
phase permeabilities.

Modeling MMMs with tubular filler has received less attention than those having cubic or platelet
fillers, with only few studies [69,87] developing RMA models for nanotube-MMMs. The first of these
RMA models was proposed by Kang et al. [69], who accommodated the orientation of tubular fillers
in the calculation of the overall transport resistance. The final model was named by authors as the
Kang-Jones-Nair (KJN) model, and for uniformly oriented fillers is given by Equation (22) in Table 1.
For randomly oriented fillers, the KJN model is rewritten as Equation (23) in Table 1, with PS{}E”M(G)
in Equation (23) following Equation (22). Here, 6 € [0, 7t/2] is the orientation of the tubular filler,
measured with respect the permeation direction, and Ay = d¢/{; is the aspect ratio of the tubular filler
with d¢ and £ being the diameter and length of the cylindrical particle, respectively. The predictions of
the KJN model are always lower than those based on the series model, with the KJN model simplifying
to the series model when 6 = 0. Figure 3 depicts a comparison of the permeability (P,s¢) profiles
based on models of Table 1 with a¢. = P¢/Pc = 10 in all models and Ay = 0.25 in the Cussler and K]N
models. Figure 3 also depicts the MMM structure assumed by each model.

o T T T T T - T N -
Parallel )\f =0.25 (' -»>
= == == Ebneyamini Pf/Pc =10
G | |==m===m==Te Hennepe
.......... Clussler -p =>
-> -
e 51 |= = =KJN, 0 =7/2
% ————— KJN, Random -> ->
m 4 b g -
S
ey
N3t -»> ->
= -> -»>
2ot S =T
.......... => i
- -»>
1| e e ——
0 01 02 03 04 05\ -
-> -»>

61 1% vol

Figure 3. Comparison of permeability profiles based on models of Table 1 with ag. = P¢/P. =10
Ay = 0.25. Right-hand side depicts the composite structure considered by each model.
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3.2. Effective Medium Approach

The crux of the effective medium approach (EMA) lies in the substitution of a given composite
system by an equivalent effective homogeneous one having the properties of the composite [137-139].
The resulting effective composite properties are generally functions of the volume fraction and
permeabilities of the composite constituent phases, similar to RMA-based models (cf. Section 3.1).
However, EMA differs from RMA in the way the filler phase is considered within the composite.
While most RMA models assume regular distributions (e.g., simple cubic or body centered cubic
lattices) of platelet and/or cubic particles [47,68,131,140], EMA models consider random distributions
of spherical inclusions [64,65,141-143]. For ease of analysis, we here classify EMA models in two main
groups. The first group corresponds to EMA models following Maxwell’s theory and second to those
following Bruggeman'’s theory, with models associated with each theory described in Sections 3.2.1
and 3.2.2, respectively.

3.2.1. Maxwell Theory

Maxwell [62] calculated the electrical conductivity of infinitely diluted cluster of particles
embedded in an infinite matrix [138]. To do so, he assumed that the far field potential of this cluster
was equivalent to that of a homogeneous sphere having the original composite volume [65,135,137],
as depicted in Figure 4. Based on this assumption, Maxwell defined the composite conductivity
as that of the homogeneous sphere [21,141,144,145], which led to Equation (24) in Table 2,
with B = (af. —1)/(afc +2) and ay. = Pr/Pc. Further, because the Maxwell model disregards
particle interaction, it is only applicable to dilute suspensions (¢ < 0.2).

Far field Far field
p P
oField point oField point

Mixture

Figure 4. Schematic representation of Maxwell’s theory. A composite sphere comprised of spherical
particles (phase f) in a matrix (phase c), immersed in an infinite matrix of phase c.

The Maxwell model was later extended to spheroids by Wagner and Sillars [126]. To do so,
the conduction problem was reformulated with oriented spheroidal inclusion, with these spheroids
oriented along the axis of the potential difference [81,126]. This consideration led to Equation (25)
in Table 2, referred as the Maxwell-Wagner-Sillars model [81]. Here, A¢ € [0,1] is the particle shape
factor, and for prolate spheroids A¢ € [0,1/3] while for oblate spheroids A¢ € [1/3,1]. In the limits,
when Af =0, )\f = 1/3, and Af = 1, Equation (25) reduces to the parallel model, series model
(cf. Table 1) and Maxwell model, respectively. The Maxwell-Wagner-Sillars model is only applicable to
diluted ellipsoid dispersions (¢ < 0.2), similar to the Maxwell model [3,21,41,146].

Several attempts have been made to extend Maxwell’s equation to concentrated composites
(4)f > 0.2) [64,65,73,141,142], of which, the one with the most significant results is that of
Jeffrey [142,147]. He showed that relative conductivity (Pr)of a dispersion can be expressed in series of
ol following the form P, = P, f/PC =1+ Ki¢s + Kng% + .- [141,148], in which each K-term in the
series (Ky, Ky, ..., Ky) accommodates the interaction of successively larger sets of particles [141,149].
Further, Jeffrey [142,147] demonstrated that only the first-order term of the Maxwell model is exact,
where Equation (24) yields Pr = Psr/Pc = 1+ 3Bs.¢5 + O(qu%) with K1 = 3B¢ when ¢ — 0.
This limiting equation was later used by Bruggeman [139] and Pal [65], as described in Section 3.2.2.
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Although Jeffrey [142,147] hypothesized that K; in the series was dependent on S and ¢y,
his final equation corresponds to the low-density limit of interacting spheres [141]. Thus, Jeffrey’s
model provides very similar predictions to the Maxwell model [150]. Later, Chiew and Glandt [141]
estimated Kj in the series using pair-correlation functions of hard-sphere fluid simulations, which led
to Equation (26) in Table 2. In this work, the resulting values of K, were tabulated as function of
Xfe and Pr [141,149]. Later, Gonzo et al. [145] fitted Chiew and Glandt’s results for K;, which led to
Equation (27) in Table 2. Further, the Chiew-Glandt model corresponds to the exact solution to the
series truncated after Kp-term [141,149], with the model applicable to moderate/high filler loadings
(¢f < 0.645) [141,145,151].

Table 2. Models based on Maxwell’s theory.

Model Key Equations
o [12Brepr ] g [Prt2P—2¢5(P.—Py)
Maxwell [62] Pr = P ey ] = P [Fma ey @
Maxwell-Wagner-Sillars 5 APrH(1=Af)P.—(1—Af) s (P.—Py)
model [81] Perr = Pe = 5 A, )Pt A (P ) (25)
| 1H2Brepr+(Ka—3p% )97
Pefr = Pc{ TP (26)
Chiew-Glandt [141] Ky=a+b 472 7)
a = —0.002254 — 0.123112B 7 + 2. 936565}6 +1.690463 28)
b = 0.0039298 — 0.8034948 5 — 2.16207p%, + 6.482968% +527196p%,  (29)
i—1 dC,,, —
MB-B model [152] _ R’ RET dR [R P (IR) } 0 (30)
¢4(R) = 273 o Jo @5 (R'(R,r,0))r* sin 6dbdr (31)
. 1+2,3fc47f
Lewis-Nielsen [73] b= 1—=Bosetpm ) (32)
P =14 [(1— @)/ 9] ¢ (33)
. . _ 3¢rBre
Higuchi [85] Fefy = Pe [1 + 1—¢f5fc—KH(1—¢f>ﬁ§c] (34)
_ p [20=¢r)+(14+2¢1) (/)
Pp = P 0T 00/7) ] (35)
Felske model [77] n=1(2+6)ag —2(1—6)a (36)
v=(1+8)-(1-8)ag (37)
¢
47fi m (38)
Pl 2P, —2¢4(P.—P/, )
off fi(Pe—Fogy
Pseudo-two-phase Per = C[ Pl +2P+¢i(P—Pl) ] (39)
Maxwell [85 f o Pp+2P,—2¢ (P —Py)
5 Py = B v (40)
¢s =1/(1+€;/10)° (41)

Recently, Monsalve-Bravo and Bhatia [151-153] used the Chiew-Glandt model in conjunction
with the one-dimensional transport equation for the permeant to describe the permeability for various
gases in flat and hollow fiber MMMs. The semi-analytical model is given by Equation (30) in Table 2,
referred to as the MB-B model. Here, i = 1 for a flat MMM and i = 2 for a hollow fiber MMM while
Cyy is the position-dependent pseudo-bulk concentration in the MMM, with boundary conditions
Cuw =Cu1 = fi/RgTgat R = Ry and Cyy = Cy2 = f2/RyTg at R = Ry. In Equation (30), P (R) is
the effective local MMM permeability, estimated using the Chiew-Glandt model in Equation (26),
in which the constituent phase permeabilities (Py and I;) are concentration-dependent via the Darken
model [154,155]. Further, the locally averaged filler volume fraction (¢ f) in Equation (31) averages
the filler volume fraction (¢¢) over the particle volume at a given membrane location, with r, being
the filler particle radius and R’(R,r,6) the location in the particle relative to the position R in the
MMM. Thus, the MB-B model incorporates effects of particle size [151], membrane geometry [152] and
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isotherm nonlinearity [153] in the calculation of the MMM permeability. The MB-B model reduces to
the Chiew-Glandt model when r,/¢ — 0.

As an alternative to the exact second order solution of Chiew and Glandt [141],
several empirical modifications of the Maxwell model [80,156,157] have been proposed for concentrated
composites. These models empirically embed packing-related effects [158] and variation in filler
properties, such as particle agglomeration, size, and shape [71,80,86], within a single parameter in
the model [80,86,153], with the Lewis-Nielsen model in Equation (32) being one of most popular of
these models. In this model, packing-related effects are accommodated via the maximum filler volume
fraction (¢y,) [124,159], with the Lewis-Nielsen model simplifying to that of Maxwell when ¢, — 1.
Alternatively, Higuchi [88] introduced empirical parameter, Ky, to the Maxwell model to account for
particle-particle interactions and asphericity effects arising from particle shape variation, with the
Higuchi model given by Equation (34) [70,85] and 0 < Ky < 0.78 for spherical particles [160].
Thus, Equation (34) reduces to the Maxwell model when Ky = 0 [74]. Figure 5 compares the
permeability (P,¢f) profiles based on ideal models in Table 2, with a¢. = P¢/P. = 10 and specific
model parameters values listed in the legend.

7 Maxwell-Wagner-Sillars, Ay = 1/10
= = == Higuchi, Ky =0.78
OF |=e=——— Lewis-Nielsen, ¢, = 0.645
---------- Chiew-Glandt > >
> -
= O |= = =Maxwell /
g ————— Maxwell-Wagner-Sillars, A\s = 2/3 / -> ->
g 4 a
=
&l -
-»>
2L
-»>
-»>
1+
0 0.1 0.2 0.3 0.4 0.5
(¢5) [% vol]

Figure 5. Comparison of permeability profiles based on the ideal models of Table 2 with a ¢, = Pr/Pc = 10,
depicting the composite structure considered in each model.

Based on Maxwell’s theory, several models have been proposed to account for non-ideal
polymer-particle morphologies [77,78,84,86,160], either by: (i) solving the transport problem in
an MMM comprising spherical core-shell inclusions [77,86] or (ii) assuming the particle-interface
system as a pseudo-phase dispersed in the polymer matrix [71,85]. In the first group of non-ideal
models are found that of Felske [77], and later Pal’s adaptation [86]. In the second group are
found the pseudo-two-phase Maxwell model [85], and its adaptations [84,161]. The Felske model
in Equation (35) [77] is the exact first order solution to the transport problem through a dispersed
composite comprising non-interacting core-shell particles [160]. In this model, ¢5; = ¢r + ¢; is
the volume fraction of the total dispersed phase following Equation (38), with 6§ = (¢;+1,)/70
and cp}\’ the nominal filler volume fraction [70,86,160]. Further, Nfe = Pf /P, aj. = P;/P,
and ay; = Ps/P; in Equations (36) and (37). The Felske model is only applicable to dilute suspensions
(¢fi <0.2) [71,160,162].

In the pseudo-two-phase Maxwell model in Equation (39) [85], it is assumed that the three-phase
composite can be idealized as pseudo two-phase composite [163,164], with the polymer matrix
being one phase and the combined filler-interface system being the other phase (i.e., pseudo
dispersed filler phase) [21,71]. In Equation (39), ¢y; is the volume fraction of total dispersed
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phase, given by Equation (38) [70]. Further, Pg} g s the permeability of the combined filler-interface
system, given by Equation (40). Here, ¢ is the volume fraction of the filler in the filler-interface
composite, and following Equation (41) [70,85,163]. Further, P; is assumed well described by Knudsen
diffusion mechanism when interfacial voidage is considered [70,163]. Alternatively, when polymer
rigidification is considered at the filler surface P; = P. /o, with o € [3,4] being the chain immobilization
factor; an empirical parameter used to differentiate the rigid polymer permeability from that in the
bulk polymer [21,163,164]. Later, Li et al. [84] modified the pseudo-two-phase Maxwell model to
accommodate both partial pore blockage and polymer rigidification. In this later work, the Maxwell
model is accordingly applied three times to include both effects.

3.2.2. Bruggeman’s Theory

The Bruggeman'’s theory proceeds from the premise that the field of neighboring particles can
be taken into account by randomly adding the dispersed phase incrementally while considering
the surrounding medium as the existing composite with effective transport properties at each
stage [64,65,139]. This concept of incremental homogenization is illustrated in Figure 6, in which
p! fr Pezf £ and P,ss are the MMM permeabilities at different stages of the homogenization process.

Diluted limit
(Maxwell model)

Figure 6. Schematic representation of the Bruggeman'’s theory.

Bruggeman [64] based his expression for the dielectric permeability of dispersed composites on
the assumption that the Maxwell model described well the composite permeability in the diluted
limit [65,139], as depicted in Figure 6. To do so, He considered that the differential increment in
the dielectric permeability (dP) resulting from addition of new particles was well described by
Py = Ppsr/ Pc = 1+ 3B 5.y, that upon substitution of P. — P, Py — P +dP,and ¢¢ — dqbf/(l - qbf)
leads to Equation (42) in Table 3 after integration [138,165]. The Bruggeman model is assumed to be
applicable to moderate filler loadings (0 < ¢r < 0.35) [135,139,146].

Table 3. Models based on Bruggeman’s theory.

Model Key Equations
1
Prff 3 IXfC—l _ o -1
Bruggeman [64] [ c ] [7%_ (ngf/Pu):| = [1 ‘Pf] (42)
1
Pl-’ff 3 le*l _ - ﬂ —¢Pm
Fallea] ] [ty ) = 1 &) @
1 f _
Poyp]5 | P/ Pe)—1 PR
Pseudo-two phase [ F. } {(Pfff/Pc)z(ngf/P() o [1 (Pfl] 44
Bruggeman model [78] z
. [Pl/B]T =190 Br <P @
1
P73 (P;/P)—-1 .
off 7/ Pi — M ) 46
{P'l {(Pf/Pi)f(P{f/PiJ =@l Przh (46
1 f py_ L
Pseudo-two phase Pal {P;;fcf ] ’ {%} = [1 - %} ’ (47)
model [71] o (Pegg/ Pe) = (Pegy / Pe) ,
PL’ (P /P1)71 ¢5 —rm
ff f — _9Ps 48
{ P ] [(pf/p,-)f(pefff/zv,-)} {1 %] (48)
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Similar to Bruggeman [64], Pal [65] assumed that the increment dP resulting from the
addition of new particles was well-described by Pr = Pprr/P = 1+ 3Bspy, with Po — P
and Py — P+dP; however, ¢¢ — dps/(1—¢s/Pm) was used instead of ¢r — dpr/(1— ¢y),
which leads to Equation (43) in Table 3 after integration [86,145]. In this model, ¢, has the same
connotation as in the Lewis-Nielsen model (cf. Section 3.2.1) [80,86,151,153]. The Pal model reduces
to Bruggeman’'s result when ¢, = 1. Further, the Pal model always predicts higher values for the
permeability (P,s¢) than that of Bruggeman for a given system.

Analogous to the pseudo-two-phase Maxwell [85], both Bruggeman and Pal models have been
extended to describe non-ideal MMMs. The former of these adaptations is known as the pseudo-two
phase Bruggeman model in Equation (44) [78], with the model describing the effect on the MMM
permeability of a voided or rigidified interfacial region at the filler particle surface [79]. In this
model, ¢y; is given by Equation (38) [70] and ¢s given by Equation (41) [70,85,163]. Further, PEJ; £ is
given by Equation (45) for voided interphase(P; << P;) [81] and by Equation (46) for rigidified
interface [166]. Similarly, the pseudo-two phase Pal model in Equation (48) [71] accounts for the
effect of polymer rigidification on the MMM permeability [79,85,160,164]. In this way, ¢ i and ¢ are

given by Equations (38) and (41), respectively [70]. Here, Péf £ and P; have the same connotation as in
the pseudo-two-phase Maxwell model (cf. Section 3.2.1) [79]. Recently, Idris et al. [79] modified the
pseudo-two-phase Bruggeman model to account for both effects of polymer rigidification and presence
of voids at the particle surface. In this later work, the Bruggeman model is accordingly applied three
times to include both effects.

Finally, Bruggeman also developed a symmetric theory for the transport in composites [126,137].
However, models such as those of Landauer [63] and Béttcher [167], associated with this symmetric
theory, are not discussed here. This is because the symmetric Bruggeman’s theory considers the
composite to be a random assembly of spherical particles of different materials [138,168], in which all
components in the composite are continuous in the medium [141]. This condition is not met in MMM,
where one phase is preferentially assumed dispersed in the other.

3.3. Simulation-Based Rigorous Modeling Approach

The simulation-based rigorous modeling approach (SMA) is based on numerical solution of
coupled partial differential equations (PDEs) describing the transport through the MMM via the
finite-element method (FEM) [20,151,169], or any other suitable method (e.g., finite volume method
or boundary element method), to discretize the 3D computational system [123]. Thus, the SMA is
based on the assumption that the steady-state transport through the MMM is well-described by the
continuity equation [151,170], as:

V- ]=0 (49)

where ] is the permeant steady-state flux, with the Fick’s law describing the flux in both dispersed (J)
and continuous (J;) phases, as [153]:

Jf = Ds(Cr)(=VCy) (50)
]c = Dc(cc)(_vcc)- (51)

respectively. In Equations (50) and (51), VC and D are the concentration gradient and diffusivity in
a given phase, respectively. In this way, Equations (49)—(51) are solved in the 3D MMM [151], in which
the resulting steady-state flux is used to calculate the MMM permeability via Equation (2) [152].

The SMA offers several benefits in comparison to earlier RMA and EMA approaches,
amongst which the main advantage is that this approach can easily incorporate the permeability
dependence on the concentration field [153] and finite-system size effects [151], largely disregarded in
the former approaches. In this way, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>