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Abstract: The article summarizes a systematic process design for the extraction and purification of
artemisinin from annual mugwort (Artemisia annua L.). Artemisinin serves as an anti-malaria drug,
therefore, resource-efficient and economic processes for its production are needed. The process
design was based on lab-scale experiments and afterwards piloted on miniplant-scale at the institute.
In this part of the article, a detailed economic feasibility studies including a reference process as a
benchmark the lab-scale process and the pilot-scale process is given. Relevant differences between
the different scales are discussed. The details of the respective unit operations (solid-liquid extraction,
liquid-liquid extraction, chromatography and crystallization) are presented in dedicated articles.
The study showed that even miniaturized lab-scale experiments are able to deliver data detailed
enough for scale-up calculations on a theoretical basis. To our knowledge, a comparable systematic
process design and piloting was never performed by academia before.
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1. Introduction

The demand for natural derived products is still growing [1,2]. Among others, they are
used as highly purified products derived from plant extracts for the treatment of various diseases.
One example is the anti-cancer drug Paclitaxel® which is produced by semi-synthesis from the
precursor 10-deacetylbaccatin III, that is found in the needles of European yew (Taxus baccata L.).
Another substance is the anti-malaria agent artemisinin from annual mugwort (Artemisia annua L.).
These substances are extracted from the plant matrix and afterwards purified to pharma grade, typically
by liquid-liquid extraction, chromatography, and a final crystallization [3–6].

The whole study, containing a conceptual process design, cost estimation, and a detailed
investigation of solid-liquid extraction, liquid-liquid extraction, chromatography, and crystallization,
has been split into five articles, as follows:

Part 0: Sixt, M.; Strube, J. Systematic and model-assisted evaluation of solvent based- or pressurized
hot water extraction for the extraction of Artemisinin from Artemisia annua L. Processes 2017, 5,
86, doi:10.3390/pr5040086.

Part I: Sixt, Schmidt et al. Conceptual process design and cost estimation (this article);
Part II: Schmidt, Sixt et al. Model-based design of agitated and packed columns for multistage

extraction and scrubbing. Processes, Revised version review;

Processes 2018, 6, 161; doi:10.3390/pr6090161 www.mdpi.com/journal/processes
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Part III: Mestmäcker, Schmidt et al. Chromatographic purification. Processes, Pending editor decision;
Part IV: Huter, Schmidt et al. Crystallization. Processes, Under review.

In a previous publication by the institute, a model based optimization for the extraction of
artemisinin with either acetone as solvent or the use of pressurized hot water as a new process option
in multi-unit operations was investigated and optimized [7]. In the present study, the systematic
process design for purification of artemisinin from mugwort is shown. The concept was developed on
the example of 10-deacetylbaccatin III from yew and is depicted in Figure 1 below [6].

• The first step is the solid-liquid extraction discussed in detail in [7].
• The extract is filtered and afterwards the organic solvent is partly recycled. In this step,

the precipitation of chlorophyll commonly takes place due to the accumulation of water in the
extract in which chlorophyll is not soluble. If this does not occur, chlorophyll can be precipitated
by adding water as an anti-solvent.

• The thickened extract is filtered once again to separate the precipitate.
• A whole series of liquid-liquid extraction steps serves to further increase the target component’s

concentration whilst separating side components.
• In a final step, the pure component is obtained either by preparative chromatography or

crystallization or rather by coupling these two steps.
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the plant [8]. Artemisinin is used to fight malaria, because of its efficacy against parasites of the 
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Annual mugwort (Artemisia annua L.) from the Asteraceae family is an annual plant, growing
mainly in moderate climatic and reaching heights of up to 2 m. The main active ingredient in annual
mugwort is the sesquiterpene lactone artemisinin, which amounts to around 0.01 wt % to 1.5 wt % of
the plant [8]. Artemisinin is used to fight malaria, because of its efficacy against parasites of the species
plasmodium [9,10]. It is mainly located in flowers and leave of the annual mugwort and stored in
glandular trichomes on the surface of leaves, because of its toxicity for the plants cells [11]. This way
artemisinin acts as natural protection against different natural enemies, e.g., predators, fungi or other
pathogens [12].

The isolation of artemisinin was first achieved by Chinese scientist Tu Youyou and awarded with
the 2015 Nobel Prize in Medicine together with William C. Campbell and Satoshi Ōmura [13].

The characteristic of the molecule, shown in Figure 2, is the peroxide bridge, believed to be
responsible for the drug’s mechanism of action [14].

A patent-based process serves as a benchmark for the further assessments [15,16]. The flow
scheme is depicted in Figure 3.

An amount of 1000 t/a of dried mugwort (CfM Oskar Tropitzsch, Markredwitz, Germany)
with an average artemisinin content of 0.395% [7] (according to the literature, 0.01–1.4% [8]) is first
crushed and percolated with ethanol (VWR®, Darmstadt, Germany). The extract is concentrated by
means of a falling-film evaporator with solvent recovery. In the next step, the concentrated extract is
further concentrated by a liquid-liquid extraction and freed from part of the secondary components,
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with hexane (VWR®, Darmstadt, Germany) as the solvent. Subsequently, the artemisinin is purified
by normal phase column chromatography with a hexane-ethyl acetate system (VWR®, Darmstadt,
Germany). The volume of the artemisinin fraction from the chromatography is further concentrated in
an evaporator (IKA®-Werke GmbH & Co. KG, Staufen, Germany) and then the product is recovered
by crystallization. The final step in the process is to dry the artemisinin. The overall process shows
a loss of about 41%, yielding 2935 kg of pure artemisinin per year, which is about 2% of the world
demand. The investment costs amount to €5.74 million. Annual operating costs amount to €8.4 million,
resulting in a production cost of 2.87 €/g artemisinin. An Internet pharmacy offers 12 tablets of
artemisinin, each 40 mg, for €57.82 [17]. Assuming a planned trade margin and 10% of the remaining
costs allocated to production, then a production price of 6 €/g can be deducted.Processes 2018, x, x FOR PEER REVIEW  3 of 10 
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In addition to the shown benchmark pathway much effort was put into new, or rather enhanced,
methods for the isolation of artemisinin. Lapkin et al. screened for various solvents to increase
the efficiency of the solid-liquid extraction step. They applied the COSMO-RS model (short for
COnductor like Screening MOdel for Real Solvents) to find potential candidates and performed
an experimental validation. The screening included even non-conventional solvents in terms of
solid-liquid extraction, such as fluoroform [18]. Due to the complex molecular structure of artemisinin
and the characteristics of the plant material optimization of extraction is always a multi-parameter
approach. In addition to physico-chemical consistent methods, design of experiments offers the
possibility to search for possible points of operation and investigate the influencing parameters of
the process. De O. Silva et al. showed such an approach using the Box-Behnken experimental design.
As expected, the drug-solvent ratio influenced the batch extraction the most [19]. In addition to
extraction and purification of artemisinin, synthesis was investigated. One promising approach is a
photo-chemical continuously operated process to transform dihydroartemisinic acid into artemisinin,
by Seeberger and coworkers [20,21]. The precursor dihydroartemisinic acid is extracted from annual
mugwort but is found in larger quantities compared to artemisinin. Not only extraction and synthesis
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have been investigated; whole processes and value chains single unit operations in the downstream of
artemisinin have been assessed [22]. Suberu et al. identified co-metabolites in the plant extract that
negatively affect the crystallization of artemisinin [23]. This investigation is very important to identify
those compounds that must be removed by unit operations before crystallization. Especially costly
unit operations, such as chromatography, benefit from that investigation because not all substances
have to be separated, but the right ones.

2. Results and Discussion

The process design originates from a lab-scale process development based on the complex plant
extract as the feed. This data afterwards served for a scale-up to the pilot scale. The process engineering
details are discussed in the parts III to IV of this study.

• In both scaling stages, the extract can be recovered by conventional solid-liquid extraction with
acetone with a purity of nearly 40% and a concentration of 0.27 g/L. The yield is considered 100%
in this process step. Details on solid-liquid extraction can be found in [7].

• Evaporation of the extract by means of distillation results in a concentration of about 2.5 g/L due
to the volume reduction. The yield loss amounts to about 2% for this process step.

• In the first step of purification, chlorophyll is separated by precipitation and filtration. It can
be seen that the purity in the laboratory process increases to 52%, in the pilot process, however,
only to about 42%. Due to the addition of water, the concentration drops. The yield loss in this
process step is about 6% on a laboratory scale, whereas, in the pilot process, practically no yield
loss is recorded. The purification effect of precipitation is overestimated by the laboratory study,
yet higher yields result due to larger pilot scale quantities. Despite the low level of purification,
this process step is necessary because the extract containing pure acetone would not form a
miscibility gap with the solvents used in the subsequent liquid-liquid extraction.

• In the first liquid-liquid extraction, the concentration in laboratory scale greatly increases from
1.4 g/L to about 4.8 g/L due to the small solvent ratio (+340% increase). The lower solvent
ratio in the pilot process results in a concentration of only about 3.7 g/L (increase +264%).
The concentration is therefore 30% lower in the pilot study. Similarly, at 70%, the purity is
higher by 20 percentage points compared to the pilot scale. In a one-step operation of the first
liquid-liquid extraction on a laboratory scale, the yield drops to 80% (shown as a dot in the
diagram). However, a multi-step process is assumed, resulting in an overall yield of about 87%.
The pilot process results in a measured yield of 90% after this process step.

• Product purity increases to 90% in both process variants in the second liquid-liquid extraction
with sodium carbonate solution. This corresponds to an increase of +140% in the laboratory and
+186% on a pilot scale. The concentration increases again by the re-extraction of the acetone from
the respective organic phase into the aqueous sodium carbonate; on a laboratory scale from about
4.8 g/L to 6.6 g/L (+137%) and on a pilot scale from 3.7 g/L to 8.4 g/L (+227%). In the laboratory
process, the overall yield after this step drops to about 80%, whereas this process step at the pilot
scale shows no measurable yield loss.

• In the subsequent chromatography (here for better comparability batch chromatography), a purity
of over 99% is achieved in both processes. The pilot scale yield is 85% after this step, 77% on
a laboratory scale. The concentration decreases in both processes due to the dilution in the
respective eluent.

• The final crystallization and drying results in a purity of almost 100%. The overall process yield
after these steps is 83% in the pilot and 72% in the laboratory scale.

For the basic operations of the selected lab study with complex feed, the small error bars,
as seen in Figure 4, are striking. Thus, the method to select individual process steps based on
the characterization of real feed mixture can be considered robust and reproducible. In general,
however, the laboratory study shows a higher loss due to a mostly one-step mode of operation and
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smaller quantities. The laboratory process has a yield of 72%, the pilot process of 83% and is, thus,
15% higher. The patent-based reference process has a 59% yield. The two newly developed processes
are significantly above this value (+40% pilot, +22% laboratory). According to literature, the yields of
common methods are between 45% and 80% [24].

With the help of these parameters, the three processes in the following chapter are subjected to a
profitability analysis.
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3. Economic Feasibility Study

In the following section, the newly designed laboratory and pilot processes are evaluated from
an economic point of view and compared with the reference process. The reference process is
assigned to class 5 cost estimation, the laboratory process is class 4 and the pilot process is class 3.
The corresponding expected accuracies are summarized in Table 1.

Table 1. Cost estimation classes (Reprinted with the permission of Christensen, P; Dysert, L.R,
AACE International, Morgantown, WV, USA, 2016 [25]). Copyright © 2016 by AACE International;
all rights reserved.

Primary Characteristic Secondary Characteristic

Estimate Class

Maturity Level of Project
Definition Deliverables End Usage Methodology Expected Accuracy

Range

Expressed as % of
Complete Definition

Typical Purpose of
Estimate Typical Estimating Method Typical Variation in

Low and High Ranges

Class 5 0% to 2% Concept screening
Capacity factored,

parametric models,
judgement, or analogy

L: −20% to −50%
H: +30% to +100%

Class 4 1% to 15% Study or feasibility Equipment factored or
parametric models

L: −15% to −30%
H: +20% to +50%

Class 3 10% to 40% Budget authorization
or control

Semi-detailed unit costs with
assembly level line items

L: −10% to −20%
H: +10% to +30%

Class 2 30% to 75% Control or bid/tender Detailed unit cost with
forced detailed take-off

L: −5% to −15%
H: +5% to +20%

Class 1 65% to 100% Check estimate or
bid/tender

Detailed unit cost with
detailed take-off

L: −3% to −10%
H: +3% to +15%
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3.1. Investment Costs

To calculate the investment costs, the unit costs of the basic operations selected in the previous
section are determined by their characteristic parameters [26]. Since the prices are from the year 2002,
they will be converted to 2017 using the Chemical Engineering Plant Cost Index (CEPCI). The last
calculation step is the Lang-factor. This includes the peripherals belonging to the basic operations such
as pumps, pipes and the electrical measurement, regulation and control technology. The Lang-factor is
set at 5, as this is the typical value for the pharmaceutical industry [26]. The investment costs of each
basic operation are shown in Figure 5.

• Due to the higher yield of the pilot process less mugwort needs to be extracted, the costs
for the granulator and percolator are, therefore, about 60% lower than in the reference and
laboratory process.

• The costs for the liquid-liquid extraction are 120% greater in the pilot process compared to the
laboratory process, as the second LLE (liquid-liquid extraction) step was also realized with one
column and not with a mixer-separator. In the reference process, only a liquid-liquid extraction
is performed in a packed column, resulting in only 30% of the cost of the LLE compared to the
pilot process.

• The evaporators are approximately equally expensive in all three variants, whereby it should
be noted here that the degree of detail of the solvent recycling increases significantly from the
reference to the pilot process. Similarly, the cost of the corresponding capacitors increases.

• The costs for filters were much overestimated in the reference process. The actual costs
are negligible.

• The investment costs of batch chromatography in the pilot process are 360% more expensive
compared to the laboratory process and about 150% more expensive than in the reference process.
This high deviation from the laboratory scale to the pilot scale is achieved by purely theoretical
scaling based on thin-layer chromatograms. A high error is to be expected at this point.

• Equipment costs for crystallization are also about 300% more expensive in the pilot process than
in the laboratory or reference study. The acetone/isopropanol (VWR®, Darmstadt, Germany)
system theoretically considered in the laboratory study has a steeper solubility curve than the
ethanol/water system used in the piloting. As a result, significantly more crystallization steps
must be carried out successively in the pilot process, which consequently also results in higher
apparatus costs.

• Due to the higher level of detail of the pilot study, especially solvent recycling, the cost of buffer
tanks is about 150% higher than in the two comparison processes.

• The cost of drying in the pilot study was only about 7% compared to the laboratory or reference
process, as it switched from a costly vacuum belt dryer to a tray dryer.

• In the pilot process, the solvent often needs to be changed by recrystallization, for example, from
the wash extraction to the chromatography support. In the laboratory process, attempts were
made to integrate the solvents in the subsequent process step, which was not feasible in scale-up.
As a result, additional equipment costs are incurred here.

• In summary, the pilot process results in approximately 60% higher investment costs (€7.4 million),
mainly due to the more detailed interpretation of solvent recycling, recrystallization,
and chromatography.
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3.2. Operating Costs

The annual operating costs are depicted in Figure 6.

• The process yield increases from the reference to the pilot process. This leads to the cost reduction
of the plant material, which is assumed to be around 900 €/t. From the reference to the pilot
process there is a savings potential of 30%, from the laboratory to the pilot process of 20%.

• In the laboratory process, solvent costs increase by 125% compared to the pilot process. The pilot
process took a closer look at solvent recycling and reduced losses. The reference process comes
with even lower costs, but this is not tenable due to the lowest level of detail. The cost of each
solvent is 10% of Sigma-Aldrich listed retail prices (wholesale discount).

• In the reference and laboratory process, the service life of the adsorbent was much too short.
In the pilot process, the column had a long service life, resulting in only about 6% of the cost of
replacing the package.

• Total operating costs (€7.2 million) are about 25% lower in the pilot process than in the laboratory
process and 15% lower than in the reference process.
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3.3. Comparison and Evaluation

• The investment costs in the reference process are 5.7 mil. €, in the laboratory process 4.6 mil. € and
in the pilot process €7.4 million. The main reason for the cost increase is the higher level of detail,
in particular the basic operations used for solvent recycling and the chromatography based on
measured values.

• The operating costs amount to 8.4 mil. € in the reference process, to €9.4 million in the laboratory
process and 7.2 Mil. € during the pilot process. The costs are, therefore, the lowest in the piloting
stage, which is mainly due to closed solvent circuits.

Based on the various cost studies, the manufacturing costs per gram of artemisinin are shown
in Figure 7. The error bars reflect the accuracy of the cost estimate as shown in Table 1. In a
direct comparison, the similar magnitudes of an average of 2.87 €/g in the reference process,
3.21 €/g in the laboratory process and 2.46 €/g in the pilot process are apparent. On the one hand,
this speaks for the high quality of the Class 5 cost estimate of the reference process, and on the
other hand, the path from process development in the laboratory to piloting is confirmed. For better
comparability, the process variant was analyzed with batch chromatography in the pilot process.
With the chromatograph-free variant and production without generating profit, the production price
can be reduced to 0.96 €/g. Since malaria occurs mainly in Third World countries, the selling price
must be below 0.24 €/g [24], correspondingly higher in developed countries. To achieve this goal,
the manufacturers of non-governmental organizations are supported by donations [27].
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4. Conclusions

The presented study is based on a transfer of a lab-scale process to pilot-scale for the extraction
and purification of artemisinin from annual mugwort. All unit operations are discussed in the related
articles. The cost estimation revealed that the data from lab-scale gave a good hint towards a possible
investment decision for a commercial process. The precision of data was further enhanced by piloting.
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To our knowledge no equivalent process design was ever performed by academia, revealing great
potential of fully-integrated pilot-plant devices in engineering departments.
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