Finding the Signal In the Noise Determining North America's best path forward for sustainable energy *Canadian Journal of Chemical Engineering Lectureship Award Series*

Thomas A. Adams II

Associate Professor, PhD, P.Eng McMaster University Department of Chemical Engineering McMaster Advanced Control Consortium

LAPSE:2019.0442 Download at PSEcommunity.org/LAPSE:2019.0442

jfr photograph

This lecture series supported by...

The Canadian Journal of Chemical Engineering

Can. J. Chem. Eng. Lectureship Award Thank you for your support!

Presenting results from the paper:

Nease J, Adams TA II. Life Cycle Analyses of Bulk-Scale Solid Oxide Fuel Cell Power Plants and Comparisons to the Natural Gas Combined Cycle. *Canadian J Chem Eng*, 93:1349-1363 (2015). (and others)

Canadian Society for Chemical Engineering | *For Our Future* Société canadienne de génie chimique | *Pour notre avenir*

www.cheminst.ca

Download this Talk from LAPSE!

PSEcommunity.org/LAPSE:2019.0442

- Links to articles cited in the study
- Links to data sets and simulations used in cited studies

the living archive for process systems engineering

Student Contribution Acknowledgements

Jake Nease Professor at McMaster University (Former PhD Student)

Leila Hoseinzade

Engineer at ArcellorMittal Dofasco (Former PhD Student)

Pranav Madabhushi

PhD Candidate

Triple Bottom Line of Sustainability

Economical

- Capital
- Operating
- Supply Chain & Materials
- Job Creation / Losses
- Profitability
- Loans/Financing
- Stockholders
- Uncertainty and Risk

Environmental

- Greenhouse Gases
- Particulates
- Deforestation
- Land Use / Transformation
- Resource Depletion
- Water Consumption
- Toxicity
- Wildlife Impact
- Noise

Societal

- Public Acceptance
- NIMBYs
- BANANAs
- Health Impacts
- Public/Employee Safety
- Accidents
- Public Policy
- Electoral Politics

Big Picture – Adams Group Research Methods

Unit Operation Design

Process Dynamics

-30 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 Time (hrs)

cMaste

Process Synthesis and Design

Process Optimization

Process Modeling and Simulations

Economics, Policy, and Environment (LCA)

Energy Return on Energy Invested (EROEI)

Sources: A. Poisson, C.A.S. Hall, 2013. Time series EROI for Canadian oil and gas. Energies, 6, 5940-5959.

A.K. Gupta, C.A.S. Hall, 2011. A review of the past and current state of EROI data. Sustainability, 3, 1796-1809.

D.J.R. Murphy and C.A.S. Hall, 2010, Year in review—EROI or energy return on (energy) invested. Ann NY Acad Sci, 1185,102-118.

Raugei M et al. 2017. Energy Policy 102:377-384. Ferroni, Guekos, and Hopkirk, 2017, Energy Policy 107:498-505.

Scale and Why It Matters

- At \$50/tonne CO₂ emission tax (Canada Federal 2022 Minimum)
 - Global CO₂ Emissions: 36 billion tonne / yr
 - Global Tax Value: \$1.8 trillion / year (2.4% of World GDP)
 - Canada's GDP: \$1.5 trillion / year
- This is how the three tiers are linked in practice for Canada
 - (For climate change at least)
- Key Tools for Chemical Engineers:
 - Techno-economic analysis (TEA)
 - Life cycle analysis (LCA)

Sources: Environment and Climate Change Canada. *Pricing carbon pollution in Canada: how it will work*. Accessed October 2017. PBL Netherlands Environmental Assessment Agency. *Trends in Global CO2 Emissions*, 2016. The World Bank Databank, *GDP (Current USD)*, Accessed Oct 2017.

Big Picture Motivation

- We have so many technology ideas for reducing greenhouse emissions.
- Which should we focus on now?
- Where should our money be invested?
- What should we do first, and then next?

Cost of CO₂ Avoided: Where do we invest \$\$\$?

Cost of Option 2 – Cost of Status Quo

 $CCA = \frac{1}{GHG \ Emissions \ of \ Status \ Quo \ -GHG \ Emissions \ of \ Option \ 2}$

- Both should yield same product/service
- Use Life Cycle emissions

CCA (in 2016\$US per tonne of CO₂ equivalents)

-65

Retrofit CCS onto existing 550MW PC and build 178MW NGCC/CCS to make up for lost power.

Demolish new 550 MW PC (unused!) and build new 550 MW NGCC, still paying off debts on PC plant

Build New 550MW NGCC w/CCS instead of new 550 MW NGCC

Displace regular unleaded gasoline with wood butanol (experimental thermochemical route)

Displace regular unleaded gasoline with switchgrass butanol (classic fermentation route)

Displace regular unleaded gasoline with corn ethanol

Fundamental Problem of CO₂ Capture and Sequestration

- Fundamental problem: separation of CO₂ and N₂ in flue gases:
 - We need to go from dilute to high purity TYPICAL COAL POWER FLUE EXHAUST, 1 BAR
- We need to go from low pressure to high pressure
- And there's an awful lot of it (~7 million ton/yr per coal power plant).

Sources: NETL 2007 - Bituminous Baseline Report (see required reading). Adams & Barton, AIChE J (2010) deVisser E., et al. Dynamis CO2 quality recommendations. Int. J. Greenhouse Gas Cont. 2008, 2, 478–484 Molecule Images from chemistry.about.com. Sizes from Angew. Chem. Int. Ed. 2010, 49, 6058 – 6082.

Post-Combustion Solvent-Based Capture

Post-Combustion Membrane-Based Capture

Thomas A. Adams II

(2017).

Post-Combustion Solid-Based Capture

Pre-Combustion Solvent-Based Capture (IGCC)

Pre-Combustion Membrane-Based Capture

Source: Adams TA II, Hoseinzade L, Madabhushi P, Okeke IJ. Processes 5:44 (2017)

Thomas A. Adams II

Oxyfuel Combustion

Source: Adams TA II, Hoseinzade L, Madabhushi P, Okeke IJ. Processes 5:44 (2017).

Thomas A. Adams II

Chemical Looping Combustion

Solid Oxide Fuel Cell (SOFC) Process

Recap

Туре	Separation Problem	ASU Requirements	CO ₂ Capture Pressure	Example Applications
Solvent-based Post-Combustion	CO_2/N_2	—	1 bar	Pulverized Coal, NGCC
Membrane-Based Post-Combustion	CO ₂ /N ₂	—	Vacuum	Pulverized Coal, NGCC
Solid-Based Post-Combustion	CO_2/N_2	Low	1 bar	Pulverized Coal, NGCC
Solvent-Based Pre-Combustion	CO ₂ /H ₂	Medium	10-50 bar	IGCC, pre-reforming NGCC
Membrane-Based Pre-Combustion	CO ₂ /H ₂	Medium	Vacuum	IGCC, pre-reforming NGCC
Oxyfuels	CO ₂ /H ₂ O	High	1 bar	Gasified Coal/Nat Gas
Chemical Looping	CO ₂ /H ₂ O	—	10-50 bar	Gasified Coal/Nat Gas
Solid Oxide Fuel Cells	CO ₂ /H ₂ O	Low	1-20 bar	Gasified Coal/Nat Gas

Key Problems

- No systematic comparison between processes
- Everyone claims their own process is the best when compared against some other
- Wide variation in assumptions, strategies and ideas.
- Solution: Meta-Study of ~100 published data points on those 8 processes.
- Convert to a standard basis of comparison

Standards

• Size: 550 MW <u>net, plant gate</u>

- Nonfuel costs scaled with power law method p=0.9
- Time & Place: 1Q2016 USA
 - Time: North American Plant Cost Index
 - Place: Purchasing Power Parity Index

• Fuel

- US Bituminous Coal #6 2016 Avg Price
- US Conventional Average Gas Mix 2016 Avg Price

- Captured CO₂ at plant gate
 - Pressure: >115 bar
 - Purity: >95 mol%
 - Capture Rate: 90-100%
- LCA: Cradle to Gate GHG
 - Consistent NOx production where neglected in original
 - Standardize cradle-to-plantentrance life cycle impacts
- CCA: Cost of CO₂ Avoided
 - Same standard plant without CCS
 - SCPC and NGCC US baseline std's

Overall

- SOFC clear winner for coal and gas
- NGCC w/CCS excellent near term solution
- No point in using membranes!

 Oxyfuels / CLC good coal intermediate step

cMaster

Cost of CO₂ Avoided

Sweet Spot:

The best of post-combustion solvent systems are the only mature technology to be competitive. Rest requires CO₂/H₂O style power gen.

Negative CCA means:

Gas is so cheap in North America, there is no point to using coal at all.

Source: Adams TA II, Hoseinzade L, Madabhushi P, Okeke IJ. Processes 5:44 (2017)

Thomas A. Adams II

Price Trends

Source: Subramanian, Avinash Shankar Rammohan, Gundersen, Truls, Adams, T. A. II Modeling and simulation of energy systems: A Review, *Processes*,, 6 (12) 238 (2018)

Thomas A. Adams II

Meta-Study Conclusions

No point to building new coal

- (as long as gas prices stay low)
- IGCC cannot compete with SCPC
- Calcium Looping unlikely to either
- Membranes not so promising
 - Coal: Only fictional membranes could compete with solvents at the system level
 - Gas: At best competes with solvent directly, maturity / lifetime issues aside.

• SOFC is best way to use coal

• (Could be better than gas in Asian context. Asian study needed!)

FINAL RECOMMENDATIONS

- Near Term: Use NGCC with CCS
 - Closest thing we have to commercial
- Long Term: Use SOFCs with CCS
 - Needs research and investment now
 - Best fossil fuel approach possible
 - Translates well in foreign situations

Expanding and Standardizing

Big Picture Lessons from Study

- Rather hard to do crosscomparative research of ecotechno-economic analyses (ETEAs)
- But the rewards of doing metastudies like this are significant
- A standardization of ETEA methodology for the field would greatly amply the impact of each of our own studies

~O(1,000-10,000) researcherhours

Very useful society, business, and policy conclusions

Individual studies would have greater influence

Thomas A. Adams II

Proposal: Develop recognized standards for performing TEAs and ETEAs

GROUP™

McMaster Jniversity

Standard Types	Details
Base Case Status Quo For Comparison	"Standard" power plants, "standard" refineries, "standard" chemical processes, etc.
Life Cycle Analysis Methodologies	Existing ISO standards, boundary definitions, impact analyses assumptions, methods, etc.
Plant Sizing / Delivered Products	Standard representative capacities and qualities
Metric Definitions	CCA, NPV, efficiencies, HHV vs LHV, other assumptions
Cost Estimations	Standard cost curves, approaches, and assumptions
Transparency and Verifiability	Spreadsheets and models released open-access
Data Formats	Open document formats, etc.

Example Use of Standards: Authors

Researcher Defines ETEA Study as Usual

PSE-3: Fuels, North America, Large Scale

Selects appropriate, scenario, assumptions and metrics

Paper Published. Models / spreadsheets / code released to public database

$$NPV_{alternate} =$$
\$1.3 bln

 $CCA_{alternate} = $41.3/tonne$ $GHG_{alternate} = 4.2 \text{ tCO}_2\text{e}$

Non-standard metrics also reported (special cases, etc.)

Thomas A. Adams II

 $NPV_{PSE-3} = 1.2 bln $CCA_{PSE-3} = $40.3/\text{tonne}$ $GHG_{PSE-3} = 4.5 \text{ tCO}_2\text{e}$

Research

Performed

Metrics Computed according to Standard

Example Use of Standards: Readers

Reader sees standard

Reader studies paper using PSE standard

Thomas A. Adams II

Reader considers

process systems engineering

Reader downloads

Standardization Committee

- Call for members and stakeholder input
- Go to http://PSEcommunity.org/standards

PSE Community.org

The World Community for Chemical Process Systems Engineering Education and Research

👚 HOME LAPSE 🗸 PSE TECHNOLOGY TREE 🗸 STANDARDIZATION EDUCATIONAL MATERIALS 🗸 DISCUSSION BC

Standards for Techno-Economic Analyses and Eco-Techno-Economic Analyses

PSEcommunity.org supports the development of a uniform set of standards that are used when conducting Techno-Economic Analyses (TEAs) and Eco-Techno-Economic Analyses (ETEAs) on chemical and energy process systems. The standards would provide a uniform basis for comparing one process design concept to another across literature studies. This is currently almost impossible to do because each individual research study uses its own methods, assumptions, and definitions when performing analyses of proposed process concepts. However, each research study that conducted its TEA or ETEA adhering to this standard could be directly compared to another other, using established procedures, with little effort.

Example Use of Standards: Authors

Thomas A. Adams II

Cate

Books

Simulat

Asp Asp

Wrap Up

- We can learn a lot from ecotechno-economic meta studies
 - Critical for taking meaningful and near-term action on climate change
 - Critical for policy and business
 - See through the hype.

- Current culture of the field:
 - Hide models and code
 - C.Y.A.
 - Nonstandard methods
 - Not working toward common goal
- Goal: Make it as easy as possible for others to use and understand your research for societal benefit
 - Join me!

